Laser-induced graphene (LIG) is formed by the conversion of certain carbon precursors when irradiated with a laser beam. Predesigned LIG patterns are scribed onto the precursor material in a low-cost and maskless process, which enables the fabrication of flexible and electrically conductive materials for various applications. This study explores the friction and wear behavior of LIG from a polyimide precursor. Line patterns with different widths (200, 100, 50, and 30 μm) are introduced to modify the friction properties. An ultraviolet laser source with a nominal beam size of 2 μm is used, as it allows to scribe patterns with smaller dimensions and at higher resolution compared to the more commonly applied infrared laser sources. A distinct correlation is established between the pattern and its friction behavior, where lowering the line size results in a decrease in the coefficient of friction (COF). The wear behavior is evaluated, revealing gradual wear of the protruding LIG roughness peaks and a change in the graphenic material, which reduces the COF during the running-in stage of the tribological testing. Due to its versatility in terms of precursor material, patterning options, and morphology modification, LIG represents a meaningful candidate for customized tribological applications.

Friction and Wear Behavior of Laser‐Induced Graphene Structures on Polyimide Films

Greco, Francesco
Co-ultimo
Supervision
;
2025-01-01

Abstract

Laser-induced graphene (LIG) is formed by the conversion of certain carbon precursors when irradiated with a laser beam. Predesigned LIG patterns are scribed onto the precursor material in a low-cost and maskless process, which enables the fabrication of flexible and electrically conductive materials for various applications. This study explores the friction and wear behavior of LIG from a polyimide precursor. Line patterns with different widths (200, 100, 50, and 30 μm) are introduced to modify the friction properties. An ultraviolet laser source with a nominal beam size of 2 μm is used, as it allows to scribe patterns with smaller dimensions and at higher resolution compared to the more commonly applied infrared laser sources. A distinct correlation is established between the pattern and its friction behavior, where lowering the line size results in a decrease in the coefficient of friction (COF). The wear behavior is evaluated, revealing gradual wear of the protruding LIG roughness peaks and a change in the graphenic material, which reduces the COF during the running-in stage of the tribological testing. Due to its versatility in terms of precursor material, patterning options, and morphology modification, LIG represents a meaningful candidate for customized tribological applications.
2025
File in questo prodotto:
File Dimensione Formato  
Small Science - 2025 - Gleirscher - Friction and Wear Behavior of Laser‐Induced Graphene Structures on Polyimide Films.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/582595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact