A new architecture for a widely distributed dual-band coherent multiple-input multiple-output (MIMO) radar system is illustrated, and its implementation and testing are reported. The system consists in a central unit where radar signals are coherently generated and detected, which serves multiple remote sensors connected over transparent WDM optical network. Every remote node operates coherently both in the S- and X-band, and is displaced over distances of several kilometers, allowing to monitor a scene under different angles of view. All the remote sensors share the same oscillator and digital signal processing unit, both located in the central office, allowing to perform centralized raw data fusion on the acquired signals. By virtue of the system coherence, the system takes advantage of the coherent MIMO processing strategy to offer a superior spatial resolution, which is even magnified by the dual-band approach.
Widely distributed photonics-based dual-band MIMO radar for harbour surveillance
Maresca S.;Lembo L.;Serafino G.;Bogoni A.;Ghelfi P.
2020-01-01
Abstract
A new architecture for a widely distributed dual-band coherent multiple-input multiple-output (MIMO) radar system is illustrated, and its implementation and testing are reported. The system consists in a central unit where radar signals are coherently generated and detected, which serves multiple remote sensors connected over transparent WDM optical network. Every remote node operates coherently both in the S- and X-band, and is displaced over distances of several kilometers, allowing to monitor a scene under different angles of view. All the remote sensors share the same oscillator and digital signal processing unit, both located in the central office, allowing to perform centralized raw data fusion on the acquired signals. By virtue of the system coherence, the system takes advantage of the coherent MIMO processing strategy to offer a superior spatial resolution, which is even magnified by the dual-band approach.File | Dimensione | Formato | |
---|---|---|---|
09152030.pdf
accesso aperto
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Non pubblico
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.