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Abstract
The standard ACE framework provides authentication and authorization mechanisms similar to those of the standard OAuth
2.0 framework, but it is intended for use in Internet-of-Things environments. In particular, ACE relies on OAuth 2.0, CoAP,
CBOR, and COSE as its core building blocks. In ACE, a non-constrained entity called Authorization Server issues Access
Tokens to Clients according to some access control and policy evaluation mechanism. An Access Token is then consumed by
a Resource Server, which verifies the Access Token and lets the Client accordingly access a protected resource it hosts. Access
Tokens have a validity which is limited over time, but they can also be revoked by the Authorization Server before they expire.
In this work, we propose the Usage Control framework as an underlying access control means for the ACE Authorization
Server, and we assess its performance in terms of time required to issue and revoke Access Tokens. Moreover, we implement
and evaluate a method relying on the Observe extension for CoAP, which allows to notify Clients and Resource Servers
about revoked Access Tokens. Through results obtained in a real testbed, we show how this method reduces the duration of
illegitimate access to protected resources following the revocation of an Access Token, as well as the time spent by Clients
and Resource Servers to learn about their Access Tokens being revoked.
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1 Introduction

The Internet of Things (IoT)1 is becoming increasingly per-
vasive in today’s networked environments and systems. This
has been fostering the development of applications and ser-
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vices for several use cases, ranging from home and building
automation, to monitoring and control of production systems
and critical infrastructure. In such contexts, enforcing access
control is one of the key security requirements to fulfill. That
is, it is vital to effectively and efficiently control the rights
to perform specific operations or to access resources at IoT
devices. A number of frameworks have been proposed in
order to manage access control in different IoT environ-
ments [1, 2]. More recently, the new Authentication and
Authorization for Constrained Environments (ACE) frame-
work [3] has also been standardized.

The ACE framework is based on the well-known Open
Authorization (OAuth) 2.0 framework [4], and enables its
functionalities in constrained environments. In particular, the
ACE framework relies on the lightweightConstrained Appli-
cation Protocol (CoAP) [5] application-layer web-transfer
protocol, on Concise Binary Object Representation (CBOR)
for data encoding [6], and on CBOR Object Signing and
Encryption (COSE) [7, 8] for data encryption and authen-
tication.
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In ACE, an Authorization Server (AS) acts on behalf of
resource owners and can give Clients access grants to access
protected resources hosted at Resource Servers. These grants
are in the form of Access Tokens, and a Client proves its
rights to access protected resources by providing the corre-
spondingResource Serverwith anAccess Token. TheAccess
Tokens are issued following the evaluation of access poli-
cies, and, according to the ACE specification, the AS is not
devoted to any specific mechanism for carrying out policy
evaluation.

The validity of an Access Token has an expiration time,
which is set by the AS at issuing time; a Resource Server
does not accept expired Access Tokens and expunges Access
Tokens when they eventually expire. However, due to vari-
ous reasons, the AS might want to revoke an Access Token
before its expiration time comes. This might be the case, for
example: (i) when a Resource Server has been compromised,
or it is suspected of being compromised; (ii) when there has
been a change in the Client’s access rights, as possibly deter-
mined by dynamic conditions in the execution environment,
the user context, or the resource utilization.

Currently, the ACE framework does not provide a mecha-
nism for the AS to deliberately inform the interested parties
that an Access Token has been revoked, but the AS can
optionally make available an /introspect endpoint to be
queried by Resource Servers, in order to verify the validity
of a specific Access Token. However, this mechanism is not
available to Clients, and, more importantly, it is not proac-
tive. That is, if an Access Token is revoked, its revocation
may remain unnoticed by the Resource Server until the latter
requests the AS to “introspect” it, i.e., to verify the validity
of that specific Access Token.

A recent proposal [9] aims at extending the ACE frame-
work with a mechanism that allows Clients and Resource
Servers to subscribe to a revocation list at the AS, and
to be notified when Access Tokens pertaining to them are
added to or removed from such a list. This mechanism
relies on the Observe extension [10] for CoAP to proac-
tively notify observing parties about occurred revocations
of Access Tokens. At the same time, it also allows both
Clients and Resource Servers to retrieve the revocation list
on demand, by making single GET requests to a dedicated
endpoint at the AS, namely /trl.

In this work, we propose and evaluate the adoption of the
Usage Control framework [11] as an underlying access con-
trol tool for the ACE Authorization Server. Usage Control
offers a significant enhancement over traditional access con-
trol. Indeed, through Usage Control, it is possible to define,
evaluate, and enforce security policies that take into account
attributes whose value can change over time, thus introduc-
ing the possibility of rapidly revoking the right to access
a resource by taking appropriate countermeasures. In the
context of the ACE framework, this means revoking issued

Access Tokens that are not expired yet. Information about
occurred revocations, however, has to be communicated to
Clients and Resource Servers, in order for them to stop rely-
ing on a revoked Access Token.

The adoption of theUsageControl framework as an access
control tool for the ACE Authorization Server considerably
improves the security posture of IoT deployments, and dis-
plays the following benefits: (i) it allows defining access
control policies that take into account dynamic factors in
the decision process, namely, the values of attributes that can
change over time; and (ii) thanks to the continuous monitor-
ing of such attributes, it automatically detects if an Access
Token must be revoked. This tool, combined with the noti-
fication mechanism described in [9], minimizes the time for
Clients and Resource Servers to learn about revocation of
an Access Token, and, consequently, the duration of ille-
gitimate accesses to protected IoT resources following the
revocation.

Summarizing, the main contributions of this paper are the
following:

– We propose the exploitation of the Usage Control frame-
work as underlying access control tool for the ACE
framework, and we explain how to integrate it in the
Authorization Server. This enables the Authorization
Server to issue and revoke Access Tokens consider-
ing a dynamic access context, where the environmental
attributes, as well as Clients’ and resources’ attributes,
change over time.

– We develop the notification mechanism proposed in [9]
and the integration with the Usage Control framework,
and accordingly extend an existing Java implementation2

of the ACE framework.
– We deploy a real testbed and conduct a performance
evaluation, by using our software implementation of the
extended ACE framework.3 During our experiments, we
measure and compare the time performance displayed by
the different mechanisms for disseminating information
about revoked Access Tokens to the affected Clients and
Resource Servers. Our results show that the on-demand,
polling-based acquisition of the revocation list as per [9]
ismore effective and efficient than the originalACE intro-
spection mechanism. Moreover, our results show that,
when relying on the Observe extension for CoAP, the
acquisition of the revocation list is faster and more effi-
cient than its on-demand alternative. In addition, the time
performance of operations specifically involving and car-
ried out by theUsageControl framework is also evaluated
and discussed.

2 https://bitbucket.org/marco-tiloca-sics/ace-java/src/master/.
3 https://bitbucket.org/marco-rasori-iit/ace-java/src/ucs/.
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To the best of our knowledge, this is the first contribution
that integrates into the ACE framework and evaluates a con-
crete, advanced access control engine and a mechanism to
inform about revoked Access Tokens.

The rest of the paper is organized as follows. Section2
reports background concepts on the Usage Control frame-
work and on the ACE framework. Section3 focuses on
presenting cases in which a token should be revoked and
describes the revoked token notification mechanism imple-
mented in this work. Section4 explains how the Usage
Control framework has been integrated into the ACE Autho-
rization Server. Section5 describes the experimental meth-
ods, and Sect. 6 discusses the obtained results. Section7
discusses related work. Finally, Sect. 8 draws our conclusive
remarks.

2 Background

This section introduces the background and the concepts used
in the rest of the paper.

2.1 The usage control framework

The Usage Control (UCON) framework regulates the exer-
cise of rights on resources by subjects following the UCON
model [12]. In particular, the UCON framework proposes
an architectural layer that extends the eXtensible Access
Control Markup Language (XACML) reference architecture
and language [13] (standardized by OASIS). The UCON
framework includes, in fact, the components required for (i)
the evaluation of Usage Control Policies (UCPs) compliant
with the UCONmodel’s decision factors; (ii) the continuous
monitoring and revocation of ongoing usages; and (iii) the
management of mutable attributes.

The main difference between traditional access control
and UCON is that the former verifies that a subject has the
rights to access a resource only at the time when the subject’s
request is evaluated. Instead, the latter extends this behavior
by continuously monitoring that the rights hold for all the
duration of the access. The access grant might be revoked
due to a change in the value of the subject’s, resource’s, or
environment’s attributes that are specified in the pertinent
access policies. For example, a subject is allowed to perform
an operation in a room only if and as long as the room tem-
perature is between 10 and 35 degrees. Traditional access
control cannot express this requirement: it could only allow
the subject to perform the operation if the room tempera-
ture is in the allowed range at the time of the request. On
the contrary, UCON monitors that the condition holds both
at the time when the subject’s request is evaluated as well
as throughout the lifetime of an access grant. If, during the

lifetime of the access grant, the room temperature goes out
of range, the grant to perform the operation is revoked.

The UCON framework specifies access and usage strate-
gies by means of usage control policies. A UCP is an
XACML-based policy written in the U-XACML language
[11], which can be evaluated against a UCON request,
encoded in XACML. The U-XACML language is an exten-
sion of the XACML language, which is completely compat-
ible with the OASIS standard and includes time-related tags
to enable dynamic policy evaluation. The evaluation pro-
duces an authorization decision, which can take either the
value Permit, if the policy is satisfied by the UCON request,
or Deny otherwise. A UCP is composed of three different
sections, i.e., pre-, ongoing-, and post-sections, which are
evaluated separately and at different times. Each section is
evaluated against the sameUCONrequest.A section contains
a condition, i.e., a Boolean formula over some attributes, e.g.,
(attr1 = value1)AND (attr2 �= value2). Evaluat-
ing a section means evaluating its condition.4 Please note
that, in this paper, we use an XACML-like notation, where
the term condition refers to a Boolean formula involving
attributes related to subjects, resources, and environment.

The pre-section is evaluated at the time of the request, and
the evaluation produces a pre-decision. If the result of the
evaluation is Permit, the subject is provided with an access
grant for the specified resource. Then, the ongoing-section is
evaluated, and the evaluation produces an ongoing-decision.
If it is Permit, the UCP is continuously monitored in the
context of the ongoing-section. The ongoing-section contains
mutable attributes, i.e., attributes whose value can change
over time. When the value of a mutable attribute changes,
a policy re-evaluation is performed to verify whether the
access grant is still legit or should be revoked, i.e., whether
the ongoing-section is still satisfied or not after the attribute
value change. Finally, when the access grant is terminated,
the post-section is evaluated.

In order to represent the life cycle of access grants, the
UCON framework relies on the concept of session. Each
session is identified by a unique session identifier and has
a status, whose value is set to: TRY_ACCESS when the
pre-decision returns Permit; START_ACCESS when the
ongoing-decision returns Permit; and REVOKE_ACCESS
when the ongoing-decision returnsDeny. Sessionswhose sta-
tus is START_ACCESS are called ongoing usage sessions.

TheUsage Control System (UCS) is the core of the UCON
framework. Figure 1 shows the UCON framework architec-
ture and its main components, which are described in the
following.

4 Also obligations are defined in the UCON framework but, for the sake
of simplicity, they are not discussed here since they are not relevant to
the scope of this work.

123



3112 M. Rasori et al.

Fig. 1 UCON framework architecture

The Policy Enforcement Point (PEP) actually enforces
the access right to a resource, either granting or not the access
according to the UCS evaluation. The PEP intercepts the
access attempts from subjects and generates UCON requests,
starting the authorization workflows by issuing towards the
UCS three different types of messages: tryAccess to
request access with static conditions, startAccess to
complete the previous request with dynamic conditions, and
endAccess to communicate the end of the action on the
resource. In the UCON framework, the PEP is also able to
dynamically revoke access rights, thus making it possible to
block ongoing resource accesses. To this end, the PEP is able
to handle and enforce revokeAccess requests issued by
the UCS.

The Policy Administration Point (PAP) component
manages and stores the UCPs.

The Policy Decision Point (PDP) component evaluates
a UCON request against a section of a UCP. When serv-
ing a tryAccess message, the PDP is also responsible
for finding an applicable UCP UCP� among those stored
at the PAP to be used for evaluation. An applicable UCP
is a policy whose XACML <Target> field matches the
UCON request, and is therefore such that the UCON request
can be evaluated against it. Both the UCON request and the
access policy (either the pre-, ongoing-, or post-section) are
expressed inXACMLformat, thus thePDPcanuse a standard
XACML engine, such as WSO2 Balana,5 for evaluation.

5 https://github.com/wso2/balana.

The Attribute Managers (AMs) are external compo-
nents that handle subjects’, resources’, and environmental
attributes. An AM offers an interface from which it is possi-
ble to simply query or subscribe to a specific attribute. AMs
are truth points for the attribute values, i.e., the current value
of an attribute is always immediately available to its AM.
Examples of AMs can be local and remote databases, a file
stored on the file system, a resource reachable at a URL, or
an Identity Provider controlling users’ information such as
nationality or age.

The Policy Information Points (PIPs) are adapters sit-
uated between the Context Handler (CH)—the component
coordinating the evaluation process—and the AMs, and their
duty is to provide the CH with fresh attribute values. They
all offer a common interface to the CH, while the interface
with the AMs is PIP specific. The PIP-CH interface consists
of four methods: (i) retrieve, (ii) subscribe, (iii) unsubscribe,
and (iv) update. The retrieve method is invoked by the CH
to obtain current attribute values for the attributes that the
PIP is responsible for. When calling this method, the CH can
specify a value, e.g., an identity number, that the PIP uses to
query the AM in order to obtain the corresponding attribute
value. With reference to the previous example, the PIP could
send the identity number to the AM, which returns the cur-
rent value of the attribute “age” associated with that identity
number.

The subscribe method is invoked by the CH to get noti-
fied when an attribute value changes. When a PIP receives
a subscription request, it starts a continuous monitoring of
the attribute at the AM. The way in which the PIP retrieves
an attribute value is clearly dependent on the specific AM
it is attached to. Examples are resource polling at the AM,
subscription to a publish-subscribe topic resource at the AM,
and resource observation through the Observe extension of
CoAP [10, 14]. As soon as the attribute value changes, the
PIP notifies the CH, which performs a policy re-evaluation.

The unsubscribe method is invoked by the CH to stop
receiving notifications from a PIP. When a PIP receives a
request for subscription cancellation, it stops the attribute
monitoring.

Additionally, the update method is also available to be
invoked by the CH to change the value of an attribute at the
AM. When a PIP receives an update request, it asks the AM
to update the attribute value with the one provided by the CH.

The Session Manager (SM) component keeps track of
and administers the life cycle of usage control sessions. The
information stored within each session includes the session
identifier, the status of the access, the UCON request as
arrived from the PEP, and a UCP to be used for evaluation
against the UCON request.

TheContext Handler (CH) component interacts with the
PEP according to the protocol shown in Fig. 2 and coordi-
nates the process of evaluation of UCON requests.
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Fig. 2 PEP-CH interaction

The PEP issues a tryAccess message when a subject
s wants to perform an action a on a resource r . First, the
PEP generates the UCON request including the minimum
information needed to identify the subject s, the resource
r , and the action a. Thus, a tryAccess message contain-
ing the UCON request is sent to the CH for evaluation (step
1 in Fig. 2). The CH extracts the UCON request, invokes
the retrieve method at all the PIPs, and builds an enriched
UCON request by adding these attributes and their values to
the originalUCONrequest. Next, theCHasks the PDP to find
an applicable UCP UCP� to be used for evaluation. When
UCP� is found, its pre-section is extracted, and the PDP
evaluates it against the enriched UCON request. If the result
of the pre-decision is Deny, the CH sends a denyAccess
message to the PEP. On the contrary, if the result is Per-
mit, the CH communicates to the SM that a new session
must be created. The information saved within the session
includes the session identifier SI D�, the original UCON
request, UCP�, and the status of the access, which in this
case is TRY_ACCESS. Then, the CH includes the session
identifier SI D� in a permitAccess message and sends it
to the PEP (step 2 of Fig. 2). Finally, the PEP authorizes the
subject s to access the resource r and perform the action a
on it.

Upon receiving a permitAccess message following a
tryAccess message, the PEP grants the subject access to
the resource. Next, it sends a startAccessmessage con-
taining the session identifier SI D� to theCH(step3ofFig. 2).
By querying the SM with SI D�, the CH retrieves the origi-
nal UCON request and UCP�, enriches the UCON request
with the current attributes’ values, and provides the PDPwith

the enriched UCON request and with the ongoing-section
of UCP�. The PDP performs the evaluation and produces
an ongoing-decision. If the result of the ongoing-decision is
Deny, theCHasks theSMtoupdate the sessionwith the status
REVOKE_ACCESS. Then, the CH sends a revokeAccess
message to the PEP, which determines that the access to the
resource is not legit anymore for the subject. On the contrary,
if the result is Permit, the CH asks the SM to update the ses-
sionwith the statusSTART_ACCESS. From thatmoment on,
the mutable attributes in the ongoing-section of UCP� are
continuously monitored: the CH subscribes to the pertain-
ing PIPs, which will notify it in the event of attribute value
change. Finally, the CH includes the session identifier SI D�

in a permitAccessmessage and sends it to the PEP (step
4 of Fig. 2).

When the value of an attribute present in the ongoing-
section of UCP� changes, the CH starts a policy re-
evaluation. The CH enriches the original UCON request and
provides the PDP with the enriched UCON request and with
the ongoing-section of UCP�. The PDP performs the eval-
uation and produces an ongoing-decision. If the result of the
ongoing-decision is Deny, the CH asks the SM to update
the session with the status REVOKE_ACCESS and sends a
revokeAccess message to the PEP (step 5(ii) of Fig. 2).
On the contrary, if the result is Permit, the CHdetermines that
the access grant is still legit and performs no further actions.

After the access to the resource has terminated, the PEP
sends an endAccessmessage containing the session iden-
tifier SI D� to the CH. An access can be terminated for two
different reasons: (i) the access has naturally ended (step 5(i)
of Fig. 2), or (ii) the PEP received a revokeAccess mes-
sage from the CH (step 5(ii) of Fig. 2). In the latter case, upon
receiving therevokeAccessmessage, the PEPfirst under-
takes actions to terminate the access and then informs the CH
through an endAccessmessage (step 6(ii) of Fig. 2).When
the CH receives an endAccess message, it asks the SM to
delete the session with session identifier SI D�.

2.2 CoAP

The Constrained Application Protocol (CoAP) [5] is an
application-layer, web-transfer protocol based on the Rep-
resentational State Transfer (REST) paradigm [15], and is
now a de-facto standard application-layer protocol for the
IoT. CoAP is designed to support applications for resource-
constrained devices and networks, with the aim of integrating
massive IoT in the existing Internet infrastructure. Although
support for additional transports has been defined, CoAP
typically runs on top of the unreliable transport protocol
UDP [16]. Also, CoAP is not session-based and can handle
loss or delayed delivery of messages.

IoT-based network deploymentsmay include devices with
limited resources in terms of memory, computing power,
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and energy (if battery powered). This results in constrained
network segments, e.g., due to lossy channels and limited
bandwidth. In order to deal with such limitations, CoAP
features an asynchronous messaging model and has native
support for intermediary proxies.

Being a RESTful protocol, CoAP considers a client and
a server as communicating parties, where the client sends a
request to the server, which replies by sending a response.
Depending on the operation to perform, a CoAP request has
one of the different REST methods, e.g., GET, PUT, POST,
FETCH, PATCH/iPATCH, and DELETE.

A CoAP message is divided into header and payload. The
header can include a number of CoAP options, specified
according to a Type-Length-Value format and used to con-
trol additional features and extensions. For example, CoAP
options can be used to instruct a proxy on how to handle
messages, specify for how long a message is valid, or signal
message fragmentation at the application layer.

A number of extensions for CoAP have been defined over
the years. In particular, the Observe extension defined in [10]
allows a CoAP client to “subscribe” for updates to a resource
representation at aCoAPserver. That is, the client sends afirst
request targeting a resource at the server that it is interested in
observing, including a CoAP Observe option in the request.
Following a first response where the server confirms that an
observation has indeed started, the server will additionally
send further responses, namely notifications, to the observing
client, when the resource representation changes. All such
notifications sent by the server will match the same original
observation request.

The original CoAP specification [5] indicates only the
Datagram Transport Layer Security (DTLS) 1.2 [17] proto-
col to secure message exchanges. More recently, the security
protocol Object Security for Constrained RESTful Environ-
ments (OSCORE) [18] has been standardized to provide
end-to-end security of CoAP messages at the application
layer, as further discussed in Sect. 2.3.

2.3 OSCORE

Object Security for Constrained RESTful Environments
(OSCORE) is a standard security protocol [18] for protecting
CoAP messages at the application layer. OSCORE provides
end-to-end security between the original producer and the
final consumer of the data conveyed in a CoAP message.
In particular, OSCORE provides end-to-end encryption,
integrity protection, source authentication, and replay pro-
tection of CoAP messages.

Instead of protecting the whole communication channel
between a CoAP client and a CoAP server, OSCORE is
CoAP-aware and consistently encrypts only the parts of the
CoAPmessage that require confidentiality. At the same time,
any field meant to be used by proxies is left unprotected, or

only integrity protected. OSCORE results in smaller power
consumption and memory burden on constrained devices
when compared to channel-security protection provided by
the DTLS protocol [19].

Intuitively, OSCORE takes a CoAP message as input and
produces as output a new protected CoAP message, i.e.,
an OSCORE message. The reverse process occurs when an
OSCORE message is received, and the original CoAP mes-
sage is recomputed. Also, OSCORE is independent of the
specific transport layer underlying CoAP, hence it works
wherever CoAP works. Furthermore, it is possible to com-
bine OSCOREwith communication security on other layers,
e.g., to further protect an OSCORE-protected message using
DTLS at the transport layer.

The lightweight design of OSCORE in turn relies on the
efficient and small-size encoding scheme CBOR [6]. In par-
ticular, the specific data to be protected composes a CBOR
structure, which is then encrypted and authenticated by using
COSE [7, 8]. This yields a COSE object, which is finally
carried out in a compact way within the OSCORE message.
Thus, OSCORE follows the object security paradigm, with
each data chunk secured separately.

