Background: Biofortification of vegetables is an important innovation technique in the horticultural sector. Vegetables can be a vector of different minor elements that have beneficial effects on human health. Selenium (Se) is an important element for human nutrition and plays a significant role in defence mechanisms. The aim of this work was to investigate the effect of Se in the nutrient solutions on the crop biofortification ability, yield, and quality parameters of four baby leafy vegetables destined to the minimally processed industry. Experiments were performed on lamb's lettuce, lettuce, wild rocket, and spinach. These crops were cultivated in the floating systems with nutrient solution enriched with 0, 2.6, 3.9, and 5.2 μmol L-1 Se provided as sodium selenate. Results: At harvest, Se concentrations, yield, nitrate concentration, sugars, and some mineral elements were measured. Data collected and analyses showed that yield, nitrate, sucrose, and reducing sugars were not affected by Se treatments, even if varied among species. Se concentrations linearly increased in leaves of different species by increasing the Se concentration in the nutrient solution. Rocket was the species with the highest accumulation ability and reached a concentration of 11 μg g-1 fresh weight Se in plants grown with 5.2 μmol L-1 Se. Conclusion: A floating system with Se-enriched nutrient solution is an optimal controlled growing biofortification system for leafy vegetables. The accumulation ability decreased in different species in the order wild rocket, spinach, lettuce, and lamb's lettuce, highlighting a crop-dependent behaviour and their attitude to biofortification. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Biofortification of baby leafy vegetables using nutrient solution containing selenium

Francini, Alessandra
Data Curation
;
Ferrante, Antonio
Funding Acquisition
2023-01-01

Abstract

Background: Biofortification of vegetables is an important innovation technique in the horticultural sector. Vegetables can be a vector of different minor elements that have beneficial effects on human health. Selenium (Se) is an important element for human nutrition and plays a significant role in defence mechanisms. The aim of this work was to investigate the effect of Se in the nutrient solutions on the crop biofortification ability, yield, and quality parameters of four baby leafy vegetables destined to the minimally processed industry. Experiments were performed on lamb's lettuce, lettuce, wild rocket, and spinach. These crops were cultivated in the floating systems with nutrient solution enriched with 0, 2.6, 3.9, and 5.2 μmol L-1 Se provided as sodium selenate. Results: At harvest, Se concentrations, yield, nitrate concentration, sugars, and some mineral elements were measured. Data collected and analyses showed that yield, nitrate, sucrose, and reducing sugars were not affected by Se treatments, even if varied among species. Se concentrations linearly increased in leaves of different species by increasing the Se concentration in the nutrient solution. Rocket was the species with the highest accumulation ability and reached a concentration of 11 μg g-1 fresh weight Se in plants grown with 5.2 μmol L-1 Se. Conclusion: A floating system with Se-enriched nutrient solution is an optimal controlled growing biofortification system for leafy vegetables. The accumulation ability decreased in different species in the order wild rocket, spinach, lettuce, and lamb's lettuce, highlighting a crop-dependent behaviour and their attitude to biofortification. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
2023
File in questo prodotto:
File Dimensione Formato  
Francini_JSFA_2023.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Dominio pubblico
Dimensione 624.86 kB
Formato Adobe PDF
624.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/572121
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact