The self-regenerating property of the adult myocardium is not a new discovery. Even though we could not confirm that the adult myocardium is a post-mitotic tissue, we should consider that its plasticity is extremely low. Studies are still in progress to decipher the mechanisms underlying the abovementioned potential fetal features of the adult heart. The modest results of several clinical trials based on the transplantation of millions of autologous stem cells into the dysfunctional heart have confirmed that the cross-talk of different signals, such as the microenvironment, promotes the regeneration of adult myocardium. Recent scientific evidence has revealed that cellular cross-talk does not depend on the action of a single cell phenotype. It is conceivable that the limited turnover of cardiomyocytes is ensured by the interplay of adult cardiac cells in response to environmental changes. The epigenetic state of a cell serves as a dynamic interface between the environment and phenotype. The epigenetic modulation of the adult cardiac cells by natural active compounds encourages further studies to improve myocardial plasticity. In this review, we will highlight the most relevant studies demonstrating the epigenetic modulation of myocardial regeneration without the use of stem cell transplantation.
From Cell Phenotype to Epigenetic Mechanisms: New Insights Into Regenerating Myocardium
LIONETTI, Vincenzo
2013-01-01
Abstract
The self-regenerating property of the adult myocardium is not a new discovery. Even though we could not confirm that the adult myocardium is a post-mitotic tissue, we should consider that its plasticity is extremely low. Studies are still in progress to decipher the mechanisms underlying the abovementioned potential fetal features of the adult heart. The modest results of several clinical trials based on the transplantation of millions of autologous stem cells into the dysfunctional heart have confirmed that the cross-talk of different signals, such as the microenvironment, promotes the regeneration of adult myocardium. Recent scientific evidence has revealed that cellular cross-talk does not depend on the action of a single cell phenotype. It is conceivable that the limited turnover of cardiomyocytes is ensured by the interplay of adult cardiac cells in response to environmental changes. The epigenetic state of a cell serves as a dynamic interface between the environment and phenotype. The epigenetic modulation of the adult cardiac cells by natural active compounds encourages further studies to improve myocardial plasticity. In this review, we will highlight the most relevant studies demonstrating the epigenetic modulation of myocardial regeneration without the use of stem cell transplantation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.