Neuroprosthetics and neuromodulation represent a promising field for several related applications in the central and peripheral nervous system, such as the treatment of neurological disorders, the control of external robotic devices, and the restoration of lost tactile functions. These actions are allowed by the neural interface, a miniaturized implantable device that most commonly exploits electrical energy to fulfill these operations. A neural interface must be biocompatible, stable over time, low invasive, and highly selective; the challenge is to develop a safe, compact, and reliable tool for clinical applications. In case of anatomical impairments, neuroprosthetics is bound to the need of exploring the surrounding environment by fast-responsive and highly sensitive artificial tactile sensors that mimic the natural sense of touch. Tactile sensors and neural interfaces are closely interconnected since the readouts from the first are required to convey information to the neural implantable apparatus. The role of these devices is pivotal hence technical improvements are essential to ensure a secure system to be eventually adopted in daily life. This review highlights the fundamental criteria for the design and microfabrication of neural interfaces and artificial tactile sensors, their use in clinical applications, and future enhancements for the release of a second generation of devices.

Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems

Cutrone A.;Micera S.
2019-01-01

Abstract

Neuroprosthetics and neuromodulation represent a promising field for several related applications in the central and peripheral nervous system, such as the treatment of neurological disorders, the control of external robotic devices, and the restoration of lost tactile functions. These actions are allowed by the neural interface, a miniaturized implantable device that most commonly exploits electrical energy to fulfill these operations. A neural interface must be biocompatible, stable over time, low invasive, and highly selective; the challenge is to develop a safe, compact, and reliable tool for clinical applications. In case of anatomical impairments, neuroprosthetics is bound to the need of exploring the surrounding environment by fast-responsive and highly sensitive artificial tactile sensors that mimic the natural sense of touch. Tactile sensors and neural interfaces are closely interconnected since the readouts from the first are required to convey information to the neural implantable apparatus. The role of these devices is pivotal hence technical improvements are essential to ensure a secure system to be eventually adopted in daily life. This review highlights the fundamental criteria for the design and microfabrication of neural interfaces and artificial tactile sensors, their use in clinical applications, and future enhancements for the release of a second generation of devices.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/533438
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
social impact