Wind power is an increasingly used form of renewable energy. The uncertainty in wind generation is very large due to the inherent variability in wind speed, and this needs to be understood by operators of power systems and wind farms. To assist with the management of this risk, this paper investigates methods for predicting the probability density function of generated wind power from one to ten days ahead at five U.K. wind farm locations. These density forecasts provide a description of the expected future value and the associated uncertainty. We construct density forecasts from weather ensemble predictions, which are a relatively new type of weather forecast generated from atmospheric models. We also consider density forecasting from statistical time series models. The best results for wind power density prediction and point forecasting were produced by an approach that involves calibration and smoothing of the ensemble-based wind power density. © 2009 IEEE.

Wind power density forecasting using ensemble predictions and time series models

Buizza, Roberto
2009-01-01

Abstract

Wind power is an increasingly used form of renewable energy. The uncertainty in wind generation is very large due to the inherent variability in wind speed, and this needs to be understood by operators of power systems and wind farms. To assist with the management of this risk, this paper investigates methods for predicting the probability density function of generated wind power from one to ten days ahead at five U.K. wind farm locations. These density forecasts provide a description of the expected future value and the associated uncertainty. We construct density forecasts from weather ensemble predictions, which are a relatively new type of weather forecast generated from atmospheric models. We also consider density forecasting from statistical time series models. The best results for wind power density prediction and point forecasting were produced by an approach that involves calibration and smoothing of the ensemble-based wind power density. © 2009 IEEE.
2009
File in questo prodotto:
File Dimensione Formato  
Taylor_etal_Wind_Power_fcs_IEEE_TEC_2009.pdf

non disponibili

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Non pubblico
Dimensione 318.29 kB
Formato Adobe PDF
318.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/524684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 313
social impact