Before two CoAP nodes can exchange secure data, they
have to establish a shared OSCORE Security Context. How-
ever, as focused only on message protection, OSCORE itself
does not provide a mechanism to do so. Instead, a num-
ber of methods have been developed to let two CoAP nodes
establish an OSCORE Security Context. These include the
OSCORE profile of the ACE framework for authentica-
tion and authorization [20] (see Sect. 2.4) as well as the
lightweight key establishment protocol Ephemeral Diffie-
Hellman Over COSE (EDHOC) [21].

2.4 The ACE framework

In order to access protected resources at a given host device,
a requesting device has to explicitly be granted to do so, in
accordance with pertaining access control policies.

Since IoT-based network deployments can include several
resource-constrained host devices, it is beneficial to entirely
offload decisionmaking, authorization-related cryptographic
operations, and similar from the host devices to a dedicated
management service. This is accomplished by separating
authorization to access a resource from the actual resource
itself. Additionally, it is convenient to centrally manage the
granting to resource access in a network.

The ACE framework for Authentication and Autho-
rization in Constrained Environments [3] is based on the
widely deployedOAuth 2.0 [4] authorization framework, and
enables its functionalities in the IoT. The ACE framework
mainly relies on the following components.

The main functionality and overall approach are inherited
from the OAuth 2.0 framework, a standard, widely adopted
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solution for authorization and access control. Another com-
ponent is COSE [7, 8], a compact encoding format for
security information based on CBOR [6], which is in turn
a binary encoding format designed for small message sizes
and code. Furthermore, the lightweight, web-transfer pro-
tocol CoAP [5] is used. Lastly, CoAP messages can be
secured at the transport layer by using the DTLS protocol
suite [17], and/or end-to-end at the application layer by using
the OSCORE security protocol [18].

2.4.1 The ACE entities and workflow

The entities involved in a typical interaction as defined by
the ACE framework are the following.

The Client (C) is a device wanting access to specific
resources at a given host, namely the Resource Server (RS),
with the permission of the corresponding resource owner.
The Authorization Server (AS) is responsible for authoriz-
ing client devices to access resources at an RS according to
policies provided by the resource owner, and for providing
them with evidence of such authorization in the form of an
Access Token. The AS is a trusted third party, practically
infeasible to compromise. By its nature, the AS is invested
with a large amount of trust, since it manages keying mate-
rial and generates Access Tokens used to establish secure
communication associations between Clients and Resource
Servers.

An Access Token is used by C to access protected
resources on the RS. Typically, an Access Token is repre-
sented as a CBOR Web Token (CWT) [22, 23] efficiently
encoded in CBOR [6], or alternatively as a JSON Web
Token (JWT) [24, 25] encoded in JavaScript Object Nota-
tion (JSON) [26].

Details on how ACE should be implemented for different
scenarios can be found in related application and security
profiles (see Sect. 2.4.2). In particular, the ACE framework
delegates to the profiles the description of how to use the
main specification with concrete transport and communica-
tion security protocols between the involved entities.

The following describes a typical interaction in the ACE
framework between the involved entities C, AS, and RS. In
particular, as also shown in Fig. 3, the following steps occur
during a full ACE transaction. Note that C, RS, and AS can
act as CoAP client or CoAP server, when sending a CoAP
request or response, respectively.
Step 1—C sends a request for an Access Token to the AS,
targeting the /token endpoint. When doing so, C specifies:

– The target RS as “audience”.
– The requested “scope”, i.e., the resources it wishes to
access at the RS and through which operations.

– When expected by the used ACE profile and its selected
mode, its own public key.

Fig. 3 ACE framework workflow

Step 2—The AS evaluates the request from C against access
control policies for the RS, as pre-established by the resource
owner. In case of success, the AS produces an Access Token
as evidence of the granted authorization. Depending on the
used ACE profile and its mode, the AS also generates a sym-
metric key K , intended to be shared betweenC andRS. Then,
the AS includes, among other elements, the following infor-
mation in the Access Token.

– The “audience” and the “scope” granted to C.
– Optionally, an indication of the used ACE profile.
– When expected by the used ACE profile and its selected
mode, the symmetric key K or the public key of C.

Step 3—The AS provides C with the following.

– The “scope” actually granted to C and specified in the
Access Token, if it was possible to only partially satisfy
the request.

– Either the newly generated symmetric key K or the public
key of the RS, depending on the used ACE profile and its
selected mode.

– Optionally, an indication of the profile of ACE to use.
– TheAccess Token, as either encrypted and authenticated,
or instead signed. If encrypted, the Access Token is pro-
tected with keying material shared only between the AS
and the RS. In either case, the Access Token is opaque to
C, which does not understand its content and structure.

Step 4—In case of positive response from the AS, then C
uploads the Access Token to the RS. This typically happens
by sending a request to the /authz-info endpoint at the RS.
Step 5—The RS verifies that the Access Token is intact
and actually originated by the AS, by possibly decrypting
it. Then, the RS verifies that the Access Token is still valid
(e.g., it is not expired), and that its content is consistent with
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the RS’ resources and scopes. If so, the RS stores the Access
Token.
Step 6—Depending on the used profile of ACE and its
selected mode, C and RS perform possible additional
exchanges and operations, in order to establish a secure com-
municationassociation, e.g., basedon theDTLSorOSCORE
security protocol. To this end, they rely on the keying mate-
rial facilitated by the AS during the previous steps, i.e., each
other’s public keys or the symmetric key K . Also depend-
ing on the used profile of ACE, parts of this step might be
combined with the uploading of the Access Token at step 4.
Step 7—Csends a request to RS, in order to perform an oper-
ation at one of the resources hosted at RS, consistently with
the “scope” granted by the AS at step 3 above. The request is
protected using the established secure communication asso-
ciation.
Step 8—TheRS checks the request against the Access Token
stored for C, and verifies that the requested access and spe-
cific operation are in fact consistent with the “scope” in the
stored Access Token. In case of positive outcome, the RS
processes the request from C and possibly replies with a
response. The response is protected using the established
secure communication association.

As an optional feature, the AS can provide an additional
service to the RS called “introspection”. That is, upon receiv-
ing an Access Token—or later on while storing it—the RS
can send a request to the /introspect endpoint of the AS,
specifying the whole Access Token or a reference to it. The
AS can then return fresh information on the current status
and validity of the Access Token, which the RS considers to
determine whether to accept or preserve the Access Token,
or not.

2.4.2 ACE security profiles

Among other things, an ACE profile specifies the following.

– The communication and security protocol for interactions
between the involved entities, as providing encryp-
tion, integrity protection, replay protection, and binding
between requests and responses.

– The method used by C and RS to mutually authenticate.
– The (secure) methods for C to upload an Access Token
at the RS.

– The specifickey types used (e.g., symmetric/asymmetric),
and the protocol for the RS to assert that C possesses such
keys (proof-of-possession).

While it is not devoted to any particular profile of ACE,
the work presented in this paper specifically relies on the
OSCORE profile of ACE defined in [20]. In particular, the
OSCORE profile describes how C and the RS can engage

in the ACE workflow and establish an OSCORE Security
Context for securely communicating with one another using
the OSCORE security protocol (see Sect. 2.3).

Upon receiving the Access Token request from C, the
AS generates an OSCORE Security Context Object. This
includes information and parameters for C and the RS to
establish an OSCORE Security Context, such as and espe-
cially an OSCORE Master Secret. The AS includes the
OSCORE Security Context Object into the Access Token
to be released. After that, the AS provides C with both the
Access Token and the OSCORE Security Context Object.
For the sake of proof-of-possession, C has to prove to the
RS to possess the OSCORE Master Secret specified in the
Access Token.

Upon uploading the Access Token to the RS, both C and
the RS exchange a pair of nonces as well as the respective
OSCORE identifiers they intend to use. Then, C and the RS
use such values together with the OSCORE Security Con-
text Object received from the AS, to derive a complete, fresh
OSCORE Security Context. After that, C sends a first secure
request to the RS, protected with the new OSCORE Secu-
rity Context. Proof-of-possession is achieved when the RS
receives such first request and verifies it as cryptographically
correct.

3 Revoked token notificationmechanism

Access Tokens issued by the AS eventually expire, and the
AS can give an explicit indication of expiration time within
an Access Token itself. When an Access Token expires, both
C and the RS owning that Access Token should discard it.
In particular, C would have to get a new Access Token from
the AS and upload it to the RS, before continuing accessing
resources hosted at that RS.

On top of that, there are additional circumstances when
an Access Token may be revoked before its expiration time
comes. Practical effects are the same ones mentioned above
for the case of expiration, and they apply to both C and the
RS, hereafter referred to as registered devices, due to their
registration at the AS.

Examples of situations resulting in revoking an Access
Token before its expiration time include:

– a registered device has been decommissioned;
– a registered device has been compromised, or it is sus-
pected of being compromised;

– there has been a change in theACEprofile for a registered
device;

– there has been a change in access policies for a registered
device;

– there has been a change in the outcome of policy eval-
uation for a registered device (e.g., if policy assessment
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depends on dynamic conditions in the execution environ-
ment, the user context, or the resource utilization).

With particular reference to the ACE framework (see
Sect. 2.4), an RSwould be able to learn about revokedAccess
Tokens that it owns, by checking at the AS through the intro-
spectionmechanism (see Sect. 2.4.1), in case theAS provides
such an optional service. On the other hand, C has no means
to learn whether any of the Access Tokens it owns has been
revoked.

More generally, it is not possible for the AS to take the ini-
tiative and notify registered devices about pertaining Access
Tokens that have been revoked, but are not expired yet.
Specifically, an Access Token pertains to a Client if the AS
has issued the Access Token and provided it to that Client.
Also, an Access Token pertains to a Resource Server if the
AS has issued the Access Token to be consumed by that
Resource Server.

The novel approach specified in the standard proposal [9]
and implemented in the work presented in this paper aims
to fill this gap. That is, it specifies a method for registered
devices to access and observe a Token Revocation List (TRL)
resource [9] on the AS, in order to get an updated list of
revoked, but yet not expired, pertaining Access Tokens. The
main benefits of this method are that it complements the
introspection mechanism, and it does not require any addi-
tional resources or endpoints to be created on the registered
devices.

In particular, registered devices can rely on resource obser-
vation [10] forCoAP [5]. That is, theASwould automatically
send a notification to an observer registered device, when the
status of the TRL resource changes. Specifically, this hap-
pens when an Access Token pertaining to that device gets
revoked, or a revoked Access Token previously included in
the list eventually expires.

The TRL resource at the AS does not contain the full
representation of the Access Tokens that are revoked but are
not expired yet. Instead, the TRL includes ad-hoc identifiers
of Access Tokens, namely token hashes. These are computed
as cryptographic hashes of theAccess Tokens as per [27], and
make it possible to correctly handle different types of Access
Tokens conveyed over different transports. When an Access
Token is revoked, its token hash is added to the TRL resource.
When, later on, that Access Token expires, its token hash is
removed from the TRL resource.

