: Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a strong effort has been made to envision an engineered graft to tackle this issue. In our recent work, we presented a novel design of porous/3D-printed chitosan/poly-ε-caprolactone conduits, coupling freeze drying and additive manufacturing technologies to yield conduits with good structural properties. In this work, we studied genipin crosslinking as strategy to improve the physiochemical properties of our conduit. Genipin is a natural molecule with very low toxicity that has been used to crosslink chitosan porous matrix by binding the primary amino group of chitosan chains. Our characterization evidenced a stabilizing effect of genipin crosslinking towards the chitosan matrix, with reported modified porosity and ameliorated mechanical properties. Given the reported results, this method has the potential to improve the performance of our conduits for the regeneration of long-gap nerve injuries.

Improved Physiochemical Properties of Chitosan@PCL Nerve Conduits by Natural Molecule Crosslinking

Bianchini M.;Zinno C.;Micera S.;Redolfi Riva E.
Supervision
2023-01-01

Abstract

: Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a strong effort has been made to envision an engineered graft to tackle this issue. In our recent work, we presented a novel design of porous/3D-printed chitosan/poly-ε-caprolactone conduits, coupling freeze drying and additive manufacturing technologies to yield conduits with good structural properties. In this work, we studied genipin crosslinking as strategy to improve the physiochemical properties of our conduit. Genipin is a natural molecule with very low toxicity that has been used to crosslink chitosan porous matrix by binding the primary amino group of chitosan chains. Our characterization evidenced a stabilizing effect of genipin crosslinking towards the chitosan matrix, with reported modified porosity and ameliorated mechanical properties. Given the reported results, this method has the potential to improve the performance of our conduits for the regeneration of long-gap nerve injuries.
2023
File in questo prodotto:
File Dimensione Formato  
biomolecules-13-01712-v2.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Dominio pubblico
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/570533
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact