We demonstrate a hybrid distributed acoustic and temperature sensor (DATS) using a commercial off-the-shelf (COTS) distributed feedback (DFB) laser, a single-mode optical fiber, and a common receiver block. We show that the spectral and frequency noise characteristics of the laser, combined with a suitable modulation scheme, ensure the inter-pulse incoherence and intra-pulse coherence conditions required for exploiting the fast denoising benefits of cyclic Simplex pulse coding in the hybrid measurement. The proposed technique enables simultaneous, distributed measurement of vibrations and temperature, with key industrial applications in structural health monitoring and industrial process control systems. The sensor is able to clearly identify a 500 Hz vibration at 5 km distance along a standard single-mode fiber and simultaneously measure the temperature profile along the same fiber with a temperature resolution of less than 0.5°C with 5 m spatial resolution.

Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection

MUANENDA, Yonas Seifu;OTON NIETO, CLAUDIO JOSE;FARALLI, STEFANO;NANNIPIERI, Tiziano;SIGNORINI, Alessandro;DI PASQUALE, Fabrizio Cesare Filippo
2016-01-01

Abstract

We demonstrate a hybrid distributed acoustic and temperature sensor (DATS) using a commercial off-the-shelf (COTS) distributed feedback (DFB) laser, a single-mode optical fiber, and a common receiver block. We show that the spectral and frequency noise characteristics of the laser, combined with a suitable modulation scheme, ensure the inter-pulse incoherence and intra-pulse coherence conditions required for exploiting the fast denoising benefits of cyclic Simplex pulse coding in the hybrid measurement. The proposed technique enables simultaneous, distributed measurement of vibrations and temperature, with key industrial applications in structural health monitoring and industrial process control systems. The sensor is able to clearly identify a 500 Hz vibration at 5 km distance along a standard single-mode fiber and simultaneously measure the temperature profile along the same fiber with a temperature resolution of less than 0.5°C with 5 m spatial resolution.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/510556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
social impact