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Abstract
Hardware accelerators, such as those based on GPUs and FPGAs, offer an excellent opportunity to
efficiently parallelize functionalities. Recently, modern embedded platforms started being equipped
with such accelerators, resulting in a compelling choice for emerging, highly computational intensive
workloads, like those required by next-generation autonomous driving systems. Alongside the need
for computational efficiency, such workloads are commonly characterized by real-time requirements,
which need to be satisfied to guarantee the safe and correct behavior of the system. To this end, this
paper proposes a holistic framework to help designers partition real-time applications on heterogeneous
platforms with hardware accelerators. The proposed model is inspired by a realistic setup of an
advanced driving assistance system presented in the WATERS 2019 Challenge by Bosch, further
generalized to encompass a broader range of heterogeneous architectures. The resulting analysis is
linearized and used to encode an optimization problem that jointly (i) guarantees timing constraints,
(ii) finds a suitable task-to-core mapping, (iii) assigns a priority to each task, and (iv) selects which
computations to accelerate, seeking for the most convenient trade-off between the smaller worst-case
execution time provided by accelerators and synchronization and queuing delays.

1. Introduction
Embedded real-time systems have been subject to con-

siderable changes over the last two decades. First, the ad-
vent of multi-core platforms introduced new allocation and
scheduling problems [28] and the consideration of contention
delays on shared resources such as memories [34, 48] and I/O
devices [17]. More recently, the race towards feature-rich,
predictable, safe, and secure autonomous vehicles shifted the
attention to devices capable of performing a huge amount
of parallel computation in an efficient way: heterogeneous
platforms.

Heterogeneous platforms are composed of multiple cores,
possibly with different characteristics. Often, they are also
provided with hardware accelerators, such as graphic pro-
cessing units (GPUs), field-programmable gate arrays (FP-
GAs), or digital signal processors (DSPs). The accelera-
tors have proven to be an essential means to feasibly imple-
ment the perception and prediction software required by au-
tonomous cars [8]. Indeed, such functionalities commonly re-
quire the usage of deep neural networks and computer vision
algorithms that cannot be efficiently executed by processor
cores.

However, improving the timing efficiency by means of
hardware accelerators is just a piece of the puzzle. The new
software introduced for autonomous driving is subject to real-
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time constraints, and it is required to interact and communi-
cate in a predictable way with all the other time critical (and
often legacy) software for the control of the vehicle [72]. This
aspect calls for action on the side of the real-time scheduling
analysis. For example, a computation may start on a proces-
sor core, continue on a hardware accelerator, and complete
again on a core. Clearly, these behaviors require a richer
modeling and more complex analysis strategies.

Furthermore, the engineers are left with several design
choices, e.g., deciding the best task-to-core mapping, and
deciding whether to use hardware accelerators when multiple
implementations of the same functionality are available. This
process is not trivial, and becomes even more complicated
when it is required to guarantee that the timing constraints on
the whole application are respected. For example, is it best
to execute a computation slowly on a fairly empty CPU, or
faster in a congested GPU? Such choices are critical and can
heavily affect the performance of the system.

A possible approach to solve this issue may involve ex-
perimenting with different configurations, and empirically
observing the results, seeking the best performing one. How-
ever, this exhibits the following shortcomings: (i) it may be
highly time-consuming, (ii) it only allows to check a small
number of configurations, without reaching holistic conclu-
sions, (iii) it provides no real-time guarantees and predictabil-
ity, and (iv) it is very unlikely to be optimal or near-optimal.

These drawbacks give rise to the need for off-line design
and analysis strategies, to guarantee that all the tasks fulfill
their timing constraints while taking the best decision on
multiple design choices, e.g., whether to accelerate a task
or not, how to allocate tasks to cores, and how to assign
priorities.

While pursuing this goal, one may be tempted to rely
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on overly simplistic models, leading to analysis and design
strategies useful from a theoretical point of view but possibly
far from reality or, on the opposite side, to solve a specific
problem on a specific computing platform, achieving a re-
sult that does not generalize to other cases, thus limiting its
usefulness for the research community.
This Paper. To avoid falling into the two aforementioned
issues, this paper tries to balance between generality and
specificity. To this end, we start by looking at a specific and
realistic problem, the WATERS 2019 Challenge proposed by
Bosch [37], which provides data (execution times, commu-
nication relations, etc.) for an Advanced Driver-Assistance
System (ADAS) application running on a NVIDIA Jetson TX-
2, a heterogeneous platform with a GPU accelerator. Based
on this system configuration, we build a model to analyze
its real-time behavior while generalizing to other processing
platforms with other kinds of accelerators. Then, we show
how to build optimization strategies to determine suitable
acceleration decisions, task allocations, and priority assign-
ments, which are then evaluated on the WATERS Challenge
model in our experimentation.

This paper builds upon the workshop paper from the same
authors [20] presented at the 10th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2019), as a solution to the WATERS
2019 Challenge. The original contribution [20] is extended
in several directions: (i) the framework used in this paper
now supports tasks performing acceleration in multiple sepa-
rate segments of their execution; (ii) we study two different
scheduling policies for the accelerator, i.e., round-robin and
non-preemptive fixed priority, and provide the correspond-
ing analyses; (iii) we propose a response time analysis for
self-suspending tasks that is suitable for linear optimization,
inspired by (and extending) the approach presented in [59];
(iv) we provide a comprehensive optimization problem, ex-
tensively discussing all the constraints and presenting a corre-
sponding proof for each of them; (v)we provide a comprehen-
sive evaluation based on the WATERS Challenge model that
studies different objective functions and scheduling policies.
Paper Structure. The remainder of the paper is organized
as follows. Section 2 introduces the WATERS 2019 Chal-
lenge. Section 3 presents our modeling solution to describe
an application running on a heterogeneous platform with a
hardware accelerator. Section 4 presents methods to analyze
heterogeneous applications using self-suspending task the-
ory. Section 5 illustrates an optimization problem to take
several design-level decisions in an optimal way. Section 6
presents the results of our experimental evaluation. Section 7
discusses the related work. Finally, Section 8 concludes the
paper.

2. The WATERS 2019 Challenge
The WATERS 2019 Challenge [37] by Bosch represents

an interesting opportunity to explore a realistic design of a
modern ADAS application, implemented on a heterogeneous
platform. The Challenge provides an Amalthea APP4MC

Figure 1: Amalthea model provided with the WATERS 2019
Challenge.

model (see Figure 1) representing an ADAS prototype. The
application is composed of nine tasks performing computa-
tions from the sensors input to the steering command. Tasks
have communication dependencies as shown in Figure 2. The
model uses the Jetson TX-2 as a reference platform, with six
cores organized in two processor islands. The first island
includes four ARMv8 A57 cores running at 1.9 GHz, while
the latter contains two 2 Ghz ARMv8 Denver cores. The plat-
form is also provided with an iGPU (integrated GPU), which
allows accelerating some strongly-parallel computations.

The Amalthea APP4MC model includes additional infor-
mation about the structure of the tasks. For each task, periods
and deadlines are specified. Each task is then composed of
multiple segments of computation, called runnables, accord-
ing to the AUTOSAR standard 1. Each runnable implements
a specific function and is characterized by a set of possible
execution time values, depending on where it is implemented.
If the runnable is designed to run on a CPU, it presents the
execution time information for the A57 cores and for the
Denver cores; if it is designed to be accelerated, it includes
the execution time information computed for the GPU. In
both cases, the minimum, average, and maximum execution
times are reported. The model also specifies which labels
(i.e., shared memory locations) a runnable is reading or writ-
ing. This information is particularly useful for deriving the
communication dependencies.

For each task that can be accelerated, the Amalthea model
provides two task objects. The first one contains the prepro-
cessing and postprocessing runnables that are executed on a
CPU when the main activity is executed on the GPU: such
additional runnables are required for passing the inputs to the
GPU function and getting back the results. The second object
involves the runnables executing on the GPU and performing

1The AUTOSAR standard, version 4.3. http://www.autosar.org
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1. Lidar 7.Localization 4. EKF

3.CAN Pooling 6. SFM

2. DASM5. Planner

8. L. Detection 9. Detection

CPU implem.legend CPU/HWA implem. HWA implem.

Figure 2: Processing chains of the WATERS 2019 Challenge. The number on the side of each task represent the task ID, imported
from the challenge data.

the computation. TheWATERS 2019 challenge also provides
(in another model file) an alternative version of some tasks,
with their parameters in the case in which they are executed
on a CPU (when allowed).

Building upon this realistic case study, we derive a more
general model that is used to analyze and optimize a generic
real-time system running on a heterogeneous platform. The
NVIDIA GPU device considered in the WATERS 2019 Chal-
lenge involves scheduling policies that are not publicly dis-
closed by the hardware vendor [3], for which details may only
be experimentally inferred through reverse engineering [3,
54] or approximated [37]. Conversely, we consider two pre-
dictable scheduling policies, round-robin and non-preemptive
fixed-priority, which may be either directly adopted in the
hardware accelerator or be enforced by an application-level
scheduler that handles acceleration requests on the CPU
side [9, 31].

3. System Model
The system model analyzed in the following of the paper

builds upon the proposal theWATERS 2019 Challenge, and it
is extended to make it representative of processing platforms
with arbitrary heterogeneous cores and hardware accelerators.

Table 1 summarizes the main symbols used in this paper.
3.1. Platform Model

This paper considers a heterogeneous embedded real-time
platform composed of a set  = {p1,… , pm} of processorcores. Each core pk ∈  is assigned a type that determines
the execution-time profile of the functionality implemented
in that core. The type can be easily extended to cover other
aspects of interest, such as power consumption and cache
memory size, which however are out of the scope of this
work.

For the sake of simplicity, we consider that the platform
provides a single hardware accelerator, which is referred
to as . Nonetheless, the present analysis can be easily
extended for the case of multiple independent accelerators at
the expense of a more complex notation.
3.2. Task Model

The application implemented in the platform comprises
a set Γ = {�1,… , �n} of periodic real-time tasks. Tasks are
executed on cores according to a partitioned fixed-priority

preemptive scheduling, where each task �i is statically as-
signed to a processor pk and a unique priority �i. This con-figuration guarantees a high predictability while being rep-
resentative of systems capable to run on hardware acceler-
ators, i.e., those based on Linux, where partitioned fixed-
priority scheduling can be achieved by assigning tasks to
the SCHED_FIFO scheduling class and specifying affinities
with the sched_setaffinity() system call.

