Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches.

Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability - Theory

ANDREUSSI T;
2013-01-01

Abstract

Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches.
2013
File in questo prodotto:
File Dimensione Formato  
Andreussi-et-al-PP20-2013.pdf

solo utenti autorizzati

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 472.66 kB
Formato Adobe PDF
472.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/574127
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
social impact