This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(ε-caprolactone) (PCL), and poly(lactide-coglycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.
Electrical and Mechanical Characterisation of Single Wall Carbon Nanotubes Based Composites for Tissue Engineering Applications
VANNOZZI, LORENZO;
2013-01-01
Abstract
This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(ε-caprolactone) (PCL), and poly(lactide-coglycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.File | Dimensione | Formato | |
---|---|---|---|
Electrical and mechanical characterisation of single wall carbon nanotubes based compositesfor tissue engineering applications (2).pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Non pubblico
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.