We denote with Γk ⊆ Γ the subset of tasks mapped on
core pk, with⋃k Γk = Γ and⋂k Γk = ∅. The set of all taskswith priority higher (resp. lower) than �i is denoted with
ℎp(�i) (resp. lp(�i)). Similarly, the set of all tasks mapped
on core pk and with priority higher (resp., lower) than �i isdenoted with ℎpk(�i) (resp., lpk(�i)). Each task �i releasesa potentially infinite sequence of instances called jobs, each
separated by Ti time units. Each job needs to complete within
its relative deadlineDi ≤ Ti, i.e., withinDi units of time from
its release. A task is said to be schedulable if all of its jobs
always complete within Di time units from its release.

Furthermore, each task �i ∈ Γ is composed of a se-
quence of code segments executed sequentially, with �i =
{�i,1,… , �i,w} denoting the set of all segments �i,j ∈ �i. Ajob of task �i starts with the execution of segment �i,1, and anyother segment �i,j with 1 < j ≤ w starts executing only after
the completion of �i,j−1. Each segment represents a function-
ally distinct fragment of code, and its implementation can be
either provided for execution on processor cores, on the hard-
ware accelerator, or both. To this end, each segment is charac-
terized by an implementation type �i,j ∈ {CPU, HWA, CPU-HWA},where �i,j = CPU if the segment can only be executed on a
core; �i,j = HWA if the segment can only be executed on the
hardware accelerator , and �i,j = CPU-HWA if two implemen-
tations are provided and hence the segment can be executed
either on a core or on the accelerator.

When both implementations on cores and the hardware
accelerator are provided, it necessary to determine where the
segment actually executes. Hence, each segment is further
characterized by a parameter ai,j ∈ {T, F} denoting if �ioffloads its computations to the accelerator (ai,j = T) or
not (ai,j = F). Clearly, if �i,j = CPU, then ai,j = F, and if
�i,j = HWA, ai,j = T. The set of accelerated segments of task
�i is denoted with �Ai = {�i,j | ai,j = T}), while the set of
segments that may be accelerated is denoted with �Hi =
{�i,j | �i,j ∈ {CPU-HWA, HWA}}.
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Figure 3: Example of schedule under the proposed model.

3.3. Offloading Mechanism
We consider a synchronous, suspension-based offloading

mechanisms to the hardware accelerator. Namely, when a
segment �i,j of �i ∈ Γk is accelerated (i.e., ai,j = T), it first
executes the offloading phase, i.e., it executes a first chunk
of code on its processor pk to perform the initial operations
and to prepare the data to offload to the accelerator. When
it completes, the task suspends on pk, and its execution con-tinues on  in the processing phase. Upon completion, the
task is awakened on pk, and retrieves the outputs producedby the accelerator, possibly executing further processing in
the finalization phase, which terminates the execution of �i,j .This behavior is representative of most hardware accelerators,
e.g., those based on GPUs [37] and FPGAs [9]. Conversely,
when a segment is not accelerated, i.e., ai,j = F, it performs
only the processing phase on pk.For such three phases of an arbitrary segment �i,j , weintroduce Oi,j(pk), Ei,j(pk), and Fi,j(pk) to denote the worst-
case execution times (WCETs) of the offloading, processing,
and finalization phase, respectively. Note that, due to the
platform heterogeneity, the WCETs depend on the type of
the core pk. The offloading and finalization phases of �i,jhave a positive WCET only when ai,j = T. In this case, the
offloading and finalization phase run on the core pk wherethe corresponding task is allocated, with WCETs Oi,j(pk)and Fi,j(pk), respectively. The execution phase instead runson the hardware accelerator , and its WCET is denoted by
Ei,j(). When ai,j = F, the segment is not accelerated and
composed of the execution phase only, which occurs on its
core pk.Figure 3 shows an example of a possible schedule under
the execution model of this paper. Task �1 is composed of
three segments. The first two are not accelerated, and hence
they are only composed of a single processing phase each,
executing on a core pk, with durations bounded by the param-
eters E1,1(pk) and E1,2(pk), respectively. The third segment
is accelerated. Therefore, it is composed of an offloading
and finalization phase running on pk for at most O1,3(pk) and
F1,3(pk), respectively, and a processing phase running on theaccelerator for at most E1,3().For brevity, the worst-case execution time of a segment
�i,j on a core pk is denoted as follows:

Ci,j(pk, ai,j) =
{

Ei,j(pk) if ai,j = F

Oi,j(pk) + Fi,j(pk) if ai,j = T

Table 1
Table of symbols

Symbol Description
pk k-th processor core
 hardware accelerator
�i i-th task
Γk tasks assigned to pk
Ti i-th task period
Di i-th task deadline
Ri WCRT bound of �i
�i,j j-th segment of �i
�i set of �i’s segments
�i,j implementation type of �i,j
ai,j equal to T iff �i,j executes on 
�Ai set of accelerated segments
�Hi segments that may be accelerated
Oi,j(pk) WCET of the offloading phase of �i,j
Ei,j(pk) WCET of the processing phase of �i,j
Fi,j(pk) WCET of the finalization phase of �i,j
Ci,j(pk, ai,j) WCET of �i,j on a core pk
!x x-th chain
Ω set of all chains

and the WCET of the whole task �i, running on a core pk,is hereafter referred to in compact notation as Ci, defined as
follows:

Ci =
∑

�i,j∈�i

Ci,j(pk, ai,j).

Each task �i is also characterized by a worst-case responsetime (WCRT), which is the longest time span elapsed between
the release and the completion of any of its jobs. Usually,
the exact WCRT is difficult to derive, but an upper-bound Rican be found with a suitable response-time analysis. Then, if
Ri ≤ Di for each task �i ∈ Γ, the system is said to be schedu-
lable. Methods to bound the WCRT under the configuration
proposed in this paper are reported in Section 4.
3.4. Task Chains

As discussed in Section 2, tasks may have functional de-
pendencies, e.g., producer-consumer relationships. This is
modeled by denoting a sequence of communicating tasks
with a processing chain !x, where !x represents an ordered
list of tasks in a two-by-two producer-consumer relationship,
i.e., !x = (�x1 , �x2 ,…). As shown in Figure 2, each task
may belong to multiple chains, thus forming a graph of de-
pendencies. The set of all the chains is denoted as Ω. In this
paper, task chains are assumed to be time-triggered, i.e., each
task �i ∈ !x in the chain is periodically released accordingto its period Ti.In the next section, we discuss how to compute the end-to-
end latency of such chains, and we introduce a response-time
analysis for the tasks running on both the CPUs and the
accelerator.

4. End-to-End Latency Analysis
This section shows how to bound the end-to-end latency

of task chains running on top of a heterogeneous platform,
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where each task is statically mapped in one of the CPU cores,
but some of its computation can be offloaded to a hardware
accelerator multiple times during execution.

We recall from prior work [27] that the end-to-end latency
Lx of a (time-triggered) processing chain !x is bounded by:

Lx =
∑

�i∈!x

(Ri + Ti) − Tfirst, (1)

considering that the external event triggering the chain arrives
synchronously with the release of the first task �first of thechain. To apply Equation (1), the worst-case response-time
Ri of each task in the chain needs to be bounded. Next, weshow how to leverage existing results on self -suspending
tasks theory [25] to analyze the behavior of a task performing
acceleration on a core pk ∈  .
4.1. Self-Suspending Tasks

To enable the presentation of the adopted analysis tech-
niques, the segmented self-suspending task model is here
briefly introduced.

A segmented self-suspending task – hereafter denoted
with the symbol �ssi to better differentiate from the task model
introduced in Section 3 – is characterized by an ordered
sequence of NS

i regions (li,1,… , li,j ,… , li,NS
i
), represent-

ing alternating code executions and self-suspensions. Here
we intentionally use the new concept of regions instead of
segments, since they serve a different purpose, and will be
used later to map the original task model of the paper to
the current self-suspended tasks. Both execution and sus-
pension regions are characterized by a bounded worst-case
duration. If li,j is an execution region, its WCET is denoted
by Ci,j ; otherwise, if li,j is a suspension region, its durationis bounded by Si,j . Overall, the duration bounds of exe-
cution and suspension regions is represented by the tuple
⟨Ci,1, Si,1,… , Si,NS

i −1
, Ci,NS

i
⟩. Analogously to Section 3,

a self-suspending task �ssi is periodically released with pe-
riod Ti. Furthermore, each of them is characterized by a
relative deadline Di ≤ Ti and fixed priority �i. Once a self-suspending task is released, the first execution region is also
released. If the (j−1)-th execution region of �ssi completes at
time t, the (j+1)-th execution region is released no later than
time t + Si,j . It is worth noting that a task �ssi may have no
suspension regions but still be modeled as a self-suspending
task: in that case, it will only consist of one execution region
li,1 with execution time Ci,1.
4.1.1. Mapping Accelerations to Self-Suspensions

Γssk indicates the set of self-suspending tasks running on
core pk. A task �i ∈ Γk making use of hardware acceleration
can be analyzed as a corresponding self-suspending task �ssi ∈
Γssk by establishing the following mapping.

Given an arbitrary task �i ∈ Γk, each non-accelerated
segment �i,j (i.e., with ai,j = F) is firstly mapped to an ex-
ecution region of �ssi ∈ Γssk with WCET equal to Ei,j(pk).Conversely, an accelerated segment �i,j (ai,j = T) is mapped
as follows:

𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒

Execution model of this paper

Self-suspending task model

𝑬𝟏,𝟏( 𝒑𝒌) 𝑬𝟏,𝟐( 𝒑𝒌) 𝑬𝟏,𝟑(𝑯)𝑶𝟏,𝟑( 𝒑𝒌) 𝑭𝟏,𝟑( 𝒑𝒌)

𝒑𝒌 𝒑𝒌 𝒑𝒌 𝒑𝒌𝐻

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑪𝟏,𝟏 = 𝑬𝟏,𝟏( 𝒑𝒌) + 𝑬𝟏,𝟐( 𝒑𝒌) + 𝑶𝟏,𝟑( 𝒑𝒌) 𝑪𝟏,𝟐 = 𝑭𝟏,𝟑( 𝒑𝒌)𝑺𝟏,𝟏 = 𝑾𝑪𝑹𝑻 𝒐𝒇 𝝆𝟏,𝟑 𝒐𝒏 𝑯

𝝆𝟏,𝟏 𝝆𝟏,𝟐 𝝆𝟏,𝟑

Figure 4: Example mapping of the model proposed in this
paper to the self-suspending task model for analysis purpose.

1. the offloading phase of �i,j is mapped to an execution
region of �ssi ∈ Γssk with WCET equal to Oi,j(pk);

2. the processing phase is mapped to a suspension region
of �ssi ∈ Γssk ;

3. the finalization phase is mapped to an execution region
of �ssi ∈ Γssk with WCET equal to Fi,j(pk).