As mentioned above, a registered device can at any time
send a request to the TRL resource at theAS, or, in addition to
that, specifically observe the TRL resource in order to receive
notification responses in case of changes in the resource rep-
resentation. In either case, the registered device is not going
to receive the full content of the TRL, but rather only a per-
taining subset of it, which includes only the token hashes
of the Access Tokens pertaining to that registered device, as

extracted from the whole current representation of the TRL
resource.

More specifically, a registered device can access the TRL
resource at the AS in two different modes, which result in
different responses from the AS.
Full query mode—The AS returns the token hashes of the
revoked Access Tokens currently in the TRL and pertaining
to the registered device that has sent the request.
Diff query mode—The AS returns a set of diff entries. Each
entry is related to one of the N most recent updates in the
portion of the TRL pertaining to the registered device that has
sent the request, where N is specified as a query parameter
of the request. In particular, the entry associated with one
of such updates contains a list of token hashes, such that:
(i) the corresponding revoked Access Tokens pertain to the
requester; and (ii) they were added to or removed from the
TRL at that update. This mode of operation can further rely
on its “cursor” extension, in order to allow a registered device
to retrieve a set of diff entries not only as limited to the most
recent TRLupdates, but rather starting from an arbitrary TRL
update taken as resumption point.

4 Usage control in ACE

TheAS in the ACE framework implements a decision engine
to determine whether a Client can be granted access rights to
protected resources at some Resource Server. Additionally,
given the dynamic conditions in the execution environment,
in the user context, and in the resource utilization, as well
as for the other reasons discussed in Sect. 3, the AS should
be able to revoke previously granted access to resources
by invalidating Access Tokens. The ACE framework is not
devoted to any specific decision engine used by the AS.

In this section, we present how we have integrated the
UCON framework (see Sect. 2.1) as the decision engine used
by theAS in theACE framework. The adoption of theUCON
framework significantly improves the security of the IoT
deployments with respect to traditional access control frame-
works for several reasons.

First of all, using the UCON framework allows for auto-
matically, effectively, and timely detecting when an Access
Token must be revoked. Specifically, the UCON framework
makes it possible to easily express conditions taking into
account dynamic factors that affect the issuing and revoca-
tion of Access Tokens through the U-XACML language and
its time-related tags. The latter makes it possible to easily
specify which conditions in the policy have to remain valid
in order to not revoke granted access rights before the origi-
nally intended expiration time.

Secondly, for the evaluation and the enforcement of
U-XACML policies, the UCON framework relies on an
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Fig. 4 Access Token request and response, showing the integration of
the UCON framework in the AS

architecture that can be easily integrated into the ACE frame-
work to enforce the automatic revocation of Access Tokens.

The following describes how the PEP and UCS compo-
nents presented in Sect. 2.1 have been integrated in the AS.

4.1 Integration of the UCON framework in the ACE
authorization server

According to the ACE workflow, a Client C sends an Access
Token request to the /token endpoint at the AS, specifying an
audience AUD and a scope SCOPE (step 1 of Fig. 3). Through
this request, the Client is asking for an Access Token that
enables it to perform an operation OP (or more than one) on
a specific resource RES (or more than one, as inferred from
the scope) at the target RS AUD. Upon receiving the Client’s
request, the AS evaluates whether the Client C can be granted
access to the resource RES and operation OP at the target RS
AUD (step 2 of Fig. 3).

In the proposed integration, the AS delegates this decision
to the UCS. To this aim, the Client’s request is translated into
one or more UCON requests. This task is entrusted to the
PEP component, which is embedded in the /token endpoint
at the AS, and which communicates with the UCS, as shown
in Fig. 4. In the figure and in the proposed implementation,
the UCS resides inside the AS, but it could also be external
and be accessed remotely by the AS, e.g., through REST
calls.

The key to integrate UCON in the AS is therefore the
translation of the Client’s request into UCON requests that
the UCS is able to interpret and evaluate. From a UCON
perspective, the previous Access Token request translates to:
the subject with “subject-id”6 Cwants to access the resource
with “resource-id” RES at the target RS AUD and perform the
action with “action-id” OP on it. Figure 5 shows the UCON
request in XACML format, as translated by the PEP. The
target RS is specified as an attribute of category resource and
with identifier “resource-server”.

The PEP sends the UCON request in a tryAccess
message to the UCS, which evaluates it, produces a pre-
decision, and replies with either a permitAccess or a
denyAccess message as per steps 1 and 2 of Fig. 2. If
a permitAccess message is received, the PEP sends a
startAccess message to the UCS. Then, if the UCS
replies again with a permitAccess message, the PEP
tells the /token endpoint the set of allowed resources and
operation, i.e., {<RES,OP>}, and the /token endpoint pro-
ceeds with the Access Token generation including the scope
SCOPE. Finally, the Access Token is sent to the Client.

Note that this flow slightly differs from the one of the
UCON framework (described in Sect. 2.1). That is, since the
PEP does not have direct control over the resource (which
resides on the Resource Server), it cannot enforce the access
decision after the reception of a permitAccess message
following a tryAccess message, as per step 3 of Fig. 2.
Instead, after receiving a permitAccessmessage follow-
ing a startAccess message, it informs the AS about
whether the resource and the operation can be granted to
the Client. This results in the AS creating an Access Token
that includes such information specified as a scope.

In general, the Client can specify a scope that is mapped to
more than one resource and operation. However, the ASmay
grant the Client only a subset of resources and operations,
depending on the Client’s access privileges. These access
privileges are compiled within usage control policies and
stored at the PAP. Figure 4 shows an advanced example in
which the specified scope is mapped to two resources, and
the right to access only one resource is eventually granted to
the Client.

In this example, the scope SCOPE refers to the set of
resources and operations {<RES1,READ>,<RES2,
WRITE>}, the scope SCOPE1 to {<RES1,READ>}, and
the scope SCOPE2 to {<RES2,WRITE>}. In step 1, the
Client C specifies SCOPE as scope and AUD as audience in
its Access Token request. The AS maps the scope SCOPE

6 For the sake of readability, in the text we use only the last part
of the actual XACML attributes’ names defined within the standard.
In this paper, this does not create ambiguity. The full name of the
attributes is reported in Fig. 5 as the value of AttributeId within
the <Attribute> element.
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Fig. 5 Example of UCON request created by the PEP and submitted
to the UCS. The Client C (attribute “subject-id”) requests access privi-
leges to perform the operation OP (attribute “action-id”) on the resource

RES (attribute “resource-id”) at the audience AUD (attribute “resource-
server”) associated with the target RS

to {<RES1,READ>,<RES2, WRITE>} and passes this
set to the PEP (step 2). Then, the PEP creates two UCON
requests (step 3) containing C as “subject-id” and AUD as
“resource-server”. Additionally, oneUCON request contains
RES1 as “resource-id” and READ as “action-id”, while the
other containsRES2 as “resource-id” and WRITE as “action-
id”.

In step 4, the PEP sends the first UCON request to the
UCS through a tryAccessmessage. TheUCS replies with
a permitAccess message (thus indicating that the result
of the pre-decision was Permit), and then the PEP sends a
startAccessmessage. The result of the ongoing-decision
is Deny, hence the UCS replies with a revokeAccess
message. The PEP repeats the same message exchange for
the second UCON request, but this time the result of the
ongoing-decision is Permit, hence the UCS replies with a
permitAccess message.

The PEP creates a set of resources and related operations
that can be granted to the Client, i.e., {<RES2,WRITE>},
according to theUCS decision, and propagates it to the /token
endpoint. Finally, the /token endpoint expresses {<RES2,
WRITE>} through the scope SCOPE2 (step 6), generates the
Access Token (step 7), and includes such a scope together
with the Access Token in the Access Token response to the
Client.

Note that, when an Access Token grants access to n
resources, then n sessions with status START_ACCESS are
present at the SM of the UCS.

4.2 Access token revocation and notification

The UCON framework provides a continuous evaluation of
the usage control policies paired with the ongoing usage ses-
sions, and it can revoke accesses to resources according to the
mechanisms described in Sect. 2.1. Its revocationmechanism
is fine grained and capable of revoking access to a specific
resource for performing a specific operation on that resource.
On the other hand, the ACE framework considers the revo-
cation of an Access Token as a whole. Since a single Access
Token can grant access to more than one resource for one
or more operations on the target resource(s), this may result
in the creation of more than one session per Access Token
at the UCS. That is, in ACE, the revocation of a Client’s
access rights on a resource at an RS implies the revocation
of the whole Access Token issued to that Client and to be
consumed by that RS. This means that, for example, if an
Access Token grants the Client access to RES1 and RES2
at a Resource Server, and only RES1 gets compromised, the
ASmust revoke the whole Access Token, thus preventing the
Client from accessing RES2 too. There is no means for the
AS to revoke the access grant to RES1 only. On the contrary,
the UCON framework allows to invalidate accesses to single
resources, as it associates one resource with one session. In
order to correctly integrate theUCONframework into theAS,
it has to be ensured that, when an Access Token is revoked,
all the associated ongoing usage sessions are terminated.

In the proposed integration, the PEP embedded in the AS
implements the logic to group together the sessions related
to the same Access Token, as all pertaining to the scope of
that Access Token. By doing so, when the PEP receives a
revokeAccess message following a policy re-evaluation

123



3120 M. Rasori et al.

for a specific session identifier, it first finds the Access Token
associated with that session, and it communicates to the
AS that such an Access Token must be revoked. The AS
expunges the Access Token and stores its token hash in the
TRL resource. Once the revocation is complete, the PEP
looks for other session identifiers associated with the same
Access Token, and, finally, it sends an endAccess mes-
sage to the UCS for each session associated with the Access
Token.

Note that this flow differs from the one of the UCON
framework described in Sect. 2.1. That is, since the PEP does
not have direct control over the resource (which resides on
the Resource Server), it cannot directly terminate the access
after the receptionof arevokeAccessmessage, as per step
6(ii) of Fig. 2. Instead, after receiving a revokeAccess
message, it informs the AS about which Access Token has
to be revoked. This results in the AS updating the TRL
resource, notifying the registered devices, and deleting the
Access Token.

4.3 Reference examples

In order to motivate the automatic and policy-driven revo-
cation mechanisms described in this work, the following
provides a practical example concerning a smart home envi-
ronment. In particular, we describe the workflow from the
Access Token request to the Access Token revocation and
related notification. Next, additional use cases regarding
other IoT scenarios are also discussed.

Tenants of a smart home can program the timing and set-
tings of the washing cycle of a washing machine (which acts
as an ACE Resource Server), by means of an application
installed on their smartphone (acting as an ACE Client). The
washing machine provides a number of resources, such as
spin cycle and high-temp cycle, and the actions
defined on such resources might be start and stop. Ten-
ants could be allowed by the administrator to trigger the
execution of high-temperature wash cycles, as long as the
threshold of daily energy consumption of the overall house-
hold is not passed.

Consistently, the administrator defines a policy for the
tenants and the resource high-temp cycle, and it
adds a condition concerning the attribute daily energy
consumption in the ongoing-section of the UCP, speci-
fying that its value must be lower than a certain threshold
in order to let tenants start high-temperature wash cycles.
The value of the overall daily energy consumption in the
household is managed by an AM, which is the smart meter
deployed in the smart home.

