This paper presents the development of a low-cost MEMS based biomimetic tactile device intended to be incorporated as the core element in a biomimetic fingerpad. The developed silicon based sensing devices consist of an array of capacitive sensors with optimized design to measure force ranges encountered during tactile exploration of surfaces with different textures. As with the biological finger, the sensor array contains sensors of different sensitivity and position/orientation, guaranteeing a high informative content of data obtained from surface-finger interaction. This paper presents the design of the device, fabrication processes used and experimental results of sensor performance.
Development of a Biomimetic MEMS based Capacitive Tactile Sensor
ODDO, Calogero Maria;BECCAI, LUCIA;CARROZZA, Maria Chiara;
2009-01-01
Abstract
This paper presents the development of a low-cost MEMS based biomimetic tactile device intended to be incorporated as the core element in a biomimetic fingerpad. The developed silicon based sensing devices consist of an array of capacitive sensors with optimized design to measure force ranges encountered during tactile exploration of surfaces with different textures. As with the biological finger, the sensor array contains sensors of different sensitivity and position/orientation, guaranteeing a high informative content of data obtained from surface-finger interaction. This paper presents the design of the device, fabrication processes used and experimental results of sensor performance.File | Dimensione | Formato | |
---|---|---|---|
Muhammad_Eurosensors_2009.pdf
non disponibili
Tipologia:
Altro materiale
Licenza:
Non pubblico
Dimensione
491.19 kB
Formato
Adobe PDF
|
491.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.