Finally, consecutive execution regions (i.e., not separated by
a suspension region) are merged into a single region, and their
WCETs are summed (as they all sequentially execute on the
same core without suspensions). We denote by (�i,j) = li,xthe suspension region that corresponds to segment �i,j , if any.While the WCET of each execution segment of �ssi is
thus known from the task parameters of �i, the duration of
each suspension region depends on the response time of the
corresponding task executing on the hardware accelerator,
considering that other segments may be contending the same
computational resource. Consequently, bounding the maxi-
mum duration of a self-suspension regions involves bounding
the response-time of each accelerated segment in the hard-
ware accelerator. Clearly, this requires knowing the schedul-
ing policy adopted on the accelerator.

Figure 4 shows an example of mapping between the
model proposed in this paper and the self-suspending task
model. Task �1 in the example is composed of three seg-
ments, �1,1, �1,2, and �1,3. Only the third one is acceler-
ated. Hence, the corresponding self-suspending task �ss1 run-
ning on pk is composed of an execution region with WCET
Ci,1 = E1,1(pk) + E1,2(pk) + O1,3(pk), a suspension region
with length bounded by Si,1, and an execution region with
WCET F1,3(pk). The parameter Si,1 is unknown beforehand
and needs to be bounded by analyzing the worst-case response
time of the accelerated segment running on .

Before proceeding with the details of the accelerator
scheduling, we discuss the response-time analysis for self-
suspending tasks.
4.2. Response-Time Analysis with Self Suspensions

Several analysis techniques for self-suspending tasks are
available in the literature (please refer to the work by Chen et
al. [25] for a detailed review). Next, we explore a method for
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analyzing a self-suspending task which is particularly suited
to be applied to our optimal mapping problem while still
providing good schedulability performance.

In the following paragraph the analysis is performed con-
sidering a task set of self-suspending tasks Γss obtained using
the mapping of Section 4.1.1 from the task set under analysis.
4.2.1. Jitter-based Analysis

A quite popular analysis technique for self-suspending
tasks considers the timing effects of suspensions of interfer-
ing tasks as release jitter, while the suspension of the task
under analysis is modeled as an inflation of its execution
time [25]. Following this model, the response time Ri ofa self-suspending task �ssi running on core pk can be upper
bounded by the least positive solution of the following recur-
sive equation [25]:

Ri = Ci + Si +
∑

�ssℎ ∈ℎpk(�
ss
i )

⌈Ri + Jℎ
Tℎ

⌉

Cℎ, (2)

where Ci =
∑NS

i
j=1 Ci,j and Si =

∑NS
i −1

j=1 Si,j , while ℎpk(�ssi )
is the set of tasks with priority higher than �ssi allocated to pk,and the value Jℎ is an upper bound of the jitter induced by
the overall self-suspension regions (if any) of �ssℎ . The value
Jℎ = Rℎ − Cℎ is a valid bound on the jitter [53]. If the task
�ssℎ has no suspension region, then Jℎ = 0.As previously discussed, when adopting synchronous
offloading, the execution region of each accelerated segment
of a task �i can be mapped to a suspension region. Thus the
task model presented in this paper can be mapped to a self-
suspending task, and Equation (2) can be used to compute an
upper bound of the worst-case response time.
4.2.2. Linearizing the Jitter-based Analysis

One of the advantages of the analysis technique presented
above is its fitness in being linearized to be encoded in a
mixed-integer linear programming (MILP) formulation.

To better understand the following steps, we first recall
that a sufficient schedulability test for any task �i scheduledwith a fixed-priority algorithm can be obtained by checking
if there exists a value in [0, Di] that satisfies the followinginequality [43]:

∃t ∈ [0, Di] ∶ Wi(t) ≤ t, (3)
where Wi(t) is a function bounding the overall processing
time required by �i and all other tasks running in the same core
that can delay �i in any time window of length t. Intuitively,
the result follows because, if Equation (3) holds, then the
processing time provided by the core (i.e., t) is enough to
satisfy the demand ofWi(t) time units. For the case of self-
suspending tasks, considering �ssi as the task under analysis,
the processor demand is expressed as (see Equation (2)):

Wi(t) = Ci + Si +
∑

�ssℎ ∈ℎpk(�
ss
i )

⌈ t + Jℎ
Tℎ

⌉

Cℎ, (4)

with Jℎ = Rℎ − Cℎ if �ssℎ has at least one suspension region,
and Jℎ = 0 otherwise.Pazzaglia et al. [59] showed that a very accurate (less
than 2% pessimism), but sufficient schedulability test can
be obtained for a wide range of task models by just check-
ing the inequality of Equation (3) in a limited set of points
t ∈ [0, Di]. This result is particularly helpful when the test
must be encoded in an MILP formulation, as it helps in dras-
tically reducing the number of optimization variables and
constraints and hence the time required to solve the optimiza-
tion problem.

In the present work, the approach in [59] is leveraged to
encode the optimization problem aimed at finding solutions
for the task-to-core and priority assignment, which optimizes
the end-to-end latency of the processing chains for applica-
tions running on a heterogeneous system. In particular, we
propose an extension of the method used in [59] to handle
the case of self-suspending tasks, on a per-core level.

The method in [59] builds upon an observation first made
by Park and Park [57] according to which effective schedu-
lability tests can be obtained by just checking the points in
time at which the last activations of tasks occur in the worst-
case scheduling pattern of the task under analysis. Under
the jitter-based modeling of self-suspending tasks, the worst-
case response time bound of Equation (2) is obtained under
a release pattern defined as follows: (i) �ssi is released at
time t = 0 (without loss of generality) with no jitter and
experiences a worst-case suspension of Si time units, (ii) all
high-priority are ready to execute at t = 0 after experiencing
maximum jitter; and (iii) all successive instances are released
with zero jitter [25]. We hereafter refer to this release pattern
with the symbol Λ, which is illustrated in Figure 5.

The following theorem provides the schedulability points
of interest (following themethod of [59]) for a self-suspending
task �ssi , leveraging the release pattern Λ.
Theorem 1. Consider a task �ssi ∈ Γssk under analysis and
assume that �ssi and all tasks in ℎpk(�ssi ) are released accord-
ing to Λ. A higher priority task �ssℎ ∈ ℎpk(�ssi ) has more
than one activation in [0, Di] if Tℎ − Jℎ < Di and its last
activation in the same interval occurs at time

Vi,ℎ =
⌊

Di + Jℎ
Tℎ

⌋

⋅ Tℎ − Jℎ. (5)

Proof.
By definition of Λ, the first periodic instance of each task �ssℎstarts at time −Jℎ, as it is subject to maximum release jitter
Jℎ and it is ready to execute at time t = 0. Then, the second
activation of each task �ssℎ occurs at time Tℎ − Jℎ. Hence,
�ssℎ has more than one activation in [0, Di] if Tℎ − Jℎ < Di.If this latter condition holds, the length of the interval in
which the periodic instances of �ssℎ overlap with the schedul-
ing window under analysis [0, Di] is Di + Jℎ. Since thereare ⌊(Di + Jℎ)∕Tℎ⌋ activations of �ℎ that are fully-containedin this interval, the last one starts ⌊(Di + Jℎ)∕Tℎ⌋ Tℎ time
units after the first one, which occurs at time −Jℎ. Hence
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Figure 5: Example of release pattern Λ with 4 tasks. The red
arrows represent the last activation of the corresponding tasks
in the interval [0, D4] (highlighted in light blue).

Equation (5) and the theorem follows. 2
Figure 5 shows an example where the last activation in-

stants computed as in Theorem 1 are highlighted in red.
Let now i be the set of initial release jitters Jℎ of eachtask �ssℎ ∈ ℎpk(�ssi ) in Theorem 1, i.e.,

i =
⋃

�ssℎ ∈ℎpk(�
ss
i )
Jℎ. (6)

The set of checkpoints i(i) for analyzing �ssi is then
obtained by the union of the points of Equation (5) computed
for all the interfering tasks with their corresponding jitter in
i, plus the deadline of the task �ssi , i.e.,

i(i) =
{

⋃

�ssℎ ∈ℎp
∗
k(�

ss
i )
Vi,ℎ

}

∪
{

Di
}

, (7)

where ℎp∗k(i) = {�ssℎ ∈ ℎpk(�ssi ) ∶ Tℎ − Jℎ < Di}. By con-
struction, the set i(i) contains at least one point. Hereafter,we refer to an arbitrary check-point in i(i)with the variable
�i,g ∈ i(i).By putting together Equation (2) and the set of check-
points given by Equation (7), the resulting schedulability test
consists in verifying the following condition for each task
�ssi ∈ Γssk :

∃�i,g ∈ i(i) |Ci+Si+
∑

�ssℎ ∈ℎpk(�
ss
i )

⌈�i,g + Jℎ
Tℎ

⌉

Cℎ ≤ �i,g .

(8)
This formulation requires the knowledge of the set of jitter

bounds i of each interfering task. In this work, we use Jℎ =
Dℎ − Cℎ as a safe bound, which can be easily encoded in an
MILP formulation. This bound follows by noting that, since
Jℎ = Rℎ−Cℎ is a valid bound [53], then under the assumption
thatDℎ ≥ Rℎ, also Jℎ = Dℎ−Cℎ holds. Jℎ = Rℎ−Cℎ couldprovide, in principle, a less pessimistic solution. However,
this choice adds a circular dependency in the response time
of the target task �ssi with the response time Rℎ of the higherpriority tasks �ssℎ ∈ ℎpk(�ssi ). This dependency can be brokenby introducing another set of variables (e.g., by bounding

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑾𝑪𝑬𝑻 𝒐𝒇 𝝆𝟏,𝟏 𝒐𝒏 𝑯

Figure 6: “Mirrored” version of self-suspending task of Figure 4,
as it is perceived from the perspective of the hardware acceler-
ator.

Rℎ with a suitable checkpoint of ℎ), which has factorial
complexity with respect to the number of tasks, and quickly
makes the optimization impractical. Again, note that the
results presented here (which adopt the self-suspending task
model) can be directly applied to the task model of this paper
by leveraging the mapping of Section 4.1.1.
4.3. Response-Time Analysis for Accelerators

As previously discussed, the length of each suspension
region of a task is bounded by the maximum response time of
the corresponding activity executed by the accelerator. How-
ever, the scheduling policies used in hardware accelerators
are often unknown: for example, internal details of the popu-
lar NVIDIA GPUs are not disclosed. Therefore, in this paper,
we consider two predictable scheduling policies: round-robin
(RR) and non-preemptive fixed-priority (NP-FP). Such poli-
cies can be either directly adopted by hardware accelerators,
or externally enforced by application-level schedulers running
on the processor cores [9, 31] The latter can be implemented
by treating the accelerator as a shared resource, thus main-
taining a queue of accelerated activities (on the processing
cores) and providing one activity at a time to the accelerator.

