Rice coleoptile elongation under submergence guarantees fast seedling establishment in the field. We investigated the role of auxin in influencing the capacity of rice to produce a long coleoptile under water. In order to explore the complexity of auxin's role in coleoptile elongation, we used gene expression analysis, confocal microscopy of an auxin-responsive fluorescent reporter, gas chromatography coupled to mass spectrometry (GC-MS/MS), and T-DNA insertional mutants of an auxin transport protein. We show that a higher auxin availability in the coleoptile correlates with the final coleoptile length under submergence. We also identified the auxin influx carrier AUX1 as a component influencing this trait under submergence. The coleoptile tip is involved in the final length of rice varieties harbouring a long coleoptile. Our experimental results indicate that auxin biosynthesis and transport underlies the differential elongation between short and long coleoptile-harbouring japonica rice varieties.
Auxin is required for the long coleoptile trait in japonica rice under submergence
Nghi, Khac Nhu;Tagliani, Andrea;Weits, Daniel Adriaan;Perata, Pierdomenico;Pucciariello, Chiara
2021-01-01
Abstract
Rice coleoptile elongation under submergence guarantees fast seedling establishment in the field. We investigated the role of auxin in influencing the capacity of rice to produce a long coleoptile under water. In order to explore the complexity of auxin's role in coleoptile elongation, we used gene expression analysis, confocal microscopy of an auxin-responsive fluorescent reporter, gas chromatography coupled to mass spectrometry (GC-MS/MS), and T-DNA insertional mutants of an auxin transport protein. We show that a higher auxin availability in the coleoptile correlates with the final coleoptile length under submergence. We also identified the auxin influx carrier AUX1 as a component influencing this trait under submergence. The coleoptile tip is involved in the final length of rice varieties harbouring a long coleoptile. Our experimental results indicate that auxin biosynthesis and transport underlies the differential elongation between short and long coleoptile-harbouring japonica rice varieties.File | Dimensione | Formato | |
---|---|---|---|
2020_NewPhyt-compresso.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
965.16 kB
Formato
Adobe PDF
|
965.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.