Within the application, the tenant selects the high-
temperature wash cycle and then clicks the start button to
begin the washing process. If an Access Token has not
already been issued to the tenant and uploaded to the wash-

ing machine, or if such an Access Token has ceased to
be valid due to expiration or revocation, an Access Token
request for the resource high-temp cycle is sent to the
AS. The PEP creates a UCON request and sends it within
a tryAccess message to the UCS, which replies with a
permitAccessmessage and creates a sessionwith session
identifier SI D� and status TRY_ACCESS. Then, the PEP
sends a startAccess message to the UCS, which replies
with a permitAccess message—if the daily energy con-
sumption is currently lower than the threshold specified in
the ongoing-section of the UCP—and updates the session
with the status START_ACCESS. The access is therefore
granted, and an Access Token is issued to the Client. Then,
the Client uploads the Access Token to the washing machine
and establishes a secure communication association with it.
After that, as per the granted access, the tenant is able to
trigger the execution of the high-temperature wash cycle by
sending a protected request, e.g., a POST request, to the cor-
responding resource high-temp cycle at the washing
machine.

From the moment when the UCS updates the status of
the session to START_ACCESS, the UCS has been contin-
uously monitoring the mutable attribute daily energy
consumption, since it is in the ongoing-section of an
active session. In case the daily consumption threshold is
passed, the Access Token is revoked. That is, the policy
re-evaluation at the UCS returns a Deny authorization deci-
sion because the current daily energy consumption value
(retrieved from the smart meter) is higher than the threshold
value set within the ongoing-section of the UCP. Then, the
UCS updates the session with the status REVOKE_ACCESS
and sends a revokeAccess message containing the ses-
sion identifier SI D� to thePEP.ThePEPfirst finds theAccess
Token associated with that session and tells the AS that such
an Access Token must be revoked. Hence, the AS expunges
the Access Token, and the token hash of the revoked Access
Token is stored in the TRL of the AS. Then, the AS can
send notifications to the registered devices observing the
TRL resources and to which the Access Token pertains (see
Sect. 3). Finally, the PEP selects all the session identifiers
associated with the same Access Token—only SI D� in this
example—and sends one endAccess message, specifying
SI D�, to the UCS, which deletes the related session.

If the tenant attempts to obtain another Access Token
within the same day, the AS does not grant a scope allowing
access to the resource high-temp cycle for performing
the previous operation at the washing machine, because the
ongoing-section of the UCP is not satisfied at the time of
Access Token request.

Note that, in this example, the occurred revocation does
not terminate any ongoing high-temperature wash cycle that
is already ongoing as previously started based on the old
Access Token. It only prevents from starting a new one,
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since this would be upon attempting to access the resource
high-temp cycle without being allowed to. However,
if stopping an ongoing wash cycle—after the daily thresh-
old has been reached—is critical, other mechanisms should
be implemented, such as having the logic on the wash-
ing machine to terminate any ongoing operation started by
the tenant, as consequence of having expunged the Access
Token.

While keeping the focus on the smart home scenario,
another particularly apt example involves a security camera,
which acts as the Resource Server. The administrator defines
a policy that grants access to the live footage captured by such
a camera to a guardian appointed by a surveillance agency
(which acts as the Client) only when the smart home tenant is
not on the premises. The tenant’s location can be determined,
e.g., bymeans of the GPSmodule of their smartphone, acting
as an AM, and is used within the ongoing-section of a UCP.
Such a UCP is intended to protect the privacy of the smart
home tenant, by preventing the guardian from accessing the
footage while the tenant is at home.

In this example, an Access Token is issued to the Client
only if, at the timeof the request, the tenant is off the premises.
If so, the Client can upload the Access Token to the security
camera, establish a secure communication association with
it, and access the video footage. Moreover, the Access Token
will be revoked when the tenant returns to the premises. Fol-
lowing such a revocation, if the security camera has been
observing theTRL resource at theAS, the camera is promptly
notified by the AS. Consequently, the camera deletes the
Access Token and terminates the secure association with the
Client, thus preventing the guardian from accessing the cap-
tured footage from then on. A new Access Token will not be
issued as long as the tenant remains on their premises.

The examples provided above explore scenarios involving
the revocation of Access Tokens to safeguard the Resource
Server from potential misconduct by the Client. In the fol-
lowing, we illustrate a reverse scenario where Access Tokens
are revoked to protect the Client from the result of actions
performed on a compromised or malfunctioning Resource
Server. This situation arises when there is a need to prevent
the Client from performing actions on the Resource Server
that could potentially harm the Client’s interests or security.

In office environments or shopping centers, individuals—
be they staff members or customers—assume the role of
Clients. These Clients obtain an Access Token to facilitate
interactions via their smartphones with a vending machine,
i.e., the Resource Server, dispensing food. The administrator
defines a policy that grants usage of the vendingmachine only
if its internal temperature remains below a specific threshold
over a time window, ensuring freshness and integrity of the
food, and preventing any potential spoilage. This information
can be determined, e.g., by means of a smart device embed-
ded within the vending machine, acting as an AM, and is

used within the ongoing-section of a UCP. Such a UCP is
intended to protect the physical safety of the Clients, by pre-
venting them from consuming spoiled food.

At a certain point, the monitoring system detects mal-
functioning of the vending machine, when the reading from
the smart device is above the threshold. Upon reaching this
conclusion facilitated by the UCS, the AS promptly revokes
the Access Tokens issued to all Clients for that Resource
Server. Moreover, until the reading is not back below the
threshold and the potentially dangerous food in the vending
machine has not been replaced, the AS does not issue new
Access Tokens that allow purchasing food from the vending
machine. This prevents the Clients from accessing what is
deemed to be a dangerous service.

5 Experimental evaluation

In this section, we describe the execution workflow consid-
ered during our experiments, the measured time intervals of
interest, and the specific setup used for the experiments. In
Sect. 6, we report and discuss the obtained results.

The results from our experiments are not compared with
those fromother studies. Indeed, to thebest of our knowledge,
there are not other alternative, akin approaches to consider
for comparison.

The aimof our experiments is tomeasure various time per-
formancemetrics, amongwhich the time required by a Client
for obtaining an Access Token and accessing a protected
resource at a Resource Server, as well as the time required by
the AS for revoking an Access Token. Moreover, we inves-
tigate and compare the time performance displayed by the
differentmechanisms used byClient andResource Server for
gaining knowledge of Access Token revocations, i.e., intro-
spection (see Sect. 2.4.1), polling of the TRL resource at the
/trl endpoint, and observation of the TRL resource at the /trl
endpoint (see Sect. 3).

InSect. 5.1,we introduce the consideredworkflow, describ-
ing the ACE and UCON configurations (e.g., the used ACE
profile and UCP), and present the sequence of events occur-
ring during the experiments.

Throughout the execution of the workflow described in
Sect. 5.1, we identified four time intervals of interest to be
measured, as detailed in Sect. 5.2. In Sect. 6.1, we assess and
discuss how these time intervals vary with the mechanism
used by Client and Resource Server for gaining knowledge
of Access Token revocations. Moreover, since the scope
requested by the Client and the complexity of the policies
evaluated by the UCS affect the measured time intervals, in
Sect. 6.2 we present further results, obtained from a second
set of experiments where we assess the performance of the
UCS playing the role of decision maker in the ACE frame-
work.
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Fig. 6 Phase 1 of the workflowwith detailed UCS steps. Access to both
the resources RES1 and RES2 is granted to the Client

All the experiments were performed on a real testbed,
consisting of a full-fledged workstation acting as the AS,
and two IoT devices acting as Client and Resource Server.
The testbed is described in detail in Sect. 5.3.

5.1 Workflow

Theworkflowconsidered in our experiments consists of three
phases. Phase 1 is shown in Fig. 6, while Phase 2 and Phase 3
are shown in both Figs. 7 and 8.

In Phase 1, the Client clientA makes an Access
Token request to the AS. It asks for the scope “RES1
RES2”, indicating the RS rs1 as audience. The AS trans-
lates clientA’s request and generates the related UCON
requests, as explained in Sect. 4.1, where the value of the
attribute “subject-id” is clientA, the value of “resource-
server” is rs1, and the value of “action-id” is read for both
theUCON requests, while the value of “resource-id” isRES1
for the first UCON request and RES2 for the second one.

The PAP contains two UCPs: one UCP (policy-1) is
applicable to the first UCON request, and its ongoing-section
contains a condition concerning a mutable attribute attr1.
The other UCP (policy-2) is applicable to the second
UCON request, and its ongoing-section contains a condi-
tion concerning a mutable attribute attr2. The value of
each mutable attribute is retrieved every 10ms from a local
AM (which is implemented as a file stored on the AS) by
a dedicated PIP. If the retrieved value matches the attribute
value defined in the UCP, the condition and, consequently,
the ongoing-section of the policy are satisfied. For what con-
cerns Phase 1, in the tests we conducted we set the initial
values of the attributes in such a way that the result of the

pre-decision and of the ongoing-decision is Permit for both
theUCONrequests, so the requested scope for both resources
RES1 and RES2 is initially granted toclientA. Hence, the
AS generates anAccess Token token-1with scope“RES1
RES2” and sends it toclientA. In turn,clientA uploads
the Access Token to rs1 and establishes a secure communi-
cation association with it (in our case, an OSCORE Security
Context [18] as per the OSCORE profile of ACE [20]). After
that, according to a request interval of 1 s, clientA period-
ically and alternatively sends GET requests to the protected
resources RES1 and RES2, in order to retrieve their current
representation.

Phases 2 and 3 are detailed as sequences of events in both
Figs. 7 and 8, which also indicate the time intervals of interest
discussed in the next section.

In Phase 2, the value of the mutable attribute attr1
isintentionally changed at a point in time randomly selected
between 30 and 60 seconds from themoment theASwas first
initialized (step 1 of Figs. 7 and 8). Once the UCS notices
that (step 2), it performs re-evaluation of policy-1 since it
contains attr1 (step 3). In the tests we conducted, we have
chosen the new value of attr1 in such a way that the pol-
icy re-evaluation results in a Deny decision (step 4). Hence,
the PEP receives the revokeAccess message from the
UCS (step 5) and, consequently, the AS revokes token-1
and adds the token hash to the TRL (step 6). As described
in Sect. 4.1, after the token revocation is complete, the PEP
sends to the UCS an endAccess message for each session
that was associated with token-1, two in our case (step 7).
However, at this stage, the Client and RS are still not aware
that the revocation has taken place, hence they retain and keep
relying on token-1 until they learn about its revocation.

Phase 3 starts after Phase 2, and in the first step either the
RS or the Client detects that token-1 has been revoked.
The order of these two events is nondeterministic. Figure 7
shows the scenario where the RS detects the token revocation
before the Client (scenario rsFirst), while Fig. 8 shows the
scenario where the Client detects the token revocation earlier
than the RS (scenario cFirst).

The RS can learn of the token revocation either from the
/trl endpoint (through polling or Observe) or from the /intro-
spect endpoint at the AS. As soon as the RS detects that the
Access Token was revoked, it deletes token-1, as well as
the secure communication association with the Client. On
the other hand, the Client can learn that the Access Token
was revoked either from the /trl endpoint at the AS (through
polling or using Observe), or from a “4.01 Unauthorized”
response received from the RS when attempting to access
a protected resource. In the latter case, the Client assumes
that token-1 has been revoked, since it has no means to
unambiguously learn whether that is actually the case.
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Fig. 7 Phase 2 and 3 of the workflow, where the RS learns that the token was revoked before the Client does (scenario rsFirst). In this scenario,
t1,ReA starts with t2,Inc. Also, time intervals of interest are reported

Fig. 8 Phase 2 and 3 of the workflow, where the Client learns that the token was revoked before the RS does (scenario cFirst). In this scenario,
t1,ReA starts with t1,CEx. Also, time intervals of interest are reported

Fig. 9 Phase 1� of the workflow with detailed UCS steps. Only the
resource RES1 is granted to the Client

In either scenario, the workflow continues with Phase 1�

(Fig. 9), which is similar to Phase 1 (Fig. 6) but diverges
starting from step 5.

This time, the evaluation of the ongoing-section of
policy-1 produces a Deny authorization decision, while
the evaluation of policy-2 still produces a Permit autho-

rization decision (the value of attr2 remains unchanged
throughout the experiment). Hence, the AS generates a new
Access Token, called token-2, with scope “RES2”, thus
granting access only to the resource RES2, and sends it to
the Client. The Client uploads this Access Token to rs1 and
establishes a new secure communication association with it.
Finally, the Client makes a GET request to the protected
resource RES2 to access it.

All the experiments that we performed follow the work-
flow just described and are detailed in Sect. 6. In particular,
they consider different ways according to which the Client
and the RS learn about the revocation of token-1.

5.2 Time intervals of interest

We identified four time intervals of interest that wemeasured
through several test campaigns. For each of them, Figs. 7
and 8 show the start time and the end time, along with a
textual description of the corresponding event.
Client Experience Time, tCEx—It ranges from t1,CEx to
t2,CEx, where:

t1,CEx = time when the Client sends an Access Token
request to the AS;

t2,CEx = time when the Client obtains a successful pro-
tected response from the RS, following a resource access.

This time interval measures the time required for a com-
plete execution of the ACE workflow, which consists of
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the Access Token request and response, the Access Token
upload to the RS, the establishment of a secure communica-
tion association with the RS, and the request and response
exchanged between Client and RS when accessing the pro-
tected resource. From the Client’s perspective, this time
interval measures the time required to retrieve the represen-
tation of a protected resource, i.e., the time to complete the
Client’s “experience”.
Revocation Time, tRev—It ranges from t1,Rev to t2,Rev,
where:

t1,Rev = time when the value of an attribute changes, in
such a way to trigger the revocation of an Access Token.
Note that the time when the UCS gains knowledge of this
change may come later (i.e., the detection of the attribute
value change could occur with a delay with respect to the
time when the attribute value actually changed);

t2,Rev = time when the AS completes the revocation of the
Access Token.

This time interval represents the total time required by
the AS for performing the token revocation. It is intended to
capture the time spent by the AS to detect that an attribute’s
value has changed (attr1 in our workflow) plus the local
processing at the AS for completing the token revocation.
Inconsistency Time, tInc—It ranges from t1,Inc to t2,Inc,
where:

t1,Inc = the same as t1,Rev;
t2,Inc = time when the RS deletes its stored Access Token

and the related secure communication association with the
Client as a consequence of having gained knowledge of the
Access Token revocation.

This time interval can be split into two parts. The first part
is the Revocation Time (tRev) defined above. The second part
is a sort of information propagation time. We expect that this
time interval heavily depends on the mechanism that the RS
uses to check the token validity, i.e., introspection, polling
the /trl endpoint at the AS, or observing the /trl endpoint at
the AS. This time interval measures an inconsistency, i.e., the
time that the Client is still granted the access to a protected
resource when it should not be, because the factors (i.e., the
attribute) granting such an access have changed, thus causing
the token revocation.
Re-Admission Time, tReA—It ranges from t1,ReA to t2,ReA,
where:

t1,ReA = the earliest among the timewhen theRSdeletes its
stored Access Token and the related secure communication
association (t2,Inc), and the time when the Client learns that
the Access Token was revoked (t1,CEx). That is, t1,ReA =
min(t2,Inc, t1,CEx).

t2,ReA = time when the Client receives a successful, pro-
tected response from the RS, following a resource access
based on the second Access Token, obtained after the revo-
cation of the first one.

This time interval captures the time required by a Client to
re-access (a subset of) protected resources after either: (i) it
has learned that an Access Token has been revoked; or (ii) the
RS has deleted its stored Access Token and the secure com-
munication association with the Client. Consistently with the
specific workflow of our experiments, this time interval mea-
sures the amount of time that the Client is denied access to
RES2, i.e., a protected resource for which it should still have
access rights.

Note that we assume the Client to be honest, i.e., it does
not use an Access Token which it knows to be revoked. If the
Client learns before the RS that the Access Token has been
revoked (Fig. 8), this time interval coincides with the Client
Experience Time (tCEx).

5.3 Experimental setup

In our experiments, the AS process runs on a laptop com-
puter (Dell Alienware m15 R7) equipped with 32GB of
RAM, an Intel® Core™ i7-12700H CPU, and running the
Ubuntu 22.04 LTS 64-bit operating system. The Client and
the RS processes run on two Raspberry Pi 4 Mod. B Rev 1.4
equippedwith 8GBofRAM.TheACEentities are connected
to a Linksys router (model WRT54GL) to form a wired net-
work.

An existing Java implementation of ACE7 has been
extended8 to integrate the customizedUCON-based decision
maker, together with the mechanism for the notification of
revokedAccess Tokens described in Sect. 3. All the processes
run the extended implementation.

The AS device is configured to act as a Network Time
Protocol (NTP) server, and the Client and the RS devices
run NTP clients which synchronize with the NTP server.
This ensures accurate time synchronization between the enti-
ties (from our experiments, an inaccuracy lower than 1ms),
which is essential to estimate the time intervals of our interest
with acceptable precision. Indeed, for some time intervals,
the start time and the end time are taken on different devices,
and poorly synchronized clocks would lead to unreliable
measurements.

For each test with a fixed configuration, 100 repetitions
are performed, and the timestamps of the start time and end
time of all the time intervals of interest are recorded. When
performing the data analysis on the results, for each single
repetition, the time when the attribute changes value (t1,Rev)
is taken as reference, i.e., t1,Rev is set to 0, and all the other
times are computed as offsets from t1,Rev.

The interquartile range (IQR) method is then applied to
these results, and the identified outliers are dropped. Finally,

7 https://bitbucket.org/marco-tiloca-sics/ace-java/src/master/.
8 https://bitbucket.org/marco-rasori-iit/ace-java/src/ucs/.
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Table 1 Tested configurations. For each configuration, the way the
Client and the RS gain knowledge of the Access Token revocation is
shown

Name Client RS

ua-i15 4.01 unauthorized introspect every 15s

p15-p15 polling every 15s polling every 15s

p15-o polling every 15s observe

o-p15 observe polling every 15s

o-o observe observe

the duration of each time interval of interest is computed and
averaged, and 95% confidence intervals are computed.

6 Experimental results

This section presents and discusses the results from our
experimental performance evaluation, according to what has
been defined in Sect. 5. In Sect. 6.1, we compare the time
performance displayed by the different mechanisms that the
Client and Resource Server use for gaining knowledge of
an Access Token revocation. Then, in Sect. 6.2, we assess
the time employed by the UCS to carry out the authoriza-
tion tasks when varying the complexity and number of the
evaluated access policies.

6.1 ACE workflow performance

All the performed tests follow the workflow described in
Sect. 5.1, but they differ in the way the Client and RS gain
knowledge of the Access Token revocation. Table 1 reports
the tested configurations and the way in which the Client and
the RS learn about the token revocation.

In the configuration ua-i15, which uses introspection, we
basically test the performance of an AS not implementing
the notification mechanism for revoked tokens. In particular,
the RS performs introspection every 15 seconds (introspect
interval), querying the AS for checking the validity of each
Access Token that the RS stores. In our tests, the RS stores
only theAccess Token token-1, received by theClient dur-
ing Phase 1. On the other hand, the Client has no means to
learn that a token has been revoked, and thus it assumes so
upon receiving a “4.01 Unauthorized” message from the RS,
in response to a GET request to a protected resource, the first
time that the Client attempts to access the resource again.
Indeed, according to the ACE framework, this response is
sent by the RS when no secure communication association
exists with the Client. The tests performed using this con-
figuration always relate to the scenario rsFirst, where the RS
learns of the token revocation before the Client does. When
the Client receives a 4.01 response, the workflow continues

with the Client making the second Access Token request to
the AS.

In the second configuration (p15-p15), both the Client and
the RS poll the TRL resource at the AS. In our tests, the
polling interval is set to 15 seconds, and we have Client and
RS alternatively querying the AS, so that the AS receives
a request about every 7.5 seconds. In order to model the
worst case, the alternating pattern is intentionally enforced,
by means of the configuration parameter values used in the
experiments.

In the third configuration (p15-o), the Client polls the TRL
resource at the AS every 15 seconds, while the RS observes
the TRL resource. Although we expect that most of the times
the RS learns of the token revocation before the Client does,
we do not let the Client assume that the token was revoked
when receiving 4.01 responses, since the Client has now the
means to gain such a knowledge with certainty.

The fourth configuration (o-p15) is reversed compared
to the previous one (p15-o), with the RS polling the TRL
resource at the AS while the Client observes the TRL
resource.

Finally, in the last tested configuration (o-o), both the
Client and the RS observe the TRL resource at the AS. Since
(i) the sending of Observe notifications to notify the regis-
tered devices does not have to follow a particular order; and
(ii) the registered devices are both connected to a wired net-
work and are one hop from the AS, we expect that the tests
performed with this configuration roughly relate about half
of the times to the scenario rsFirst, and half of the times to
the scenario cFirst.

Figure 10 shows the measured time intervals of interest
for each configuration through bar charts. Bars spread across
a time scale (y-axis), and each bar represents one of the time
intervals of interest characterized by its start time, duration,
and end time. The x-axis (at the top of the graphs) reports the
“ending actor”, which is the entity that determines the end
of the time interval. For example, the Inconsistency Time
(tInc) ends when the RS deletes the Access Token and termi-
nates the secure communication association with the Client,
while the Revocation Time (tRev) ends when the AS com-
pletes the revocation of the Access Token (see Sect. 5.2). A
dashedmagenta horizontal line is taken as reference and indi-
cates the end time of the token revocation (t2,Rev). Its value
is on average 55ms. A dashed vertical brown arrow and a
dotted vertical blue arrow indicate the time employed by the
RS and the Client, respectively, to learn of the token revoca-
tion. Hence, they span from t2,Rev to t2,Inc and from t2,Rev to
t1,CEx, respectively. These indications help better understand
the insight of the results.

The first thing to notice in Fig. 10 is that the Revocation
Time (tRev, magenta bar) is independent of the specific tested
configuration, i.e., it is not influenced by the ways in which
Client and RS learn about revoked Access Tokens. Indeed,
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Fig. 10 Average Revocation Time (tRev), Inconsistency Time (tInc), Re-
Admission Time (tReA), and Client Experience Time (tCEx) with 95%
confidence intervals for all the configurations tested. The y-axis origin,

i.e., t = 0 ms, is set to be the time when the attribute value changes,
i.e., t1,Rev. The yellow box zooms in on the first 100ms of Fig. 10a

tRev mainly depends on the UCS processing time at the AS
after an attribute’s value changes. In Sect. 6.2, we present and
discuss our performance evaluation of such specific process.

From Fig. 10, we observe that in the vanilla configuration
ua-i15, as well as in p15-p15and in o-p15, on average, the
RS detects the Access Token revocation about 7.5 seconds
after the revocation is completed (i.e., half of the intro-
spect/polling interval), and this determines the Inconsistency
Time. Although polling and introspection achieve similar
results in terms of Inconsistency Time (tInc, orange bar), they
are quite different by their very nature. Indeed, the advantage
of polling the TRL resource at the AS instead of introspect-
ing an Access Token is twofold: (i) the RS saves upload
bandwidth since polling the TRL resource simply requires
a GET request, instead of a POST request that provides the
whole Access Token or a reference to it as required by intro-
spection; (ii) with just one polling request, the RS can learn
about the revocationofmultipleAccessTokenswhereas,with
one introspection request, the RS learns about the validity of
one specific Access Token only. In other words, in order to
gather the same information that can be obtained through a
polling request to the TRL resource, the RS should make
an introspect request for each Access Token that it stores,
thus consuming additional time and bandwidth. Note that,
in our tests, the RS introspects one Access Token only, i.e.,
token-1.

In the configuration ua-i15, shown in Fig. 10a, the Client
learns about the Access Token revocation when it receives

from the RS a 4.01 response to a request to access a protected
resource. From the figure, we observe that the Re-Admission
Time (tReA, green bar) is about 940ms. Since, in our tests,
the Client sends a request every second, the Re-Admission
Time is expected to be, on average, half the request interval
(0.5 s), plus theClient ExperienceTime (tCEx),which is about
400ms.

The results obtained with configuration p15-p15 (shown
in Fig. 10b) are not so straightforward since they are the
product of an average of two very different scenarios, i.e.,
rsFirst and cFirst. However, we note that in Fig. 10b, for
both the RS and the Client, the time to learn about the
Access Token revocation is about 7.5 seconds as expected
(see the brown and light blue arrows in the figure). Figure 11
helps to better understand these results: Fig. 11a refers to
the tests with configuration p15-p15 that relate to the sce-
nario cFirst (49%), while Fig. 11b refers to the tests that,
instead, relate to the other scenario, rsFirst (51%). InFig. 11a,
the Re-Admission Time starts with the Client Experience
Time, therefore t1,ReA = t1,CEx, while in Fig. 11b, the Re-
Admission Time starts when the Inconsistency Time ends,
hence t1,ReA = t2,Inc, as per the Re-Admission Time defini-
tion (see Sect. 5.2). On the other hand, the results displayed
in Fig. 10b are averaged, and the final outcome is a long
Inconsistency Time as well as a long Re-Admission Time,
even longer than the one in the configuration ua-i15.

Themain problem of configurations ua-i15 and p15-p15 is
that, after the revocation has occurred, the Client keeps rely-
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Fig. 11 Time intervals of interest obtained with the configuration p15-
p15. Graph a shows the average results for the repetitions in which
the Client detects the Access Token revocation before the RS. Graph
b shows the average results for the repetitions in which the RS learns
before the Client

ing on token-1 for successfully accessing the protected
resource at the RS—without knowing that it should not do
itthat—until the RS learns about the Access Token revoca-
tion. This may result in a vulnerability window, since the
revocation may have occurred because the RS (or a protected
resource on it) has been compromised. For example, the AS
in our workflow may revoke the Access Token because it
knows that RES1 on the RS has been compromised by an
adversary, in order to send bogus data back to the Client. A
Client that keeps accessing the protected resource as per the
same Access Token may obtain tainted data or, even worse,
be victim of code injection or other attacks.

In configuration o-p15 (Fig. 10c), the use of Observe
makes it possible for the Client to learn about the Access
Token revocation—through the notifications from the AS—
a few milliseconds (about 20ms) after the AS completes
the revocation of token-1. In this configuration, the Re-
Admission Time and the Client Experience Time are short
and coincide, and this allows the Client to promptly re-obtain

a grant to access the protected resourceRES2 bymeans of the
secondAccessToken, i.e.,token-2. However,we note that,
in this configuration and in the configuration o-o, the Client
Experience Time is longer than in the other configurations.
The reason for this result is subtle: when the AS revokes the
Access Token and adds its token hash to the TRL resource,
an Observe notification is automatically sent to the regis-
tered devices (step 6 of Fig. 8); the Client learns about the
token revocation (step 8) a few milliseconds after step 6, and
it rapidly makes a new Access Token request. Nonetheless,
after step 6, the AS is performing step 7, i.e., it is termi-
nating the sessions at the UCS through two endAccess
messages. Since the UCS is performing this task, the exe-
cution of the new tryAccess requests—concerning the
second Access Token request—has to be scheduled after the
conclusion of step 7. This results in a Client Experience Time
slightly longer (about 100 ms longer) than the one obtained
with the other configurations.

Note that, with this configuration (o-p15), since the RS
polls the TRL resource at the AS every 15 seconds, it learns
about the Access Token revocation at a later time, and this
causes the Inconsistency Time to be long, as in the previous
configurations (ua-i15 and p15-p15).With our assumption of
an honest Client, this is not so critical, but it is worth noting
that a misbehaving Client could keep accessing the protected
resource RES1 as per token-1 for some time (about 7.5
seconds on average in our case) after the token revocation,
when it is actually not supposed to.

The configuration p15-o (Fig. 10d) is reversed compared
to the previous one, i.e., the Client learns about the Access
Token revocation after the RS. The long Re-Admission Time
depends on the polling interval and on the duration Client
Experience Time. In particular, it takes the Client half of the
polling interval before learning about the token revocation
and making the second Access Token request (see the light
blue arrow). This time interval and the consecutive Client
Experience Time determine the long Re-Admission Time.
However, this configuration results in a short Inconsistency
Time, which is good since token-1 ceases to be accepted
by the RS very early, i.e., a few milliseconds after the AS
completes the Access Token revocation.

The last configuration (o-o), shown in Fig. 10e, makes use
of Observe only. Both the RS and the Client are notified of
theAccess Token revocation after a fewmilliseconds from its
completion at theAS.Despite some of the tests we conducted
relate to the scenario cFirst and some to the scenario rsFirst,
Fig. 10e shows that the difference between the two learning
times in both scenarios is always less than 10ms, thus a more
detailed analysis like the onemade for the configuration p15-
p15 is unnecessary.

The configurations with the RS observing the TRL
resourceminimize the InconsistencyTime, thus ensuring that
access requests to protected resources made after the Access
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Token revocation and referring to token-1 are promptly
not accepted by the RS. Moreover, the configurations with
the Client observing the TRL resource minimize the Re-
Admission Time and ensure that a Client promptly stops
accessing possibly compromised resources.

6.2 UCON time performance

The time spent by theAS to issue and revoke anAccess Token
varies with: (i) the number of UCPs evaluated by the UCS;
and (ii) the evaluation complexity of a single UCP. In turn,
the evaluation complexity varies with: (i) the number of PIPs
managed by the UCS; (ii) the number of attributes present
in the pre-(only for token issuing) and ongoing-sections of
the UCP; and (iii) the section’s shape, i.e., how logical opera-
tors, such asANDandOR, combine the checks performed on
attributes. In Sect. 6.2.1, we assess the time employed by the
UCS to carry out the authorization tasks varying the com-
plexity of the UCP, while in Sect. 6.2.2 we study how the
number of UCPs to be evaluated affects the time intervals of
interest.

6.2.1 Varying the evaluation complexity

The number of PIPs managed by the UCS determines the
number of steps that have to be performed in order to enrich
a UCON request. We recall that a UCON request is enriched
every time it has to be evaluated against any section of a
UCP, and that the values of all the attributes are retrieved by
the PIPs from the AMs. Moreover, the number of attributes
present in the condition of each section of the UCP, as well as
its shape, affects the time spent by the PDP for producing an
authorization decision. For example, a condition shaped as a
Boolean OR between the attributes has in general better time
performance than a condition shaped as a Boolean AND,
because the PDP must evaluate all the attributes before pro-
ducing the authorization decision. Of course, having fewer
attributes in a condition results in a faster evaluation.

In this set of experiments, we evaluate the UCS perfor-
mance to accomplish its internal phases, thatwe refer to as the
tryAccess phase, the startAccess phase, and the revokeAccess
phase. The tryAccess phase starts when the PEP sends the
tryAccess message to the UCS and ends after it receives
the permitAccessmessage. The startAccess phase starts
when the PEP sends the startAccess message to the
UCS and ends after it receives the permitAccess mes-
sage. Since a startAccess message is sent by the PEP
upon the reception of a pre-decision of Permit, and thus our
flow slightly differs from typical one of the UCON frame-
work [11], we merge and show in Fig. 12 the times of the
tryAccess and startAccess phases together, and we call this
the (try+start)Access phase. The revokeAccess phase starts

when the attribute’s value changes and ends after the PEP
receives the revokeAccess message.

This set of experiments slightly deviates from the work-
flow described in Sect. 5.1: (i) in Phase 1, the Client makes
an Access Token request including the scope “RES1” that
translates into one UCON request only, for the resource
RES1; and (ii) in Phase 1�, theworkflowendswhen theClient
receives the response from the AS, which does not include
an Access Token since the Client cannot be granted access
to RES1 after the value of the attribute attr1 changed
in Phase 2. Therefore, the duration of the (try+start)Access
phase is recorded during Phase 1, and the duration of the
revokeAccess phase is recorded during Phase 2. This devi-
ation from the original workflow allows us to measure the
performance of the UCS for the evaluation of a single UCON
request.

We perform various tests varying the number of PIPs. We
assume that each PIP is responsible for retrieving the cur-
rent value of a single mutable attribute, so the number of
PIPs corresponds to the number of mutable attributes man-
aged by the UCS (nm.attr ). The AMs accessed by the PIPs
are files stored at the AS and containing the values of the
attributes. In each test, we create a UCP with a fixed number
of non-mutable attributes (three) in the condition of the pre-
section, and a variable number of mutable attributes (nm.attr )
in the conditionof theongoing-section.Thevalues of thenon-
mutable attributes are taken from the original UCON request,
while the values of the mutable attributes are retrieved by
the PIPs. The condition of the pre-section is shaped as a
Boolean AND between 3 attributes, and the condition of the
ongoing-section is shaped as aBooleanANDbetweennm.attr

mutable attributes; for example, if we test nm.attr = 10,
the pre-section contains three ANDed attributes, and the
ongoing-section contains ten ANDed mutable attributes. In
order for the ongoing-decision to be Permit, the value of each
attribute in the ongoing-section must match the current value
of the attribute contained in the enriched UCON request.
Also, note that, when we test nm.attr = 10, the UCS man-
ages ten PIPs, hence a UCON request is enriched with the
current value of ten mutable attributes.

Figure 12 shows the results for up to 40 mutable attributes
in the ongoing-section of the UCP.

As expected, we observe that the time employed for both
phases grows with the number of attributes managed by the
UCS, and consequently, with the policy complexity. How-
ever, we point out that the increase of time with the number
of attributes is not significant: at the two tested extremes,
i.e., 1 and 40 attributes, the time difference is about 75ms
for the (try+start)Access phase and less than 50ms for the
revokeAccess phase.

In our tests, the request enrichment phase is very quick,
since all the AMs reside on the AS (i.e., the PIP and the AM
are on the same machine), and the PIPs rapidly retrieve the
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Fig. 12 UCS time performance varying the number of mutable
attributes nm.attr managed by the UCS. The number of attributes in
the pre-section is fixed to three, while the number of mutable attributes
in the ongoing-section is equal to nm.attr . The graph shows 95% con-
fidence intervals

current values of the attributes. Nonetheless, if remote AMs
are employed (e.g., files on a different host, remote databases,
etc.), we expect that these times increase linearly with the
number of remote calls and are affected by the means (e.g.,
REST APIs, WebSockets, etc.) that the PIPs use to retrieve
the current values of the attributes. However, due to the very
large number of technical solutions that could be adopted to
implement an AM, this analysis is out of the scope of this
paper.

6.2.2 Varying the number of policy evaluations

As explained in Sect. 4.1, the scope specified by the Client
during the Access Token request is translated by the AS
into one or more UCON requests. Every UCON request is
enriched and then evaluated by the PDP, which produces a
pre-decision and an ongoing-decision for each one. In this
section, we evaluate the Client Experience Time and the
RevocationTime as the number ofUCON requests to be eval-
uated (neval ) varies. To this aim, the Client specifies a scope
that translates into a number of UCON requests ranging from
1 to 4. As in the tests of Sect. 6.2.1, all the UCPs used have 3
attributes in the pre-section. Instead, the number of mutable
attributes in the ongoing-section is fixed to 1, and each UCP
uses a distinct mutable attribute. Hence, the UCS manages a
number of mutable attributes equal to the number of UCON
requests the scopes translates into. For example, when we
test neval = 4, the UCS manages 4 mutable attributes, and
each of the 4 UCPs contains 3 attributes in the pre-section
and 1 mutable attribute in the ongoing-section.

We run the tests for two configurations to compare the
results in the case where the Client detects the token revo-

Fig. 13 Results varying the number of evaluations performed by the
UCS. The graph shows the average Revocation Time (tRev), and the
Client Experience Time for a configuration where the Client learns of
the token revocation through the Observe extension of CoAP (t (o-o)CEx )
and a configuration in which the Client learns of the token revocation at
a later time (t (ua-o)CEx ). The striped portion of the bars represents the time
spent by the UCS for carrying out the authorization task

cation quickly through the Observe extension of CoAP
(configuration o-o), and in the case where the Client learns
at a later time that a token revocation has occurred (con-
figuration ua-o). As discussed in Sect. 6.1, when the Client
quickly gains knowledge of the revocation of token-1 and
promptly makes the second Access Token request, the Client
Experience Time is prolonged since the UCS is still pro-
cessing the endAccess messages from the PEP after the
revocation of token-1.

Figure 13 shows the results obtained from 100 indepen-
dent repetitions for each configuration, and for neval in the
range [1..4]. In the test with neval = 2, the Client makes an
Access Token request specifying the scope “RES1 RES2”,
which translates into two UCON requests, exactly like in the
workflow of Sect. 5.1.

In the tests with neval = 1, the Client makes an Access
Token request for the scope“RES1”,which theAS translates
into oneUCON request. In Phase 1, both the pre-decision and
ongoing-decision results are Permit, so token-1 is issued,
and the resource RES1 is granted to the Client. However,
after token-1 is revoked and the Client makes the second
AccessToken request, theASdoes not issuetoken-2 since,
after the revocation of token-1, the Client has no access
privileges to access other resources. Therefore, the test ter-
minates early, i.e., after step 10 of Phase 1�. This is the reason
why, in Fig. 13, the value of the Client Experience Time for
neval = 1 is missing.

From Fig. 13, we note that the Revocation Time (tRev)
slightly increases as neval grows, and, consistently with
Fig. 10, its value is about 55ms when neval = 2. We recall
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Table 2 Percentage of the time
spent by the UCS for the
authorization tasks with regard,
with respect to the overall Client
Experience Time

neval o-o ua-o

1 – –

2 57.5% 39.2%

3 69.5% 62.7%

4 77.8% 71.7%

that the Revocation Time consists of the time required for:
(i) the revokeAccess phase, i.e., the time required to the
UCS to detect that an attribute’s value has changed, the time
required for the policy re-evaluation, and the reception of
the revokeAccessmessage by the PEP; plus (ii) the time
employed for the enforcement of the revocation by the AS
through Access Token deletion and the addition of its token
hash to the TRL. What makes the Revocation Time grow
with neval is the time required for the policy re-evaluation
within the revokeAccess phase. As explained in Sect. 6.2.1,
the duration of the revokeAccess phase grows with nm.attr ,
which in turn grows with neval .

The results concerning the Client Experience Time show
that tCEx for the configuration o-o (light blue bars and denoted
by the symbol t (o-o)CEx ) is always higher than the one for the con-
figuration ua-o (dark blue bars and denoted by the symbol
t (ua-o)CEx ). In particular, we note that the portion of the Client
Experience Time concerning the UCS (the lower part of the
bars, denoted by stripes) is always higher for the configu-
ration in which the Client promptly gains knowledge of the
token revocation (configuration o-o). As already mentioned,
this is because, when the PEP sends a newtryAccessmes-
sage related totoken-2 to the UCS (step 2 of Phase 1�), the
UCS is still processing the endAccessmessages related to
token-1.

From the figure, we note that as neval grows, the time spent
by the UCS for the authorization tasks grows, irrespective of
the configuration. However, the non-striped part of the bars,
which is related to the network communications between the
Client and both the AS and the RS, is independent of neval .
Therefore, the portion of tCEx concerning the UCS increases
with the number of evaluations, as shown in Table 2, where
its impact is reported as a percentage of theClient Experience
Time.

7 Related work

Due to the continuous increase in the spreadingof IoTdevices
inmany aspects of our everyday life (e.g., smart homes, smart
cities, connected vehicles, etc.), growing attention is being

given to their security. As a matter of fact, plenty of works
concerning the study of suitable access control systems tai-
lored for the typical features of IoT devices can be found in
the scientific literature, and a number of surveys has in turn
analyzed them [28–30]. However, to the best of our knowl-
edge, very few suchworks take into account UCON as access
control model, although IoT devices are typically used in
dynamic contexts.

The authors of [31] propose the adoption of the UCON
model for enhanced authorization in IoT environments, but
their work is quite high level, since it describes a possible
architecture for the access control mechanism and demon-
strates how the authorization process would work with a
reference example. However, it does not present an imple-
mentation of the proposed architecture, nor does it provide
experimental results to prove the feasibility of the proposed
approach on IoT devices.

In [32], the authors propose LUCON, a data-centric and
UCON-based framework aimed at controlling the flow of
messages among IoT devices. The LUCON framework uses
a customized language for defining usage control policies
(LUCON DSL) that are compiled in Prolog programs to be
enforced. With respect to our work, the LUCON framework
differs because it is not aimed at regulating the access to
resources residing on IoT devices, but it is focused on regu-
lating the data flow among IoT devices.

In [1], the authors present an integration of the UCON
framework with the IFTTT (If This Then That) application-
level standard for enforcement of obligations. A seamless
integration of the UCON framework in the target archi-
tecture is proposed, along with a reference implementation
and an experimental evaluation. However, differently from
our work, the integration is done with a web-service-based
application model, and the focus is shifted to the obligation
formalism, which is not addressed in the current work.

The work in [2] presents an integration of the UCON
framework in the Message Queue Telemetry Transport
(MQTT) publish-subscribe network protocol [33], with the
UCS integrated in the MQTT broker, and the MQTT clients
embedding the PEPs. The work is at a completely different
level of maturity compared with the one presented in this
paper, as it does not integrate with an already existing access
control standard mechanism such as the ACE framework.

Many other works concerning authorization in IoT are
based on the Role-Based Access Control (RBAC) model
[34], such as [35–37], or on the Attribute-Based Access
Control (ABAC) model [38], even adapted for IoT, such as
[39–41], and, hence, they do not support continuous policy
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evaluation for the detection of ongoing accesses that should
be revoked.

8 Conclusions

In this paper, we have proposed the employment of the Usage
Control framework as an underlying access control tool for
the Authorization Server of the standard ACE framework for
access control in the IoT, and we have assessed its perfor-
mance in terms of time required to issue and revoke Access
Tokens.

Moreover, we have implemented and evaluated the addi-
tional revoked token notification method, as relying on the
Observe extension for the CoAP protocol, in order to auto-
matically notify both Clients and Resource Servers about
pertaining Access Tokens that have been revoked earlier than
their natural expiration.

Our experimental results show how this method reduces
both the time interval during which illegitimate accesses
to protected resources can occur after the revocation of an
Access Token, as well as the time experienced by Clients
and Resource Servers to learn about the revocation of their
pertaining Access Token.

Finally, an evaluation of the Usage Control performance
has been performed, as a further set of experiments. This
allowed us to study how the complexity of access policies
and the number of evaluations to perform affect both the
time spent by the Authorization Server tomake authorization
decisions for issuing an Access Token and the time spent by
the Authorization Server to revoke an Access Token after a
change of dynamic conditions that invalidates current access
grants. Although the presented implementation specifically
relies on the Usage Control paradigm, the proposed method-
ology is general enough to be adaptable to other Access
Control management systems which exploit Policy Enforce-
ment Points.

Future works will consider further extensions and assess-
ments of the integrated Access and Usage Control frame-
work, when relying on alternative profiles of the ACE
framework, diff-based notifications of revoked access rights;
aswell as the use of (automatic) notificationof revoked access
rights in different frameworks for authentication and autho-
rization enforcing access and usage control.

Appendix A

Table 3 provides a list of the abbreviations used throughout
this paper.

Table 3 List of abbreviations

Abbreviation Description

ABAC Attribute-Based Access Control

ACE Authentication and Authorization

for Constrained Environments

AM Attribute Manager

AS Authorization Server

C Client

CBOR Concise Binary Object Representation

CH Context Handler

CoAP Constrained Application Protocol

COSE CBOR Object Signing and Encryption

CWT CBOR Web Token

DTLS Datagram Transport Layer Security

EDHOC Ephemeral Diffie-Hellman

Over COSE

IFTTT If This Then That

IoT Internet of Things

IQR Interquartile Range

JSON JavaScript Object Notation

JWT JSON Web Token

MQTT Message Queue Telemetry Transport

NTP Network Time Protocol

OAuth Open Authorization

OSCORE Object Security for Constrained

RESTful Environments

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role-Based Access Control

REST Representational State Transfer

RS Resource Server

SID Session Identifier

SM Session Manager

TRL Token Revocation List

UCON Usage Control

UCP Usage Control Policy

UCS Usage Control System

UDP User Datagram Protocol

XACML eXtensible Access Control Markup Language
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