Under RR scheduling, each task executes up to one ac-
celerated execution phase in a cyclic fashion. Conversely,
under NP-FP, accelerated execution phases are executed to
completion and scheduled according to the priorities of the
corresponding tasks. These two policies are deemed suitable
for hardware accelerators, because they allow for predictable
scheduling and execution to completion (i.e., without pre-
emptions), thus favoring cache coherence, and do not require
to save and restore the context to implement preemption.

Furthermore, round-robin and NP-FP also have different
interesting features. The first one ensures a fair and starvation-
free access to the accelerator. In contrast, the second one
guarantees shorter delays to high-priority tasks, thus being
more suitable for latency-sensitive tasks.

By supporting multiple scheduling policies for the hard-
ware accelerator we highlight the generality of our approach,
which can also be easily extended to other scheduling policies
to serve specific purposes.
Deriving the WCRT bounds. To derive the WCRT bounds,
the execution behavior of the segments running on the hard-
ware accelerator may be modeled as an equivalent, but “mir-
rored”, self-suspending task (shown in Figure 6), where ex-
ecution regions runs on the accelerator and suspensions re-
gions correspond to phases running on a processor core [30].
However, an analysis exploiting thismodeling approachwould
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require knowing the suspension time (which in this case
would occur when the task runs on the cores), as in Equa-
tion (2), thus creating a cyclic dependency.

To break the cycle, we compute individual upper-bounds
on the suspension time of each execution phase running on the
accelerator. In this way, the segment under consideration can
be analyzed as a normal periodic task without self-suspension
that is subject to interference due to self-suspending tasks,
hence eliminating the dependency on the suspension time
when deriving its WCRT bound.
4.3.1. Round-Robin Scheduling

First, we consider the case in which the hardware accel-
erator implements a round-robin scheduling policy.

Lemma 1 proposes a bound on the suspension time of a
single accelerated segment under round-robin scheduling.
Lemma 1. Consider a segment �i,j ∈ �Ai of a task �i ∈ Γ,
and let li,x = (�i,j) be the corresponding suspension region
of the matching task �ssi . Then, under round-robin scheduling,
the duration of li,x is bounded by:

Si,x = Ei,j() +
∑

�ℎ,u∈(�i)
Eℎ,u(), (9)

where (�i) is the set containing, for each task �ℎ ∈ Γ ⧵ �i,
the accelerated segment �ℎ,u ∈ �Aℎ with longest execution
phase among all segments in �Aℎ (if �Aℎ is not empty).

Proof.
Due to the round-robin scheduling policy, each accelerated
segment can be delayed at most once for each other segment
of each other task �ℎ ∈ Γ ⧵ �i. Due to the synchronous
offloading mechanism, each task �ℎ can have at most one
pending acceleration at a time. Consequently, each other task
�ℎ ∈ Γ ⧵ �i can delay �i,j with at most one of its accelerated
segment. The lemma follows by noting that, for each �ℎ ∈
Γ⧵ �i, (�i) contains the interfering segment with the longest
execution phase. 2

Given the bound on the suspension time for an indi-
vidual accelerated region, an overall bound for the suspen-
sion time of self-suspending task �ssi can be computed as
Si =

∑

�i,j∈�Ai
Si,x, where li,x = (�i,j).

This bound can be further improved by considering the ra-
tio of periods among tasks. The improvement is not discussed
here for the sake of simplicity.
4.3.2. Fixed-Priority Non-Preemptive Scheduling

When the hardware accelerator provides an NP-FP sched-
uler, the execution phase of each accelerated segment runs on
the accelerator with the same priority of the corresponding
task.

Under this setting, the suspension time due to an arbitrary
accelerated segment �i,j ∈ �Aℎ is bounded by Lemma 2.

Lemma 2. Consider a segment �i,j ∈ �Ai of a task �i ∈ Γ,
and let li,x = (�i,j) be the corresponding suspension region
of the matching task �ssi . Then, under non-preemptive fixed-
priority scheduling, the duration of li,x is bounded by Si,x =
Φi,x + Ei,j(), where Φi,x is the last positive solution of the
following equation:

Φi,x = Bi +
∑

�ℎ∈ℎp(�i)

⌈Φi,x +Dℎ − Gℎ
Tℎ

⌉

Gℎ (10)

where Bi = max
{

El,v() | �l ∈ lp(�i) ∧ �l,v ∈ �Al
}

, Gℎ =
∑

�ℎ,u∈�Aℎ
Eℎ,u(), and ∀�ℎ ∈ ℎp(�i), Rℎ ≤ Dℎ holds.

Proof.
Since for each task �i at most one accelerated segment �i,jcan be pending at a time on, as previously discussed, the
duration of each suspension region li,x = (�i,j) can be
analyzed by bounding the response-time of a normal peri-
odic task without self-suspension, with a WCET equal to
Ei,j(), which is subject to interference due to “mirrored"
self-suspending tasks. Such mirrored self-suspending tasks
have execution regions running in the accelerator, and suspen-
sion regions that corresponds to executions on the processor
cores. Interference due to high-priority tasks can be then
accounted for in the analysis as for periodic tasks subject to a
release jitter [25]. For each high-priority task, Equation (10)
considers the largest possible jitter (from the perspective of
the execution region of �i,j running in the accelerator), andthe overall interfering WCET Gℎ of each interfering task inthe accelerator. The lemma follows as a simplified instance
of the jitter-based analysis for self-suspending task in [18]
where the task under analysis has a single segment (which
corresponds to the accelerated execution phase of interest),
and therefore does not self-suspend. 2

As for preemptive fixed-priority scheduling, the bound
implied by Lemma 2 can be rewritten as follows. The du-
ration of li,x is bounded by any value t + Ei,j(), where
t ∈ [0, Di − Ei,j()] (with li,x = (�i,j)) satisfies the fol-lowing inequality:

Bi +
∑

�ℎ∈ℎp(�i)

⌈

t + JAℎ
Tℎ

⌉

Gℎ ≤ t, (11)

where JAℎ = Dℎ − Gℎ, and Gℎ is defined as in Lemma 2.
Note that Equation (11) is similar to the ones for analyzing

self-suspending provided in Section 4.2.2. The scheduling
points derived in Theorem 1 and later used in Equation (8)
can hence be extended to be applicable to Equation (11),
provided that a suitable set  A

i,x =
⋃

�ssℎ ∈ℎpk(�
ss
i )
JAℎ of jitters

for the acceleration request corresponding to each segment
li,x is computed. Then, the set of check-points is defined
as i( A

i ) =
{

⋃

�ssℎ ∈ℎp
∗
k(�

ss
i )
V A
i,ℎ

}

∪
{

Di
}, where V A

i,ℎ is
defined as in Theorem 1 by replacing Jℎ with JAℎ .
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In this way, the duration of li,x can be bounded by restrict-ing the search of a value t that satisfies Equation (11) in the
finite set i( A

i ).

5. Optimization Problem
This section presents a mixed-integer linear programming

(MILP) formulation of the optimization problem. The main
objectives of the proposed formulation are the following:

• minimize either the end-to-end latency of the process-
ing chains or the task WCRT bounds, according to the
proposed objective function(s);

• select the most convenient task-to-core placement, ac-
counting for both the change in the WCETs depending
on the core type and the interference due to other tasks
assigned to the same core;

• determine whether to accelerate tasks to find the most
convenient trade-off between shorterWCETs occurring
when a task is accelerated and longer delays in the
accelerator when many activities are offloaded;

• optimize the priority assignment; and
• ensure schedulability, i.e., guarantee that each task

always completes within its deadline.
Section 5.1 introduces the main variables of the problem,

which do not depend on the scheduling policy adopted on the
accelerator. Section 5.2 presents the main constraints regard-
ing task-to-core mapping, priority and accelerated segments.
Next, Section 5.3 lists the constraints to bound the WCETs
of tasks in the processors, while Section 5.4 presents the con-
straints to bound theWCRTs of the tasks. Sections 5.5 and 5.6
present the set of variables and the constraints at the accelera-
tor level for RR and NP-FP scheduling policies, respectively.
Only one of them needs to be used in an optimization problem
instance, depending on the scheduling policy adopted for the
accelerator. This gives rise to a modular approach that may
be extended to other scheduling policies by just introducing
a new set of variables and constraints, while leaving most
of the optimization problem unaltered. Finally, Section 5.7
presents different objective functions that can be used in the
optimization problem.

In the MILP constraints we often leverage the so-called
big-M formulation: to this end, we define the symbolM , a
very large positive constant (representing infinity).
5.1. Main MILP Variables

We start presenting the main variables needed to describe
the problem. Other auxiliary and additional variables are
introduced when required.
5.1.1. Boolean Variables

• Task assignment in core: For each task �i ∈ Γ, and for
each core pk ∈  , TCi,k ∈ {0, 1} is a binary variableset to 1 if �i is allocated to pk; 0 otherwise.

• Tasks in same core: For each task pair �i, �s ∈ Γ, with
i ≠ s, SCi,s ∈ {0, 1} is set to 1 if �i is allocated on the
same core as �s; 0 otherwise.

• Task priority assignment: For each task �i ∈ Γ, for
each q ∈ ℕ, 1 ≤ q ≤ |Γ|, TPi,q ∈ {0, 1} is equal to 1if �i is assigned priority q; 0 otherwise.

• Priority relationship between tasks: For each task pair
�i, �s ∈ Γ, with i ≠ s, HPi,s ∈ {0, 1} is equal to 1 iftask �i is assigned a higher priority than �s; 0 otherwise.

• Accelerated segment: For each task �i ∈ Γ, and for
each segment �i,j ∈ �i, ASi,j ∈ {0, 1} is set to 1 if andonly if �i,j is offloaded to the accelerator; 0 otherwise.

• Selector variable for candidate WCRT of a task: For
each �i ∈ Γ, for each �i,g ∈ i, SVi,g ∈ {0, 1} is a
binary variable set to 1 if �i,g is the candidate WCRT
bound.

5.1.2. Real and Integer Variables
• Priority index of a task: For each task �i ∈ Γ, PRi ∈

ℕ>0 encodes the absolute priority of �i.
• WCETs of tasks and segments: For each task �i ∈
Γ, and for each segment �i,j ∈ �i, ETi ∈ ℝ≥0 and
ESi,j ∈ ℝ≥0 are the WCET of �i and �i,j , respectively,depending on the core where it is allocated and on
whether it is accelerated or not.

• WCET of an interfering task: For each task pair �i, �s ∈
Γ, with i ≠ s, EIi,s ∈ ℝ≥0 is equal to the WCET of
�i (on the core where it is allocated) if it can interfere
with �s; 0 otherwise.

• Response time candidate of a task: For each �i ∈ Γ,for each �i,g ∈ i (see Equation (7)), RTCi,g ∈ ℝ≥0 is
a candidate WCRT bound for �i.

• Response time of a task: For each �i ∈ Γ, RTi ∈ ℝ≥0

is the WCRT bound of �i.
5.1.3. Common Variables for Hardware Acceleration

• Suspension time of a segment: For each task �i ∈ Γ,for each segment �i,j ∈ �i, STSi,j ∈ ℝ≥0 bounds the
time spent by �i,j on the hardware accelerator.

• Suspension time of a task: For each task �i ∈ Γ,
STi ∈ ℝ≥0 bounds the overall time spent by �i onthe hardware accelerator.

5.2. Basic Mapping Constraints
First, we enforce each task to be assigned to only one

processor, through the variable TCi,k.
Constraint 1 (Task-to-core mapping). For each �i ∈ Γ,

∑

pk∈
TCi,k = 1.
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Proof.
By definition, TCi,k is set to 1 if and only if �i is assigned to
core pk. The constraint follows noting that �i is allocated toonly one processor only if this constraint is imposed. 2

It is convenient to introduce some auxiliary variables to
cope with the task-to-processor assignment:

• Tasks in same core pk: For each task pair �i, �s ∈ Γ,with i ≠ s, for each core pk ∈  , SCCi,s,k ∈ {0, 1}
is set to 1 if �i and �s are both allocated onto pk; 0otherwise.

Constraint 2 enforces the definition of variables SCCi,s,kand SCi,s, which denote if two tasks are in the same processor.
Constraint 2 (Tasks in the same core). For each task pair
�i, �s ∈ Γ, with i ≠ s, and for each core pk ∈  ,

SCCi,s,k ≥ 1 − (2 − TCi,k − TCs,k),

SCCi,s,k ≤ TCi,k, SCCi,s,k ≤ TCs,k.

Then, for each pair of tasks �i ∈ Γ, �s ∈ Γ ⧵ �i:

SCi,s =
∑

pk∈
SCCi,s,k.

Proof.
By definition, SCCi,s,k ∈ {0, 1} is set to 1 if and only if
task �i is allocated on the same core pk ∈  of task �s.If TCi,k = TCs,k = 1, by substituting in the constraint
SCCi,s,k ≥ 1 ∧ SCCi,s,k ≤ 1 ⇒ SCCi,s,k = 1 is enforced.
If TCi,k = TCs,k = 0 or TCi,k ≠ TCs,k, by substituting in
the constraint we get SCCi,s,k ≤ 0 for at least one of the
last two inequalities, while the first inequality enforces either
SCCi,s,k ≥ −1 or SCCi,s,k ≥ 0. This implies SCCi,s,k = 0,proving the first set of constraints. Finally, since due to Con-
straint 1 each task is assigned to a core,∑pk∈ SCCi,s,k canbe either zero or one, and the last equality enforces the defi-
nition of variable SCi,s. 2

Constraint 3 enforces the uniqueness of the priority as-
signment through the boolean variable TPi,p.
Constraint 3 (Uniqueness of the priority). For each task
�i ∈ Γ,

∑

p∈{1,…,|Γ|}
TPi,p = 1,

and for each priority p ∈ {1,… , |Γ|},
∑

�i∈Γ
TPi,p = 1

Proof.
By definition, TPi,p is set to 1 if and only if �i is assigned topriority p. The constraint follows noting that the uniqueness
of the priority holds only if (i) each task �i ∈ Γ is assigned to

exactly one priority p (p ∈ {1,… , |Γ|), and (ii) each priority
p (p ∈ {1,… , |Γ|) is assigned to exactly one task �i ∈ Γ. 2

Constraint 4 specifies the value of the integer variable
PRi, encoding the absolute priority of �i.
Constraint 4 (Priority index of a task). For each task �i ∈
Γ,

PRi =
∑

1≤p≤|Γ|
p ⋅ TPi,p.

Proof.
By definition, PRi is an integer value encoding the absolutepriority of a corresponding task �i ∈ Γ. By Constraint 3,
TPi,p is set to 1 if �i is assigned to priority p, and there is
only one task with such a priority. The constraint follows
by summing up the priority index multiplied by the boolean
variable TPi,p, with p ∈ {1,… , |Γ|}. 2

Next, we limit the possible values of HPi,s. This is donewith the combination of two constraints. With Constraint 5
we enforce that, for each pair of tasks �i, �s ∈ Γ, either �i hashigher priority than �s or vice-versa.
Constraint 5 (Priority relationship between tasks). For
each pair of tasks �i ∈ Γ, �s ∈ Γ ⧵ �i,

HPi,s + HPs,i = 1.

Proof.
By definition, HPi,s ∈ {0, 1} is equal to 1 if task �i is assignedto a higher priority than �s ∈ Γ ⧵ �i. The constraint enforcesthat either �i ∈ Γ has higher priority than �s, or vice versa,by imposing that only one between HPi,s and HPs,i can be
set to one. 2

Secondly, Constraint 6 enforces the relationship between
absolute priorities, encoded by variables PRi, and relative
priorities, encoded by variables HPi,s.
Constraint 6 (Relative and absolute priorities). For each
pair of tasks �i ∈ Γ, �s ∈ Γ ⧵ �i,

−HPi,s ⋅M ≤ PRs − PRi ≤ (1 − HPi,s) ⋅M.

Proof.

If HPi,s = 0, then we have 0 ≤ PRs − PRi ≤M . Hence
0 ≤ PRs−PRi, and PRi < PRs because Constraint 3 enforcesthe uniqueness of the priority assignment.

If HPi,s = 1, then we have −M ≤ PRs−PRi ≤ 0. HencePRs − PRi ≤ 0, and PRs < PRi. The constraint follows.
2

Finally, Constraint 7 specifies that, for each task �i ∈ Γand for each segment �i,j the processing phase can be exe-
cuted on a CPU only if �i,j ≠ HWA, and a segment is executed
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on the accelerator if �i,j = HWA, constraining the possible
values of ASi,j .
Constraint 7 (HW Acceleration). For each task �i ∈ Γ, for
each segment �i,j ∈ �i, if �i,j = CPU, then

ASi,j = 0.

If �i,j = HWA then
ASi,j = 1.

Proof.
By definition, ASi,j ∈ {0, 1} is set to 1 if and only if �j,i isoffloaded to the accelerator, and it is set to 0 otherwise. If
�i,j = CPU, then no HW-accelerated implementation of �i,jis available: hence, ASi,j = 0 is enforced. Conversely, if
�i,j = HWA, only an HW-accelerated implementation of �j,i isavailable, and hence ASi,j = 1 is imposed. The constraint
follows. 2

5.3. Bounding WCETs and CPU Interference
Next, we present a set of constraints to characterize the

WCET of the segments and tasks. The following constraints
will act only as safe lower bounds for the variables related to
WCETs. This approach limits the complexity of the MILP
formulation, and is justified by the fact that, whenever the
objective function is a minimization involving the response
time, the solver chooses the smallest possible value allowed
by the constraints, for all the variables that contribute to the
response time. Additionally, the WCET values chosen by the
solver will also be limited by the necessity of guaranteeing
the schedulability of the system (Constraint 12).

Constraint 8 imposes the value of ESi,j to be no smaller
than the WCET of the corresponding segment �i,j on the core
pk where the MILP solver allocated �i, which depends on
whether �i,j is accelerated or not.
Constraint 8 (WCET of a segment). For each task �i ∈ Γ,
for each segment �i,j ∈ �i,

ESi,j ≥
∑

pk∈
Ei,j(pk) ⋅ TCi,k − ASi,j ⋅M

ESi,j ≥
∑

pk∈
wi,j(pk) ⋅ TCi,k − (1 − ASi,j) ⋅M,

where wi,j(pk) = Oi,j(pk) + Fi,j(pk).

Proof.
Recall that the variable ESi,j denotes the WCET of �i,j , de-pending on the core where it is allocated and on whether it is
accelerated or not. If �i,j is not accelerated, then ASi,j = 0,hence ESi,j ≥

∑

pk∈ Ei,j(pk) ⋅ TCi,k, while the second in-
equality does not have effect (i.e., sinceM is a large constant,
it is reduced to ESi,j ≥ −∞). By Constraint 1, TCi,k is equalto 1 only for the core pk where �i is allocated, hence the sum
∑

pk∈ Ei,j(pk) ⋅ TCi,k actually consists in only one term,

while the others are set to 0. Such a term is the WCET of
�i in the core where it is allocated, which consists of only
the processing phase, with WCET Ei,j(pk). On the other
hand, if �i,j is accelerated, ASi,j = 1, hence the first in-
equality has no effect, while the second becomes ESi,j ≥
∑

pk∈ wi,j(pk) ⋅ TCi,k. Since each term in the sum is mul-
tiplied by TCi,k as in the previous case, ESi,j is constrainedto be greater than or equal to the WCET of the offloading
and finalization phases of �i,j (i.e., wi,j(pk)), referred to thespecific core pk where the task �i is mapped. The constraint
follows. 2

Constraint 9 enforces the definition of the variables ETi.
Constraint 9 (WCET of a task). For each task �i ∈ Γ,

ETi ≥
∑

�i,j∈�i

ESi,j

Proof.
The constraint follows by noting that the overall WCET of
�i ∈ Γ is the sum of the individual WCETs of each segment
�i,j ∈ �i. 2

Constraint 10 copes with variable EIi,s, which bounds theinterference of one job of task �s on a job of �i. The valueof EIi,s is constrained to be greater than or equal to ETs, if
�s ∈ Γ ⧵ �i can interfere with �i ∈ Γ, zero otherwise.
Constraint 10 (CPU Interference). For each pair of tasks
�i ∈ Γ, �s ∈ Γ ⧵ �i,

EIi,s ≥ ETi −M ⋅ (2 − HPi,s − SCi,s)

Proof.
Under a partitioned fixed-priority scheme, a task �i may inter-
fere with another task �s if and only if: (i) it is allocated in thesame core, and (ii) it has higher priority than �s. Condition(i) is verified when SCi,s = 1 (Constraint 2), whereas condi-tion (ii) holds when HPi,s = 1 (Constraint 6). The constraintfollows by noting that EIi,s ≥ ETi is enforced if and only ifSCi,s = 1 and HPi,s = 1. Otherwise, the constraint has noeffect (EIi,s ≥ −∞). 2

5.4. Bounding WCRTs
As discussed in Section 4.2.2, the processor demand con-

straint that uses the set of checkpoints in Theorem 1 is a
suitable way to bound the WCRTs in a linear optimization
problem. This however requires the knowledge of the release
jitter for each interfering self-suspending task. The choice
of a jitter Jℎ = Dℎ − Cℎ for �ℎ is a safe bound for a self-
suspending task. However, such jitter still depends on the
WCET of the task. In particular, due to the heterogeneity
of the platform, the WCET depends on (i) the type of the
processor where it is allocated, and (ii) whether it is acceler-
ated. This way, it would be an explicit function of TCi,k and

Daniel Casini et al.: Preprint submitted to Elsevier Page 11 of 20



Optimized Partitioning and Priority Assignment of Real-Time Applications on Heterogeneous Platforms with Hardware Acceleration

ASi,j . As a consequence, we would be required to introduce
additional variables to compute the floor term of Equation (7)
and the ceiling term of Equation (8). Additionally, the ceil-
ing term of Equation (8) is multiplied by the WCET of each
interfering task, which is itself a variable (i.e., EIj,i), thusmaking the problem not linear.

