Fiber-wireless sensor networks (Fi-WSNs) composed of a hybrid fiber-wireless (FiWi) network enhanced with sensors will play a key role in supporting machine-to-machine (M2M) communications to enable a wide range of Internet of Things (IoT) applications, of which smart grids represent an important real-world example. This paper explores opportunities of designing an energy-efficient Fi-WSN based on EPON/10G-EPON, WLAN, wireless sensors, and passive fiber optic sensors as a shared communications infrastructure for broadband services and smart grids. A novel energy conservation scheme for sensor enhanced FiWi networks (ECO-SFiWi) is proposed to reduce the overall energy consumption. ECO-SFiWi maximizes energy efficiency by leveraging TDMA to schedule power-saving modes of EPON's optical network units, wireless stations, and wireless sensors and incorporate them into EPON's bandwidth allocation algorithm. To study the performance, a comprehensive energy saving model and a delay analysis of both FiWi traffic and sensor data based on M/G/1 queue modeling are presented. FPGA-based hardware emulation and demonstration are performed to verify the effectiveness of the proposed solution. Results provide deep insights into the tradeoff between energy savings and frame delays. Noticeably, ECO-SFiWi achieves significant amounts of energy saving, while maintaining low delay for FiWi traffic and sensor data under typical deployment scenarios.

Design, analysis, and hardware emulation of a novel energy conservation scheme for sensor enhanced FiWi Networks (ECO-SFiWi)

PHAM VAN, DUNG;VALCARENGHI, LUCA
2016-01-01

Abstract

Fiber-wireless sensor networks (Fi-WSNs) composed of a hybrid fiber-wireless (FiWi) network enhanced with sensors will play a key role in supporting machine-to-machine (M2M) communications to enable a wide range of Internet of Things (IoT) applications, of which smart grids represent an important real-world example. This paper explores opportunities of designing an energy-efficient Fi-WSN based on EPON/10G-EPON, WLAN, wireless sensors, and passive fiber optic sensors as a shared communications infrastructure for broadband services and smart grids. A novel energy conservation scheme for sensor enhanced FiWi networks (ECO-SFiWi) is proposed to reduce the overall energy consumption. ECO-SFiWi maximizes energy efficiency by leveraging TDMA to schedule power-saving modes of EPON's optical network units, wireless stations, and wireless sensors and incorporate them into EPON's bandwidth allocation algorithm. To study the performance, a comprehensive energy saving model and a delay analysis of both FiWi traffic and sensor data based on M/G/1 queue modeling are presented. FPGA-based hardware emulation and demonstration are performed to verify the effectiveness of the proposed solution. Results provide deep insights into the tradeoff between energy savings and frame delays. Noticeably, ECO-SFiWi achieves significant amounts of energy saving, while maintaining low delay for FiWi traffic and sensor data under typical deployment scenarios.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/513023
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
social impact