Background Elevated low-frequency activity (4–12 Hz) within the globus pallidus internus (GPi) has been consistently associated with dystonia. However, the impacts of the genetic etiology of dystonia on low-frequency GPi activity remain unclear; yet it holds importance for adaptive deep brain stimulation (DBS) treatment. Methods We compared the properties of GPi electrophysiology acquired from 70 microelectrode recordings (MER) trajectories of DYT-GNAL, DYT-KMT2B, DYT-SGCE, DYT-THAP1, DYT-TOR1A, DYT-VPS16, and idiopathic dystonia (iDYT) patients who underwent GPi-DBS surgery across standard frequency bands. Results DYT-SGCE patients exhibited significantly lower alpha band activity (2.97%) compared to iDYT (4.44%, p = 0.006) and DYT-THAP1 (4.51%, p = 0.011). Additionally, theta band power was also significantly reduced in DYT-SGCE (4.42%) compared to iDYT and DYT-THAP1 (7.91% and 7.00%, p < 0.05). Instead, the genetic etiology of dystonia did not affect the spatial characteristics of GPi electrophysiology along MER trajectories. Conclusion Considering the genetic etiology of dystonia in closed-loop DBS treatments and utilizing theta and alpha activity for GPi stimulation may optimize clinical outcomes. MER-based DBS lead placement can proceed independently of the underlying genetic cause.
Genetic Etiology Influences the Low-Frequency Components of Globus Pallidus Internus Electrophysiology in Dystonia
Ahmet KaymakCo-primo
;Alberto Mazzoni
;
2025-01-01
Abstract
Background Elevated low-frequency activity (4–12 Hz) within the globus pallidus internus (GPi) has been consistently associated with dystonia. However, the impacts of the genetic etiology of dystonia on low-frequency GPi activity remain unclear; yet it holds importance for adaptive deep brain stimulation (DBS) treatment. Methods We compared the properties of GPi electrophysiology acquired from 70 microelectrode recordings (MER) trajectories of DYT-GNAL, DYT-KMT2B, DYT-SGCE, DYT-THAP1, DYT-TOR1A, DYT-VPS16, and idiopathic dystonia (iDYT) patients who underwent GPi-DBS surgery across standard frequency bands. Results DYT-SGCE patients exhibited significantly lower alpha band activity (2.97%) compared to iDYT (4.44%, p = 0.006) and DYT-THAP1 (4.51%, p = 0.011). Additionally, theta band power was also significantly reduced in DYT-SGCE (4.42%) compared to iDYT and DYT-THAP1 (7.91% and 7.00%, p < 0.05). Instead, the genetic etiology of dystonia did not affect the spatial characteristics of GPi electrophysiology along MER trajectories. Conclusion Considering the genetic etiology of dystonia in closed-loop DBS treatments and utilizing theta and alpha activity for GPi stimulation may optimize clinical outcomes. MER-based DBS lead placement can proceed independently of the underlying genetic cause.File | Dimensione | Formato | |
---|---|---|---|
Euro J of Neurology - 2025 - Kaymak - Genetic Etiology Influences the Low‐Frequency Components of Globus Pallidus Internus.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Creative commons (selezionare)
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.