In order to meet the demand for highly scalable and energy efficient data center switches, multiplane architectures, where multiple optical switching domains are leveraged, are an attractive solution. In this scenario, the orbital angular momentum (OAM) of light can be exploited as an additional domain along with wavelength, space, and time. In this paper, we report the demonstration of an OAM-wavelength photonic integrated packet switch controlled by a field-programmable gate array (FPGA) implementing a two-step scheduler suited for multiplane architectures. Packet-based bit error rate (BER) measurements show transmission at 20 Gb/s with BER <10-9 also for the most critical switch configurations, with penalty <2 dB with respect to the back-To-back. The measurements demonstrate that the hardware-controlled switch can support up to 32 ports distributed in 4 cards with 8 ports each.
Demonstration of a multiplane OAM-wavelength packet switch controlled by a two-step scheduler implemented in FPGAs
Malik M. N.;Borromeo J. C.;Scaffardi M.;Preve G.;Toccafondo V.;Castoldi P.;Sorel M.;Bogoni A.;Andriolli N.
2019-01-01
Abstract
In order to meet the demand for highly scalable and energy efficient data center switches, multiplane architectures, where multiple optical switching domains are leveraged, are an attractive solution. In this scenario, the orbital angular momentum (OAM) of light can be exploited as an additional domain along with wavelength, space, and time. In this paper, we report the demonstration of an OAM-wavelength photonic integrated packet switch controlled by a field-programmable gate array (FPGA) implementing a two-step scheduler suited for multiplane architectures. Packet-based bit error rate (BER) measurements show transmission at 20 Gb/s with BER <10-9 also for the most critical switch configurations, with penalty <2 dB with respect to the back-To-back. The measurements demonstrate that the hardware-controlled switch can support up to 32 ports distributed in 4 cards with 8 ports each.File | Dimensione | Formato | |
---|---|---|---|
08708299.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Non pubblico
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.