To address this problem, we consider a more conserva-
tive (but linear) approach. Since the response-time bound is
monotonic non-decreasing with respect to the jitter bound,
which in turn is monotonic non-increasing with the WCET of
the interfering task, by increasing the jitter of the interfering
tasks we obtain a more conservative estimate of theWCRT of
the task under analysis. Hence, taking the minimum WCET
over all possible configurations of processor type and ac-
celeration state of each segment yields a safe bound on the
jitter. To this end, we introduce the constant term CMIN

i for a
task �i to denote the minimum WCET with which a task can
be characterized, among all possible configurations of cores
pk ∈  and all the possible combinations of accelerated (or
not) segments �i,j ∈ �i. Additionally, for each task �i ∈ Γ,since the priority level is a variable of the optimization prob-
lem, we do not know in advance which tasks will have higher
priority than �i, thus we consider the (eventual) checkpointassociated to each task in the set. Note that extending the
approach of Section 4.2.2 to all tasks in Γ (compared with
only the ones that have higher priority than �i) has the onlyeffect of possibly introducing additional checkpoints to the
schedulability test of �i, which the solver is required to check.By considering all tasks �s ∈ Γ ⧵ �i as potentially havinghigher priority than �i, the jitters used in Section 4.2.1 can
be refined as follows:

 i =
⋃

�s∈Γ⧵�i

{

Js
}

, (12)

with
Js =

{

Ds − CMIN
s if �Hs ≠ ∅

0 otherwise, (13)

which is used to build the set of checkpoints i( i) as:

i( i) =

{

⋃

�s∈Γ⧵�i

Vi,s

}

∪ {Di}, (14)

where Vi,s is defined as in Theorem 1.
Constraint 11 establishes a response-time bound for each

task �i ∈ Γ with the method presented in Section 4.2.2, and
considering the jitter set computed as in Equation (12).
Constraint 11 (WCRT bound candidate). For each task
�i ∈ Γ, and for each �i,g ∈ i( i) obtained with Equa-
tion (14) using the jitter set of Equation (12),

RTCi,g ≥ ETi + STi +
∑

�s∈Γ⧵�i

⌈�i,g + Js
Ts

⌉

EIs,i,

RTCi,g ≤ �i,g + (1 − SVi,g) ⋅M,

RTi ≥ RTCi,g − (1 − SVi,g) ⋅M.

Additionally, for each task �i ∈ Γ,
∑

�i,g∈i( i)

SVi,g = 1.

Proof.
For each �i ∈ Γ, there exists up to |i| candidate response-time bounds, represented with variables RTCi,g , where the
index g corresponds to the index of �i,g ∈ i( i).

For each �i,g ∈ i( i), the first inequality implements
the response-time bound of Equation (2) bounding the jitter
as Js = Ds − CMIN

s . The second inequality enforces that
the selected response-time bound must be valid according to
Equation (8). In all other cases, the inequality is disabled (i.e.,
RTCi,g ≤ ∞). The third inequality enforces that the response-
time bound is greater than or equal to the selected response-
time candidate: otherwise, it is disabled (i.e., RTCi,g ≥ −∞).
Finally, the fourth inequality enforces only one of the check-
points to be selected as the actual response-time bound. 2

Finally, Constraint 12 enforces RTi to be a valid response-time bound.
Constraint 12 (Schedulability). For each task �i ∈ Γ,

RTi ≤ Di.

Next, we show how to bound the suspension time spent
in the hardware accelerator. Clearly, this depends on the
specific scheduling policy implemented by the accelerator.
We present the cases in which such policies are round-robin
and non-preemptive fixed priority, as a set of constraints that
need to be added to the optimization problem only when
the scheduling policy is used. In this way, we highlight the
modular nature of our approach, which can easily be extended
to other scheduling policies by just implementing some new
constraints, while most of the optimization problem can be
left unaltered.
5.5. Worst-Case Suspension Time with RR

This section presents the constraints to bound the duration
of accelerated segment (and hence of the suspension time of
the task running on the core) under round-robin scheduling.

Before proceeding, it is necessary to introduce additional
variables to handle the RR scheduling.
5.5.1. Additional Variable for RR Scheduling

• Longest accelerated segment: For each task �i ∈ Γ,
LAi ∈ ℝ≥0 bounds the longest WCET of an acceler-
ated segment �i,j ∈ �Hi of task �i.

5.5.2. Constraints
First, Constraint 13 bounds the length of the longest accel-

erated segment of each task �i ∈ Γ, enforcing the definitionof LAi.
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Constraint 13 (Longest accelerated segment). For each task
�i ∈ Γ, and for each segment �i,j ∈ �Hi ,

LAi ≥ Ei,j() − (1 − ASi,j) ⋅M

Proof.
When a segment �i,j ∈ �Hi is accelerated, Ei,j() boundsits WCET. The constraint follows by noting that if �i,j isaccelerated, ASi,j = 1 and LAi ≥ Ei,j() is imposed; other-
wise, ASi,j = 0 and the constraint does not take effect (i.e.
LAi ≥ −∞). 2

Constraint 14 bounds the time spent on the hardware
accelerator by each segment �i,j ∈ �Hi .
Constraint 14 (Suspension time of a segment). For each
task �i ∈ Γ, and for each segment �i,j ∈ �Hi ,

STSi,j ≥ Ei,j() +
(

∑

�j∈Γ⧵�i

LAj

)

− (1 − ASi,j) ⋅M

Proof.
The constraint follows from Lemma 1. 2

Constraint 15 bounds the time spent on the hardware
accelerator by each task �i ∈ Γ.
Constraint 15 (Suspension time of a task). For each task
�i ∈ Γ such that �Hi ≠ ∅,

STi ≥
∑

�i,j∈�i

STSi,j

Proof.
The constraint follows by noting that the overall time spent
on the hardware accelerator by each task �i is bounded by
the time spent on the hardware accelerator by each segment
�i,j ∈ �i, encoded by variables STSi,j . 2

5.6. Worst-Case Suspension Time with NP-FP
This section presents the constraints to bound the time

globally spent on the hardware accelerator, and the overall
suspension-time experienced by the tasks running on the
cores under non-preemptive fixed priority scheduling.

Before proceeding, it is necessary to introduce additional
variables to handle the NP-FP scheduling.
5.6.1. Additional Variables for NP-FP Scheduling

• WCET of an interfering segment on: For each task
�i ∈ Γ, for each segment �i,j ∈ �Hi , for each task
�s ∈ Γ ⧵ �i, EHRi,j,s ∈ ℝ≥0 is equal to the WCET of
�i,j (on ) if �i can interfere with �s; it is 0 otherwise.

• WCET of an interfering task on : For each task pair
�i, �s ∈ Γ, with i ≠ s, EHi,s ∈ ℝ≥0 is equal to the

WCET of �i (on ) if it can interfere with �s; 0 other-wise.
• NP Blocking time of a task on: For each task �i ∈ Γ,BLi ∈ ℝ≥0 bounds the blocking due to lower-priority

tasks that any segment of �i can experience when ac-celerated on  due to non-preemptive scheduling.
• Suspension time candidate of a segment: For each
�i ∈ Γ, for each segment �i,j ∈ �Hi , for each �i,g ∈ i,
STCi,j,g ∈ ℝ≥0 is a candidate suspension time bound
for �i.

• Selector variable for candidate suspension time: For
each �i ∈ Γ, for each segment �i,j ∈ �Hi , for each
�i,g ∈ i, SSi,j,g ∈ {0, 1} is binary variable set to 1 if
�i,g is the candidate suspension time bound chosen by
the solver.

5.6.2. Constraints
As discussed in Section 4.3.2, the suspension time can be

bounded by leveraging Lemma 2 and Equation (11). Equa-
tion (11) requires bounding the blocking from lower-priority
tasks and the interference from high-priority tasks. Con-
straint 16 bounds the former, enforcing the definition of vari-
able BLi.
Constraint 16 (NP blocking time). For each task �i ∈ Γ
such that �Hi ≠ ∅, for each task �s ∈ Γ ⧵ �i, for each segment
�s,f ∈ �Hs ,

BLi ≥ Es,f () − (2 − ASs,f − HPi,s) ⋅M.

Proof.
The variables BLi bound the blocking time due to lower-
priority tasks that any segment of �i can experience when
accelerated on  due to non-preemptive scheduling. Follow-
ing Lemma 2, such blocking is bounded by

Bi = max
{

El,v() | �l ∈ lp(�i) ∧ �l,v ∈ �Al
}

.

The constraint is enforced by requiring BLi to be greater thanor equal to the WCET (on the accelerator) of all the segments
that (i) are accelerated (i.e., ASs,f = 1), and (ii) are parts ofa task �s with a lower priority than �i (i.e., HPi,s = 1). In all
the other cases, the constraint is disabled (BLi ≥ −∞). 2

Constraint 17 enforces the definition of the variables
EHi,s, which represent the WCET of �i on , if �i can inter-
fere with �s.
Constraint 17 (WCET of an interfering task on ). For
each task �i ∈ Γ, for each segment �i,j ∈ �Hi , for each task
�s ∈ Γ ⧵ �i such that �Hs ≠ ∅,

EHRi,j,s ≥ Ei,j() − (2 − ASi,j − HPi,s) ⋅M,

and for each �i ∈ Γ, �s ∈ Γ ⧵ �i,

EHi,s ≥
∑

�i,j∈�Hi

EHRi,j,s
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Proof.
The interfering WCET due to �i on a lower priority task �s isthe sum of the individual contributions due to all segments
�i,j ∈ �i. Each segment contributes to the interference if: (i)
�i,j is accelerated (ASi,j = 1), and (ii) �i has higher prioritythan �s (HPi,s = 1). The constraint follows. 2

Constraint 18 bounds the overall suspension time using
Equation (11). This constraint follows alike to Constraint 11,
but, in this case, we consider only those tasks that have at
least one segment that can be accelerated as potential interfer-
ing tasks. The jitter component of Equation (11) depends on
the WCET of the task on the accelerator where it runs. Since
the response-time bound is monotonic non-decreasing with
respect to the jitter bound, and it is monotonic non-increasing
with the WCET of the interfering task, we consider the mini-
mum WCET CMIN-HW

i with which a task �i can be charac-
terized on the accelerator when �Hi ≠ ∅, when at least one of
the segments in �Hi is accelerated. It is defined as

CMIN-HW
i =

{

min�i,j∈�Hi Ei,j() if �Wi = ∅
∑

�i,j∈�Wi
Ei,j() otherwise,

where �Wi ⊆ �Hi is the set of all segments of task �i that are
necessarily accelerated because they have only an implemen-
tation on  (i.e., �i,j = HWA). This minimum WCET is then
used to build the initial release jitters for such tasks �s with
�s ∈ Γ ⧵ �i, such that �Hs ≠ ∅, as follows:

Js = Ds − CMIN-HW
s . (15)

The corresponding checkpoint Vi,s can then be computed
again as in Theorem 1. For notation purposes we define the
set of jitters at the hardware accelerator, for the tasks that can
be accelerated, as


A
i =

⋃

�s∈Γ⧵�i | �Hs ≠∅

{

Ds − CMIN-HW
s

}

, (16)

and the corresponding set of checkpoints as i( A
i ).

Constraint 18 (Suspension bound candidate). For each
task �i ∈ Γ, for each segment �i,j ∈ �Hi , for each �i,g ∈

i(
A
i ), (see Eq. (11))

STCi,j,g ≥ BLi +
∑

�s∈Γ⧵�i
�Hs ≠∅

⌈�i,g + Js
Ts

⌉

⋅ EHs,i,

STCi,j,g ≤ �i,g + (1 − SSi,j,g) ⋅M,

STSi,j ≥ Ei,j() + STCi,j,g − (1 − SSi,j,g) ⋅M,

For each task �i ∈ Γ, for each segment �i,j ∈ �Hi
∑

�i,g∈i(
A
i )

SSi,j,g = ASi,j .

Proof.
This constraint follows similarly to Constraint 11. For each
�i ∈ Γ and for each segment �i,j ∈ �Hi , there are up to |i|candidate suspension-time bounds, represented with vari-
ables STCi,j,g with �i,g ∈ i(

A
i ). The fourth equality en-

forces only one of them to be selected as the actual suspension-
time bound if the segment is accelerated. For each �i,g ∈
i(

A
i ), the first inequality encodes Equation (11) bounding

the jitter as Js = Ds − CMIN-HW
s . The second inequality

enforces that the selected suspension-time bound must be
valid according to Equation (11) (see Section 4.3.2). In all
other cases, the inequality is disabled (i.e., STCi,j,g ≤ ∞).
The third inequality enforces that the suspension-time bound
is greater than or equal to the selected suspension-time can-
didate: otherwise, it is disabled (i.e., STCi,j,g ≥ −∞). 2

Finally, Constraint 19 must be enforced to bound the
overall time spent on the hardware accelerator by each task
�i ∈ Γ and therefore the overall suspension time.
Constraint 19 (Suspension time of a task). For each task
�i ∈ Γ, such that �Hi ≠ ∅,

STi ≥
∑

�i,j∈�Hi

STSi,j .

Conversely, for each task �i ∈ Γ, such that �Hi = ∅,

STi = 0

5.7. Objective Function
We design our optimization problem with four possible

(alternative) objective functions. Two of them are devised to
optimize the end-to-end latencies of individual chains, while
the others consider the ratio between WCRT bounds and
deadlines of individual tasks.

For those targeting end-to-end latencies, we introduce, for
each !x ∈ Ω, the variables Lx ∈ ℝ≥0 to encode the latency
of chain !x, in accordance with Equation (1).2

Min-Max Latency The first objective function encodes the
goal of minimizing the maximum latency of all chains !x ∈
Ω. It is defined as:

minimize LMAX, (17)
where LMAX ∈ ℝ≥0 is a real variable that encodes the

maximum latency of all chains !x ∈ Ω by enforcing the
constraint LMAX ≥ Lx, ∀!x ∈ Ω.
Min-Sum Latency The second objective function encodes
the goal of minimizing the sum of the latency due to all the
chains !x ∈ Ω. It is defined as:

minimize
∑

!x∈Ω
Lx (18)

2Enforcing Lx ≥
∑

�i∈!x (Ri + Ti) − Tfirst if sufficient because all
objective functions are minimizations.
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Table 2
Parameters and solutions of the optimization problem for the task set provided with the
challenge model. All times are in milliseconds.

A57 Denver GPU Min-Max Lat. RR Sol.
ID Name Ti (ms) CNA

i CA
i CNA

i CA
i Ci PRIO CPU ACC

1 Lidar Grabber 33 14,379 - 10,868 - - 8 5 NO
2 DASM 5 1,958 - 1,3 - - 5 1 NO
3 CAN Polling 10 0,632 - 0,6 - - 1 1 NO
4 EKF 15 5,011 - 4,430 - - 3 0 NO
5 Planner 12 13,939 - 12,437 - - 2 2 NO
6 SFM 33 31,055 8,320 27,812 6,711 7,900 4 3 NO
7 Localization 400 407,811 18,568 294,808 14,516 124,000 7 4 NO
8 Lane Detection 66 53,732 8,667 42,238 7,626 27,333 6 5 NO
9 Detection 200 - 4,958 - 4,086 116,000 0 0 YES

Table 3
Running times.

Min-Max Lat Min-Sum Lat Min-Max RT Min-Sum RT
Time Opt. Time Opt. Time Opt. Time Opt.

No Contention 4.13s YES 1h 2.41% 0.94s YES 1h 11.81%
Round-Robin 13.05s YES 1h 0.18% 2.11s YES 1h 1.68%

NP-FP 2.98s YES 26.2m YES 1.45s YES 1h 0.02%

Min-Max WCRT-ratio The third objective function en-
codes the goal of minimizing the maximum ratio between
the WCRT bound and the deadline of all tasks �i ∈ Γ. It isdefined as:

minimize RTMAX, (19)
where RTMAX ∈ ℝ≥0 is a real variable that encodes the

maximum ratios between the WCRT bound and the deadline
of all tasks �i ∈ Γ by enforcing the constraint RTMAX ≥ RTi

Di
,

∀�i ∈ Γ.
Min-Sum WCRT-ratio The last objective function encodes
the goal of minimizing the sum of the ratios between the
WCRT bound and the deadline of all tasks �i ∈ Γ. It is
defined as:

minimize
∑

�i∈Γ

RTi
Di

. (20)

6. Evaluation
We evaluate the proposed optimization method on the

WATERS 2019 Challenge by Bosch [37]. As discussed in
Section 2, the WATERS 2019 Challenge Platform Model
is based on the NVIDIA Jetson TX2. This heterogeneous
platform is composed of a quad-core 1.9GHz ARMv8 A57,
a dual-core 2GHz ARMv8 Denver, and an integrated GPU.

Consequently, the proposed platform model comprises
two types of processor cores: the first four cores pk ∈  ,
with k ∈ {0, 1, 2, 3} are the A57 cores, while the last two,
i.e., pk ∈  , with k ∈ {4, 5} are the Denver cores.

Table 2 reports the attributes of the WATERS 2019 task
set. Each task includes a single segment. Tasks SFM, Localiza-

tion, and Lane Detection are provided with both a fully CPU-
based implementation and a GPU-based implementation,
while Detection is provided only with an accelerated imple-
mentation. All others tasks need to run on CPU cores. For
each type of processor, Table 2 reports CNAi and CAi to de-
note the overall WCET of the task when it is running solely
on a core or using the accelerator, respectively. Similarly,
the column labeled with Ci under the GPU group reports the
overall tasks’ WCET when executing on the GPU, if the task
is accelerated. The period (equal to the relative deadline) is
also reported. All times are in milliseconds.

In such a scenario, our MILP formulation determines:
(i) which tasks to accelerate on the GPU, (ii) which tasks to
execute on the (faster) Denver cores, and which to execute on
A57 cores, (iii) the task-to-core assignment, (iv) the priority
assignment. The corresponding solution needs to guarantee
the application timing constraints, i.e., each task needs to
complete within its deadline.

The proposed MILP formulation has been coded in C++
and solved with IBM CPLEX on a machine equipped with
an Intel Core i7-6700K @ 4.00GHz.

We compared the four different objective functions dis-
cussed in Section 5.7. For each of them, we considered
three different policy for the hardware accelerator: (i) round-
robin, (ii) non-preemptive fixed-priority and (iii) no con-
tention, where each accelerated task runs in the accelerator
without interference. The third case serves both for baseline
comparison and it can give some intuitions on the results that
can be obtained by the optimization problem for hardware
accelerators that do not provide time interference (e.g., ded-
icated, statically-deployed FPGA-based accelerators where
interference-related delays are only due to contention for
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memories, interconnects, and devices3).
Figure 7 reports the ratio between: (i) the obtainedWCRT

and the deadline (RT/D) and, (ii) the suspension-time bound
and the deadline (ST/D) for such configurations. For the
configuration of Figure 7(a) the last three columns of Table 2
show the priority assigned by the solver, the task-to-core as-
signment, and whether the task has been selected for being
accelerated. For all the objective functions, the solver ac-
celerates only the Detection task both for round-robin and
non-preemptive fixed priorities as it deems more convenient
to run the other three accelerable tasks on a CPU core rather
than congesting the GPU, while in the “no contention” case
all tasks are accelerated due to the shorter WCETs they ex-
perience by running on the GPU. By comparing inset (a)
with (b), and (c) with (d), we note that objective functions
minimizing the maximum RT/D and chain latency tend to
provide higher ratios, as in this case, the solver needs to opti-
mize only the task leading to the maximum RT/D ratio, while
objective functions minimizing the sum of RT/D and chain
latencies generally provide lower values of the RT/D ratio.
For example, this is the case of the CAN task, which achieves
an RT/D of 1 in insets (a) and (c), and a very small RT/D in
insets (b) and (d). On the other hand, the Min-Sum objectives
are more difficult problems to solve: indeed, they manifested
also higher running times. Table 3 shows the running times
achieved by running CPLEXwith a timeout of 1 hour. For the
Min-Sum objectives, the solver found the optimal solution
within the allowed time in only one case. However, in almost
all cases, the solver provides a solution very close to optimal-
ity, with an optimality gap below 3%. Only for the Min-Sum
RT objective in the “no contention” case, the optimality gap
after 1-hour running is 11.81%: this is attributed to the fact
that in the no contention case, there are fewer constraints to
impose, and thus a larger search space.

Figure 8 reports another interesting configuration we
found in our experimentation. In this case, the WATERS
2019 WCETs have been scaled to 80% of their values: this
leads the optimizer to accelerate also the Localization task
with the round-robin policy. Indeed, with smallerWCETs, the
interference imposed by Localization on Detection becomes
smaller, making it convenient to accelerate also Localization,
which has a way smaller WCET when running on the accel-
erator (see Table 2). Therefore, the proposed optimization
problem allows recognizing non-trivial trade-offs, allowing
to obtain optimal solutions that would be very hard to grasp
without relying on real-time analysis.

Finally, Table 4 reports the chain latencies obtained with
the four different objective functions. The second column
of the table reports an ordered list of task IDs (introduced
in Table 2) representing the tasks in the chain. As expected,
the longest chains are those involving the Localization task,
which has a large period (see Equation (1)). From the results,
we can observe that chain-specific objective functions may
lead to greatly smaller latency values: for example, this is

3Note that performing an optimization for FPGA-based accelerators
requires additional considerations about the physical resource requirements
on the programmable logic [67].

the case of chain C4, which achieves a latency of about 760
ms with the Min-Max Lat objective and much higher latency
of about 848 ms with the Min-Max RT.

7. Related Work
Heterogeneous platforms have received great attention

in the last years, especially in the field of high-performance
parallel computing. The primary focus of researchers in
this field has been dedicated to improving performance (e.g.,
by pursuing faster computation) and reducing energy con-
sumption, mainly regarding mainstream computing, but with
little attention to real-time constraints or embedded systems.
A wide survey on this topic of partitioning techniques and
benchmarks regarding combined CPU/GPU architectures can
be found in [52]. Among the many, it is worth mentioning the
work of Li et al. [44], which presents a set of algorithms for
task mapping in heterogeneous platforms with GPUs, with
the goal of minimizing the makespan.

The introduction of heterogeneous platforms and hard-
ware accelerators is more recent for what concerns embedded
real-time applications. While most of the available works in
real-time literature involving multicore platforms are often
constrained to homogeneous processors [28], there is a signif-
icant portion of literature that started exploring the potential
and challenges of heterogeneous platforms applied to the case
of embedded real-time applications.

Concerning the study of specific accelerators in real-time
systems, prior works mostly targeted GPU-based and FPGA-
based acceleration. Several efforts have been spent on im-
proving the predictability of workloads running on GPU ac-
celerators. Since the scheduling policies implemented in
such accelerators are typically not disclosed by hardware
vendors, a branch of research investigates their internal be-
havior [2, 3, 54], e.g., through reverse engineering. Capodieci
et al. [14], Ali and Yun [1], and Forsberg et al. [33] proposed
mechanisms to achieve control on the memory traffic on
platforms with GPUs. Cavicchioli et al. [21] studied novel
methods to offload computations to a GPU. Other research
provided an implementation of the constant bandwidth server
on an NVIDIA GPU [13].

Concerning FPGA-based accelerators, Biondi et al. [9]
introduced the FRED framework to support real-time ap-
plications on heterogeneous platforms. FRED provides a
predictable infrastructure and a corresponding analysis to
guarantee bounded delays when requesting a dynamically
reconfigured hardware accelerator. Later, Pagani et al. [55]
provided an implementation for FRED based on Linux. Other
works aimed at improving the predictability of bus accesses
of hardware-accelerated tasks on FPGA-based platforms and
evaluating the profitability of performing acceleration re-
quests [56, 63–65, 69, 70].

Considering one of the main problem addressed in this
work, i.e., task partitioning onto heterogeneous platforms, in
general, most of the available literature on the topic is limited
to heterogeneous platforms composed of CPUs only. The
problem of partitioning real-time applications onto platforms
with heterogeneous processing cores is known to be NP-hard
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Figure 7: Ratio between the obtained WCRT bounds and the deadline, and the suspension time bounds and the deadline for each
task of the WATERS 2019 Challenge obtained by running the MILP with different objective functions reported above each graph.
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Figure 8: Ratio between the obtained WCRT bounds and the deadline, and the suspension time bounds and the deadline for each
task of the WATERS 2019 Challenge obtained by running the MILP with the Min-Max Latency objective function and WCET
scaled at the 80% of their values.

in the strong sense [5]. This problem has been mainly ad-
dressed with the usage of integer linear programming (ILP)
techniques [5–7]. Additionally, heuristics methods have been
proposed to solve this problem, e.g., those based on an ant-
colony optimization approach [22] and an improved particle
swarm optimization [62]. However, none of these methods
considers the presence of hardware accelerators, which intro-
duces considerable challenges, e.g., a suspension behavior
on the processing cores and deciding whether it is convenient
(for a WCRT perspective) to perform acceleration.

In the context of platforms with heterogeneous cores, a
popular target platform is the big.LITTLE from ARM [42],
which is composed of a “little” and power-efficient set of
cores, together with a “big” set of cores for high-performance

computation. Partitioning heuristics exist for such a specific
architecture, e.g., see [49–51, 73]. In the works mentioned
above, schedulability is checked by means of utilization-
based tests.

The problem of partitioning applications to multicore
platforms also requires that the functional dependencies are
preserved in the final deployment. Such dependencies are
commonly coded in the form of precedence constraints be-
tween tasks, constituting a direct acyclic graph (DAG). The
problem of partitioning DAGs on multicores while preserv-
ing their functional dependencies has been addressed, e.g.,
in [12], and it also drew much attention recently in the au-
tomotive field [39, 47]. Time determinism and causality in
multicore platforms can be effectively addressed with the
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Table 4
Latencies (in ms) of the processing chains with the hardware accelerator adopting the
NP-FP policy.

ID Tasks Min-Max Lat Min-Sum Lat Min-Max RT Min-Sum RT
C1 9 - 5 - 2 235,897 155,983 224,438 155,325
C2 6 - 5 - 2 68,897 66,952 69,251 66,294
C3 8 - 5 - 2 101,897 86,307 99,916 95,677
C4 3 - 7 - 4 - 5 - 2 760,716 757,222 848,523 762,948
C5 1 - 7 - 4 - 5 - 2 761,584 773,497 869,896 779,223
C6 1 - 5 - 2 46,76 52,804 69,251 52,146
C7 3 - 4 - 5 - 2 65,908 62,414 76,817 55,882
C8 3 - 5 - 2 45,897 36,529 47,878 35,871

usage of Logical Execution Time Paradigm [38]. Its practical
application to multicore has been explored in [10, 11, 60],
and specifically for addressing the problem of partitioning
real-time applications on a (homogeneous) multicore in [58].
The work in [36] proposes a mapping of multiple DAG tasks
that also minimizes power consumption, without considering
hardware accelerators. A response time analysis for a DAG
task on a heterogeneous platform with a single hardware ac-
celerator is presented in [66]. Only applications performing
a single acceleration request for the whole application (com-
posed of a single DAG task) are supported. Zahaf et al. [40]
presented the HPC-DAG model and corresponding schedula-
bility analysis, specifically considering NVIDIA platforms.

The introduction of shared devices in the platform, such
as GPUs and FPGAs, brings additional complexity in the
analysis problem. Indeed, tasks accessing shared resources
or performing operations on external devices are subject to
suspension delays, which must be properly accounted for
to ensure schedulability [25]. Many analyses have been
then devised on the topic, with different goals, e.g., sup-
porting global scheduling techniques [29, 46], analyzing EDF
scheduling [35], providing a unifying analysis [24], analyzing
parallel tasks [18, 32], or supporting soft real-time tasks [45].
A comprehensive review of works about self-suspensions can
be found in the two excellent surveys by Chen et [23, 25].
A set of task partitioning algorithms in the presence of a
shared resource, with the goal of guaranteeing schedulability
while minimizing the required size of the shared resource, is
presented in [30]. No priority assignment is provided, and
only homogeneous cores are considered.

Introducing self-suspensions also brings additional com-
plexity in the formulation of the task mapping problem. For
instance, the response time formulation must be properly
adapted in order to be used in a linear optimization environ-
ment. In this work, we make use of an approximated analysis
based on checking only a smart subset of time instants, fol-
lowing the work in [59]. Other works addressed this problem
with ad-hoc formulations for the response time. An example
of the ILP method that addresses optimal partitioning in the
case of shared resources, together with a response time anal-
ysis (but on a homogeneous multicore platform), is presented
in [71]. A heuristic for resource-oriented task partitioning in
multicores is presented in [41]. Other partitioning strategies

are proposed in [26]. All these works, however, target only
homogeneous multicores.

To the best of our knowledge, there is no prior work
targeting the problem of providing an optimal solution for
the partitioning and priority assignment of real-time tasks
on heterogeneous platforms that also include an hardware
accelerator.

8. Conclusions
This paper provides solutions for modeling, analyzing,

and partitioning real-time applications running onto hetero-
geneous platforms equipped with a hardware accelerator. We
presented a task and platform model that is applicable to
different use-cases, together with a response time analysis
that supports different scheduling policies at the hardware-
accelerator level, and which can be easily linearized to be
used in an ad-hoc optimization problem. The proposed ap-
proach is a simple and flexible way for finding an optimal
task-to-core mapping and priority assignment for real-time
autonomous applications, and for deciding whether to accel-
erate tasks provided with both CPU-based and accelerated
implementations under different scheduling policies for the
accelerator. Nevertheless, there is plenty of space for future
work in a flourishing research field as the one of heteroge-
neous real-time systems. For example, interesting future
research directions include the consideration of more precise
analyses of self-suspending tasks [53], the extension to asyn-
chronous hardware acceleration [4], ROS-based systems [19]
and frameworks for deep neural networks [15, 16, 61, 68],
and the study of specific hardware accelerators [54] and ac-
celeration methods [9] to provide fine-grained bounds on the
suspension time.
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