Soft materials that convert light into mechanical energy can create new untethered strategies for actuating soft robotics. Yet, the available light-driven materials are often incompatible with standard fabrication in soft robotics and restricted to shapes (e.g., sheets) that have limited capability for 3D deformation; often laser or focused light is required for actuation. Here, to address these challenges, a straightforward method for synthesizing sunlight-responsive fluidic actuators from off-the-shelf silicone precursors capable of expanding in 3D is developed. A liquid phase and activated carbon as photothermal elements are constrained in the elastomer. Solar spectral light triggers a liquid–gas phase transition creating sufficient pressure to overcome the internal elastic stress and actuate the material. The fluidic actuation is characterized under varying light conditions reaching expansion cycle times between ≈20–500 s, strains of 28%, and actuation stress of ≈1.3 MPa in different experiments. The materials were then used to exemplarily drive a mechanical switch, a liquid dispensing soft pump, a valve, and a bending actuator. As the described materials are easy to produce in a 5 min synthesis by standard molding techniques, it is believed that they are a promising opportunity for embodied energy converters in environmentally powered soft robots that respond to sunlight.

Solar Spectrum Light‐Driven Silicone‐Based Fluidic Actuators

Shabani, Majid;Meder, Fabian
;
Mazzolai, Barbara
2024-01-01

Abstract

Soft materials that convert light into mechanical energy can create new untethered strategies for actuating soft robotics. Yet, the available light-driven materials are often incompatible with standard fabrication in soft robotics and restricted to shapes (e.g., sheets) that have limited capability for 3D deformation; often laser or focused light is required for actuation. Here, to address these challenges, a straightforward method for synthesizing sunlight-responsive fluidic actuators from off-the-shelf silicone precursors capable of expanding in 3D is developed. A liquid phase and activated carbon as photothermal elements are constrained in the elastomer. Solar spectral light triggers a liquid–gas phase transition creating sufficient pressure to overcome the internal elastic stress and actuate the material. The fluidic actuation is characterized under varying light conditions reaching expansion cycle times between ≈20–500 s, strains of 28%, and actuation stress of ≈1.3 MPa in different experiments. The materials were then used to exemplarily drive a mechanical switch, a liquid dispensing soft pump, a valve, and a bending actuator. As the described materials are easy to produce in a 5 min synthesis by standard molding techniques, it is believed that they are a promising opportunity for embodied energy converters in environmentally powered soft robots that respond to sunlight.
2024
File in questo prodotto:
File Dimensione Formato  
Advanced Physics Research - 2024 - Shahabi - Solar Spectrum Light‐Driven Silicone‐Based Fluidic Actuators.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Creative commons (selezionare)
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/572389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact