Recent research in Phase-Sensitive Optical Time Doman Reflectometry (φ-OTDR) has been focused, among others, on performing spatially resolved measurements with various methods including the use of frequency modulated probes. However, conventional schemes either rely on phase-coded sequences, involve inflexible generation of the probe frequency modulation or mostly employ simple linear frequency modulated (LFM) pulses which suffer from elevated sidelobes introducing degradation in range resolution. In this contribution, we propose and experimentally demonstrate a novel φ-OTDR scheme which employs a readily adaptable Direct Digital Synthesis (DDS) of pulses with custom frequency modulation formats and demonstrate advanced optical pulse compression with a nonlinear frequency modulated (NLFM) waveform containing a complex, rigorously defined modulation law optimized for bandwidth-limited synthesis and sidelobe suppression. The proposed method offers high fidelity chirped waveforms, and when employed in resolving a 50-cm event at ∼1.13 km using a 1.2-μs probe pulse, matched filtering with the DDS-generated NLFM waveform results in a significant reduction in range ambiguity owing to autocorrelation sidelobe suppression of ∼20 dB with no averages and windowing functions, for an improvement of ∼16 dB compared to conventional linear chirping. Experimental results also show that the contribution of autocorrelation sidelobes to the power in the compressed backscattering responses around localized events is suppressed by up to ∼18 dB when advanced pulse compression with an optical NLFM pulse is employed.

Adaptable Pulse Compression in φ-OTDR With Direct Digital Synthesis of Probe Waveforms and Rigorously Defined Nonlinear Chirping

Y. Muanenda
;
S. Faralli;C. J. Oton;P. Velha;and F. Di Pasquale
2022-01-01

Abstract

Recent research in Phase-Sensitive Optical Time Doman Reflectometry (φ-OTDR) has been focused, among others, on performing spatially resolved measurements with various methods including the use of frequency modulated probes. However, conventional schemes either rely on phase-coded sequences, involve inflexible generation of the probe frequency modulation or mostly employ simple linear frequency modulated (LFM) pulses which suffer from elevated sidelobes introducing degradation in range resolution. In this contribution, we propose and experimentally demonstrate a novel φ-OTDR scheme which employs a readily adaptable Direct Digital Synthesis (DDS) of pulses with custom frequency modulation formats and demonstrate advanced optical pulse compression with a nonlinear frequency modulated (NLFM) waveform containing a complex, rigorously defined modulation law optimized for bandwidth-limited synthesis and sidelobe suppression. The proposed method offers high fidelity chirped waveforms, and when employed in resolving a 50-cm event at ∼1.13 km using a 1.2-μs probe pulse, matched filtering with the DDS-generated NLFM waveform results in a significant reduction in range ambiguity owing to autocorrelation sidelobe suppression of ∼20 dB with no averages and windowing functions, for an improvement of ∼16 dB compared to conventional linear chirping. Experimental results also show that the contribution of autocorrelation sidelobes to the power in the compressed backscattering responses around localized events is suppressed by up to ∼18 dB when advanced pulse compression with an optical NLFM pulse is employed.
2022
File in questo prodotto:
File Dimensione Formato  
PJ22 Muanenda - Adaptable Pulse Compression DAS.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/556072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact