
Computer Networks 227 (2023) 109727

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

P4 Telemetry collector
Faris Alhamed a,∗, Davide Scano b, Piero Castoldi b, Juan Jose Vegas Olmos c, Ilya Vershkov c,
Francesco Paolucci d, Filippo Cugini d

a Scuola Superiore Sant’Anna, Pisa, Italy
b Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy
c NVIDIA Corporation, Yokneam, Israel
d CNIT, Pisa, Italy

A R T I C L E I N F O

Keywords:
SDN
P4
Switch
Telemetry
Postcard
INT

A B S T R A C T

As the complexity of computer networks increases to accommodate the demand for massive connectivity
and cloud services, so does the probability of fault occurrence and the surface of attacks. Hence the need
for constant monitoring of network devices and accurate analysis of traffic patterns to ensure the highest
performance and maximum security. This requires collecting and processing telemetry data from many sources
in the network which leads to extra bandwidth usage and strains the CPU at the monitoring system resulting
in scalability issues as the network grows. In this paper, we propose a two-stage postcard telemetry collector
based on data plane programmability using the P4 language to address the scalability issues. We show a
decrease in the CPU load of the telemetry server by over 70% while lowering the bandwidth to less than 7%
in the most extreme scenario, at the cost of variable delay introduced in the collection of the postcards.
1. Introduction

The complexity of computer networks is always increasing to meet
the needs for an ever-growing traffic [1], and to support the rise in
demand for ultra-low-latency applications [2], these factors and many
others impose the necessity for a well-planned and scalable network
design not only to keep up with the current demand but also to provide
solid grounds for future growth. Thus, comprehensive monitoring of
network performance and traffic patterns is key to detecting misbe-
havior in the network or parts of it which can potentially result in
an outage consequently costing the network operator a loss based on
the size and type of organization and can be as high as millions of US
dollars [3]. In this regard, it makes economic sense for organizations to
invest in network resilience to avoid such losses [4] so it is important
to gather telemetry data from devices within the network. Also, the
collection of historical data and analysis of traffic patterns and trends
is essential for the design of the network and the implementation of
traffic engineering measures to provide fault tolerance, and to avoid
overloaded links and servers via load-balancing measures [5], and to
plan the evolution of the network [6]. There are different methods in
the literature to collect telemetry data from the network, according
to [7] those different methods can be sorted into the three following
categories based on their technologies.

1. Traditional methods include Ping and Traceroute.

∗ Corresponding author.
E-mail address: faris.alhamed@santannapisa.it (F. Alhamed).

2. SDN methods [8].
3. Network telemetry leveraging the programmability of data plane

(PDP) [9].

In this research, we will concentrate our focus on taking advantage
of the recent developments in the programmability of the data plane
for providing advanced collection and processing of telemetry metadata
in network devices. Considering that the comprehensive collection of
network data made available by PDP opens the door for many possible
applications in the network and brings in Artificial Intelligence (AI)
to the decision-making. Where the AI can have an important role in
steering user traffic to the best serving node for lower latency and
better Quality of Service (QoS) as in [10], or even provide filtering of
traffic based on signatures that are generated from packet features for
enhanced detection and mitigation of DDoS attacks [11].

1.1. Motivation

At the time of writing this paper, we found that Postcard-Based
Telemetry (PBT) solutions, even if considered by chipset vendors, have
not been widely analyzed in the literature yet, contrary to solutions
that leverage embedding the telemetry data in user packets. A com-
parison between the two aforementioned modes of telemetry is done
vailable online 21 March 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109727
Received 29 November 2022; Received in revised form 15 March 2023; Accepted 1
7 March 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:faris.alhamed@santannapisa.it
https://doi.org/10.1016/j.comnet.2023.109727
https://doi.org/10.1016/j.comnet.2023.109727
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109727&domain=pdf

Computer Networks 227 (2023) 109727F. Alhamed et al.
in [12] which shows that PBT has certain advantages as the user
packets remain unchanged and that embedding the telemetry data in
user packets has potential vulnerabilities such as eavesdropping and
tampering while PBT packets tolerate extra processing for enhanced
security. However, PBT suffers from a higher bandwidth overhead
compared to embedding the telemetry data in user packets [12]. In both
modes of telemetry and especially in PBT, the excessive generation and
transport of telemetry data can consume a high percentage of links’
capacity and may require significant processing power that a typical
data center needs to dedicate thousands of CPU cores just for simple
packet I/O operations [13]. This problem has been discussed in the
literature and various solutions have been suggested. However, most
of these solutions rely on the selectivity of the generation of telemetry
data and follow a top-down approach as indicated in [14], while others
tried to apply the selectivity within the telemetry server as in [15].
Per comparison, our solution aims to reduce the telemetry bandwidth
and the subsequent processing overhead without compromising the
granularity of the exported telemetry data. We aim to achieve this
reduction by aggregating 𝑅 payloads of the telemetry packets in a single
larger packet taking advantage of the hardware acceleration offered by
the programmability at the data plane, as explained in detail in the
following sections of this paper.

1.2. Our early work

This paper is based on our previous work in [16] in which we
presented the concept of the two-stage telemetry collector where the
first stage is a P4 aggregation switch whose purpose is to aggregate the
telemetry reports from various packets in one larger packet and forward
it to the telemetry server. In our previous work, we performed a fixed-
level aggregation at a single P4 aggregation switch and demonstrated a
reduction in bandwidth and CPU load on the telemetry server. Also, we
mentioned the possibility of aggregating or correlating the telemetry
reports at the P4 aggregation switch by either flow-id, switch-id, or
both at the same time.

1.3. Paper contribution

We can summarize the contribution of our work on this paper in the
following key points:

1. We provide the details of our implementation of the two-stage
telemetry collector including the algorithms we used for the
different levels of aggregation at the P4 aggregation switch.
Also, we explain the implementation of the telemetry server in
different cases.

2. We investigate the feasibility of each aggregation level based
on the hardware resources needed to perform each level of ag-
gregation. In addition, we introduce the concepts of distributed
aggregation and priority-based aggregation and

3. We provide a comprehensive set of experimental results that
evaluate the aspects of the different aggregation levels in terms
of CPU load at the telemetry server, network bandwidth usage,
introduced overall delay, and collector intra-switch latency.

1.4. Organization of this paper

The rest of the paper is divided into sections and is organized in
the following way: In Section 2 we briefly go through the main tech-
nologies and previous works relevant to the generation and collection
of telemetry data in the network. In Section 3 we describe in more
detail the concept of the Two-Stage Telemetry Collector. We describe
our implementation and the test bed used to conduct the experiments
in Section 4, while the results of our experiments are introduced and
discussed in Section 5. Finally, the conclusions and a discussion on
2

possible future improvements are presented in Section 6.
2. Background

2.1. Software defined networking (SDN)

As networks grow, they become difficult to configure and manage,
and the inefficiency of traditional routing starts to become evident as
routing based on network topology alone leads to unbalanced load
distributions on links and servers, resulting in congestions to happen
which in turn leads to transmission delays or even packet drops.
Therefore, to improve path selection in the network, there is a per-
sistent need for an all-out view of the network at a central node in
charge of optimizing network operation. This led to the emergence of
SDN [17] where the intelligence in the network is moved from each
individual device to a centralized controller that has a full view of
the network allowing it to manage the packet forwarding policies and
communicate these policies to the forwarding devices using a standard
Application Programming Interface (API) such as OpenFlow [18] and
P4Runtime [19].

2.2. Programmable data plane (PDP)

Traditional forwarding devices had their logic hard-coded in the
hardware and they could only recognize and manipulate a limited set
of standardized headers, and the processing logic of the forwarding
device could not be changed without making changes to the hardware
itself, which is in many cases very expensive or not even possible. This
characteristic of the traditional devices strictly limited the flexibility of
the network and made introducing upgrades to the network a slow and
expensive process. With PDP the processing logic can be dynamically
enforced to support new non-standard headers and functions. This led
to the creation of Programming Protocol-independent Packet Processors
(P4) language [20,21] with the goal to allow programmers to change
the logic of network devices after they are deployed without being
restricted to the use of any specific set of legacy protocols and to make
the description of packet processing functionality independent from the
underlying hardware.

2.3. In-band network telemetry (INT)

In-band network telemetry is a set of tools and protocols with the
goal of gathering information about network state by the data plane
without needing intervention from the control plane [9]. INT provides
for an extensive collection of data about individual packets as they
travel through the network. The analysis of this data can give valuable
information about the network state allowing to trace these individual
data packets [22] to detect forwarding loops and network black holes,
also to enable congestion control [23,24]. In addition, INT allows end
hosts to embed instructions within the data packets called Tiny Packet
Programs (TPP) [25], able to query the state of the network or even
introduce changes in order to meet certain application requirements.
The P4.org specifications [9] defines three modes of In-Band Network
Telemetry: 1. INT-XD (eXport Data): the telemetry data is exported in
a separate packet (postcard) without the modification of the original
packet. 2. INT-MX (eMbed instruct(X)ions): an INT source node adds an
instruction header to the packet and later nodes in the network follow
the instructions to export their telemetry data. 3. INT-MD (eMbed
Data): both telemetry instructions and data are inserted into the packet.

The INT-XD and INT-MX modes of telemetry are also known as
postcard-based telemetry. In this case, the telemetry data are collected
at the network nodes and are exported in separate packets toward a
telemetry collector. The telemetry data to be collected and exported,
referred to as metadata, varies according to the application and can
be any network- or device-related information of interest. However,
the specification in [9] defines a set of useful metadata that can be
made available on many devices, including: 1. Node ID: to identify the

source node at which the telemetry report was generated. 2. Ingress

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 1. A two-stage telemetry collector in the dashed line with the first stage being a P4 aggregation switch and the second stage a telemetry server running on a general purpose
computer.
Interface ID: identifies the network interface on which the packet was
received. 3. Ingress Timestamp: the device’s local time at which the
packet was received on the ingress interface. 4. Egress Interface ID:
identifies the network interface through which the packet was sent.
5. Egress Timestamp: the device’s local time at which the packet was
processed by the egress interface. 6. Hop Latency: the time taken by
the packet to be switched by the network node. 7. Queue Depth: queue
depth information when the packet entered and/or left the queue.
The Telemetry Report is defined in the P4.org specifications [26] as a
message generated by a network device that supports In-Band Network
Telemetry for a certain packet and is sent to the telemetry collector.
The report aims to set a standard for interoperability between different
network devices. Moreover, it carries the metadata collected from the
network device for a certain data packet. In case the INT-MD mode of
operation is used, the report can additionally carry telemetry metadata
from the upstream nodes when exported by the sink node.

2.4. Telemetry collection

After the telemetry metadata is generated by the network devices,
it is packaged in a telemetry report and forwarded to a telemetry
collector, in charge of extracting the telemetry data, correlating them,
and possibly storing them in a database. In addition, such data may be
consumed by the SDN controller to perform routing decisions based on
the current network status. When the number of telemetry reports gen-
erated by network devices is very high (this is especially the case with
postcard-based telemetry), the collector will require more resources to
process data from the reports and might incur high CPU usage.

2.5. Related work on overhead reduction

To detect and diagnose problems within the network in a near real-
time manner, a huge amount of telemetry data need to be generated
at any given moment. This huge amount of data is mostly redundant
and carries no useful information for the management system, for
this purpose there exist many works in the literature to address this
issue [13,15,27–29]. For example, the work in [27] employs a Postcard-
Based Telemetry Marking (PBT-M) to propose a Traffic-Aware Network
Telemetry (TANT) framework that manages to reduce the telemetry
3

overhead by over 75% in exchange for reduced granularity of telemetry
data. The TANT framework uses a Machine-Learning based classifier in
the telemetry controller to configure the granularity of the exported
telemetry data at the network nodes. In the TANT approach network
nodes can assume three different roles. First, a telemetry source node
marks the data packets with a special mark to indicate to the down-
stream nodes the granularity of the telemetry export for that type of
traffic, the source node also exports its own data. Second, a telemetry
transit node exports its telemetry data based on the granularity indi-
cated by the sink. Finally, a sink node removes the mark from the data
packet and forwards the packet to its next hop, in addition to exporting
its own telemetry data.

Meanwhile, the work in [29] proposes the Probabilistic In-band
Network Telemetry (PINT) framework employs a probabilistic sampling
approach to spread the telemetry data over multiple packets to reduce
the per-packet overhead.

Another telemetry framework that aims to reduce the telemetry
overhead is DeltaINT [28] in which telemetry data are embedded
in the data packets (INT-MD mode of INT). In DeltaINT each node
compares its last exported state with the current state and only exports
parameters whose change (Delta) exceeds a predefined threshold. The
authors of DeltaINT compare their solution to the PINT and show that
DeltaINT offers multiple improvements in various use cases such as
congestion control, path tracing, and latency measurements.

Other works focused on solving the CPU overhead issues at the
telemetry collectors. One example is the work in [13] that proposes
a solution called Distributed Aggregation of Rich Telemetry (DART).
DART works by leveraging Remote Direct Memory Access (RDMA) to
write telemetry data directly in the collector’s memory bypassing the
CPU, it uses a hash function to generate a stateless mapping between
telemetry data and memory addresses. The authors show that their
implementation uses 30.0 GB for storing telemetry data coming from
up to 100 million flows assuming a data length of 160-bit in addition
to a 32-bit checksum for detecting overwritten data.

Another work was done in [15] where the authors proposed an INT
collector made of two data processing paths, a fast path, and a normal
path. The fast path runs at the kernel level to achieve a high rate of
packet processing, it parses every packet to extract the telemetry report
and runs the report through an event detector. When the fast path
detects a networking event, the event is then sent to the normal path
for processing and exporting the data to a database.

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 2. An illustration of different scenarios of aggregation with 𝐴𝑔𝑔(2) in the top box, 𝐴𝑔𝑔2(2) in the middle box, and 𝐴𝑔𝑔2,2(2) in the bottom box.
Fig. 3. A representation of the 𝐶𝑜𝑟2,1(𝑅) case.
3. A two-stage telemetry collector

The exhaustive monitoring of flows in the network and the gen-
eration of a telemetry report for each packet at every switch can
produce plenty of telemetry reports which in turn can consume a great
amount of bandwidth at the network links and strain the CPU at the
telemetry collector. We propose a solution to mitigate this problem
by implementing a two-stage telemetry collector, as shown in Fig. 1,
leveraging the data plane programmability using the P4 language. The
first stage of the collector is a P4 capable switch based on the v1model
architecture per P4 standards [30], whose purpose is to perform ag-
gregation on telemetry packets coming from various sources in the
network. Specifically, the proposed idea is to extract the telemetry
reports from these packets and aggregate the reports in one larger
packet before forwarding it to the telemetry server.
4

3.1. Different aggregation levels

We propose and discuss different levels of aggregation to be per-
formed by the P4 aggregation switch in Fig. 1, where an aggregation
level refers to the number of telemetry reports aggregated in one packet
and if further processing is applied to these reports. The proposed
aggregation levels are the following:

1. 𝐴𝑔𝑔(𝑅): This is the simplest level of aggregation and requires
only one generic buffer. In this solution, the P4 aggregation
switch extracts and aggregates 𝑅 telemetry reports in one larger
packet and forwards it to the telemetry server regardless of the
flow that triggered the generation of the telemetry report and
regardless of the switch that originated the telemetry report.

2. 𝐴𝑔𝑔𝑁 (𝑅): This is a slightly more complicated solution that ex-
tracts and aggregates telemetry reports based on the network

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 4. Comparison between different aggregated packets.
node where they originated. This solution requires 𝑁 buffers at
the aggregation switch where each buffer stores the telemetry
reports that originated from a distinct node.

3. 𝐴𝑔𝑔𝑁,𝐹 (𝑅): This is the most complicated solution in which the P4
switch has 𝑁 buffer banks where 𝑁 corresponds to the number
of network nodes that are generating telemetry reports. Each
buffer bank has 𝐹 buffers where 𝐹 is the number of flows that
flow through that network node. This solution can greatly reduce
the subsequent correlations that need to be performed by the
telemetry server.

We can illustrate the different aggregation concepts using Fig. 2, in
which we have two switches in the network and two monitored flows
with arbitrary directions. One postcard is generated by each switch for
every packet that belongs to one of the monitored flows. In the dashed
rectangle on top of Fig. 2 the 𝐴𝑔𝑔(2) scenario is depicted, where the
P4 switch has only one buffer and is aggregating reports from both
switches and both flows in the same buffer. Once that buffer is full
then a new packet is generated with reports from both switches. The
middle dashed box in Fig. 2 represents the 𝐴𝑔𝑔2(2) scenario, where the
P4 switch has two buffers to sort reports by their originating switch.
Once a buffer is full its content is emptied into a new aggregated packet
and forwarded to the telemetry server. In this scenario, the aggregated
packet contains only reports generated by the same switch. The bottom
dashed box represents the 𝐴𝑔𝑔2,2(2) scenario, where the P4 switch has
four buffers to sort the reports by flow and by originating switch. Once
a buffer is full its contents are emptied into a new aggregated packet.
In this case, the aggregated packet only contains reports that belong to
the same flow and are generated by the same switch.

3.2. Correlation of telemetry reports

In some scenarios, where it is not critical to collect comprehensive
information about the network or about certain low-priority flows at
every moment, the P4 aggregation switch can perform extra function-
ality to provide only peak, minimum, and average values. This aims to
further decrease the bandwidth used by the postcards and reduces the
CPU cycles needed to process the collected data. For this reason, based
on the three aggregation levels described in the previous section, it is
5

possible to derive three new solutions. That is, by performing correla-
tions on the telemetry data at the P4 aggregation switch. The purpose
is to calculate maximum, minimum, and average values of the network
and switch metadata, such as queue lengths, latency experienced by
packets traversing a certain switch, traffic at network interfaces, and
any other relevant parameter. These three solutions can be explained
as follows:

1. 𝐶𝑜𝑟(𝑅): This aggregation level is based on 𝐴𝑔𝑔(𝑅) mentioned
in Section 3.1. The P4 switch performs the correlations on
telemetry reports from various switches and various flows. The
information generated by this solution has a large granularity
and offers insights about the entire network or at least the
aggregation segment (aggregation segments are discussed in
Section 3.4).

2. 𝐶𝑜𝑟𝑁 (𝑅): This aggregation level is based on 𝐴𝑔𝑔𝑁 (𝑅) mentioned
in Section 3.1. The P4 aggregation switch performs the correla-
tions on telemetry reports that are organized by the originating
network node. This solution offers a better granularity than
𝐶𝑜𝑟(𝑅) as the correlation process offers per switch details.

3. 𝐶𝑜𝑟𝑁,𝐹 (𝑅): It is based on 𝐴𝑔𝑔𝑁,𝐹 (𝑅) and performs correlation on
reports organized per-flow and per switch. This solution offers
the best granularity and greatly reduces the work required by
the telemetry server.

Fig. 3 shows the 𝐶𝑜𝑟2,1(𝑅) solution with two switches and one flow.
Each generated postcard contains a report with two values 𝑉 𝑎𝑙1 and
𝑉 𝑎𝑙2. When the P4 aggregation switch receives a postcard it increases
the relevant counter (Fig. 3 only shows the counter and registers for
switch S1 for simplicity reasons but a similar set exists for the switch
S2) and then the switch extracts the report and adds the values 𝑉 𝑎𝑙1
and 𝑉 𝑎𝑙2 to their respective sum registers and then compare each value
with its max and min and updates the relevant register accordingly.
When the counter is full the values are extracted into a new correlated
packet where the average values are calculated by dividing the sum
values by the number of postcards correlated (the counter value).

We can illustrate the difference between different aggregation levels
in terms of the number of packets and bandwidth usage in Fig. 4.
With no aggregation, 𝑅 telemetry reports are sent in 𝑅 packets. When
performing aggregation it is possible to remove 𝑅 − 1 set of headers

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 5. The telemetry aggregation domain is segmented and each P4 switch handles the aggregation of telemetry reports from its segment.
consisting of Ethernet, IP, and UDP. This removal saves redundant bytes
from being sent and reduces the number of sent packets by a factor of
𝑅.

3.3. Processing of telemetry reports

The second stage of the telemetry collector is the telemetry server
which can be either software running on a general-purpose server or
specialized hardware. The exact functionality of the telemetry server
is open to different implementations. A generic telemetry server re-
ceives the telemetry reports, checks for non-ordinary values, stores the
received data in a database and make it available to the SDN controller,
and shows the data in a human-readable way.

In the case of 𝐴𝑔𝑔 level of aggregation, the telemetry server can per-
form the additional functionality of calculating minimum, maximum,
and average values from the data contained in the aggregated reports.
This can reduce the amount of data that needs to be displayed and
stored in the database while slightly affecting the view granularity of
the network state.

In the case of 𝐶𝑜𝑟 level of aggregation, the telemetry server receives
the data already correlated by the P4 switch and does not need to
perform any extra calculations on the received data. Thus, it can store
directly in the database, significantly saving processing efforts.

3.4. Distributed aggregation of telemetry reports

When small networks with a limited amount of traffic are consid-
ered, a single P4 aggregation switch may be able to handle the process
of extracting and aggregating telemetry reports from numerous packets.
As the number of switches and monitored flows in the network grow,
so do the memory requirements at the P4 aggregation switch for the ag-
gregation levels that require having per-switch and per-flow dedicated
registers, as discussed in Section 5.4. Additionally, not all switches
in the network may offer an advanced level of programmability. For
these reasons, the two-stage telemetry collector shown in Fig. 1 can be
extended to a distributed model where multiple P4 switches capable
of aggregating the telemetry reports are placed at specific points in
the network in such a way the aggregation domain is segmented as
in Fig. 5. This segmentation reduces the memory requirement for the
higher aggregation levels, as the number of memory registers required
6

at each aggregation switch is proportional to the number of network
switches in its aggregation segment as discussed in Section 5.4. As an
example, consider that the aggregation level 𝐴𝑔𝑔𝑁 (𝑅) is applied in
Fig. 5 in which the top P4 switch is dedicated for aggregation, and
the two P4 switches in the middle take part in the forwarding (thus
generate their own postcards). Now we can compare two scenarios, in
the first scenario, the two P4 switches in the middle do not perform
an aggregation, hence the top P4 switch requires 9 registers to store
the telemetry reports in 𝐴𝑔𝑔𝑁 (𝑅). In the second scenario, the two P4
switches perform aggregation in addition to forwarding, hence each
P4 switch requires 3 registers to perform the same 𝐴𝑔𝑔𝑁 (𝑅). This
segmentation does not affect the CPU results obtained in Section 5.1
as the total number and size of aggregated packets that arrive at the
Telemetry Server remain unchanged, while the bandwidth savings can
be calculated as discussed in Section 5.2.

The aggregation segment is defined within the P4 aggregation
switch using a match-action table where the aggregation switch after
detecting a postcard, matches the source of the postcard (e.g. IP ad-
dress) to see if it originated from a network node within its aggregation
segment.

In the case of distributed aggregation of telemetry reports, each P4
switch handles the aggregation of the telemetry reports generated at
its specific segment. In other words, the P4 switch can forward the
traffic packets normally in the network like any other switch, and using
a match-action table the P4 switch can detect that a telemetry packet
is sent to the telemetry server and that the packet is generated at the
switch’s segment. When such a packet is detected the switch will then
extract and aggregate the telemetry report contained in the aforemen-
tioned packet as in Fig. 5. This distributed aggregation of telemetry
reports eases the hardware requirements of the P4 switches and saves
part of the bandwidth otherwise consumed by headers of the telemetry
packets headed toward the telemetry server. One important point to
note is that even though the aggregation can be added as an extra
functionality to any P4-capable switch, the current and future load on
the P4 switch must be taken into account. For example, the additional
processing at the switch pipeline introduced due to aggregation might
add some latency [31]. As our implementation is done only in software,
we left out this point to be investigated on a hardware implementation
in the future.

The P4 language allows the programmer to write custom and flex-
ible match-action tables to be implemented in each P4 switch, and

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 6. Using different buffers to store telemetry reports based on their priority.
the matching of the packets can be done based on the destination IP
address and the port number. This way, the P4 switch can understand
that the matched packet contains a telemetry report, and by matching
the source IP address the P4 switch can determine whether or not this
packet was generated inside its aggregation domain. A central con-
troller with an extensive view of the network (e.g., traffic engineering
database) can program each P4 switch with the relevant match-action
rules through the P4Runtime API [19].

3.5. Priority-based aggregation

It makes practical sense to assign different priorities to telemetry
packets that belong to different flows and that are generated by dif-
ferent switches in the network [32]. A higher priority in this case
corresponds to a lower aggregation level with the highest priority flows
being forwarded without any type of aggregation. The reason is that
storing the telemetry reports at the P4 switch will introduce a delay
in the forwarding of the reports to the telemetry server. Depending
on the application, the priority can be inferred at the P4 aggregating
switch in different ways. One way to infer the priority is using a flow
ID field included in the headers of the telemetry report for a per-flow
priority assignment. Alternatively, the priority can be inferred using
the ID of the switch that originally exported the telemetry report for a
per-switch priority assignment. Another way for introducing a priority-
based aggregation is to assign priorities by the switch from which the
telemetry report originated. The latter case will require a dedicated
field in the headers of the telemetry report for priority assignment.

3.6. Multiple variable-size buffers

The P4 aggregation switch has multiple buffers in its stateful stages
which are used to temporarily store the telemetry reports extracted
from the incoming packets. When a buffer is full its content gets
encapsulated in the payload of a new packet and is forwarded to the
telemetry server. The P4 aggregation switch uses one of the methods
mentioned in Section 3.5 to determine the priority of the telemetry
report and whether to store it in a buffer to perform the aggregation
or just forward the packet as is without any further manipulation as in
Fig. 6.

4. The implementation

In this section, we refer to Fig. 1 to explain our implementation of
the P4 aggregation switch along with a description of the implemen-
tation of the network switches that are used to generate the postcards
and the telemetry server. The workflows described in Section 3 have
been mapped into P4-suitable algorithms. The implemented algorithms
are described as Algorithm 1, showing the process of 𝐴𝑔𝑔𝑁 (𝑅), and
Algorithm 2 showing the process of 𝐶𝑜𝑟 (𝑅).
7

𝑁

4.1. The P4 aggregation switch

The program of the P4 aggregation switch is written using 𝑃416 and
is compiled with the P4 compiler [33], the output of the P4 compiler
is a JSON file that can be fed to the P4 switch. The architectural model
of the switch is shown in Fig. 7 and it consists of a pipeline with a few
processing blocks starting with a parser for dissecting and extracting the
packet headers, an ingress processing block, an egress processing block,
and finally a deparser that puts the headers back in the packet. The
pipeline blocks can communicate a set of predefined standard metadata
to pass the information on the state of the current packet, in addition
to user-defined metadata.

4.1.1. The parser
The processing pipeline of the switch architecture starts with a

parser that dissects the packet headers and treats the payload that
carries the telemetry data as another header. The parser detects the
existence of a telemetry report in the packet based on the destination
IP address and the port number of the transport layer protocol. When
a telemetry report is detected the parser of the P4 program extracts the
telemetry report from the packet and adds it to the headers structure
object which can be accessed in the P4 program to manipulate the
headers.

Algorithm 1 𝐴𝑔𝑔𝑁 (𝑅) Algorithm
Define: 𝑅,𝑁 ⊳ aggregation level, number of switches
Reserve: aggregation_register(𝑠𝑖𝑧𝑒 = [𝑁,𝑅 × 𝑟𝑒𝑝𝑜𝑟𝑡.𝑙𝑒𝑛𝑔𝑡ℎ]);
Reserve: sequence_number(𝑠𝑖𝑧𝑒 = 𝑏𝑖𝑡 < 22 >)
for each packet do ⊳ for all received packets

headers = packet.extractHeaders()
if report in headers then ⊳ packet is a postcard

nodeIndex = mapNodeIdToIndex(headers.report.srcNode)
aggregation_register.append(headers.report, position =

nodeIndex)
if aggregation_register[position = nodeIndex].isFull then

headers.update(Eth, IP, UDP, Report_Group)
headers.append(aggregation_register.extractAllReports)
sequence_number++

else
dropPacket()

end if
else

headers.update(Eth, IP)
end if
packet.attachHeaders(headers)
forwardPacket()

end for

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 7. The P4 architecture of the aggregation switch.
Algorithm 2 𝐶𝑜𝑟𝑁 (𝑅) Algorithm
Define: 𝑅,𝑁 ⊳ aggregation level, number of switches
Reserve: 𝑁 × 3 registers (min[N], max[N], sum[N]) for each
correlated value
Reserve: sequence_number, postcardCount[N]
for each packet do ⊳ for all received packets

headers = packet.extractHeaders()
if report in headers then ⊳ packet is a postcard

nodeIndex = mapSwitchIdToIndex(headers.report.srcNode)
for 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 in 𝑟𝑒𝑝𝑜𝑟𝑡 do

updateRegistersOfValue(min, max, sum,
value, position = nodeIndex)

end for
postcardCount[nodeIndex]++
if postcardCount[nodeIndex] == R then

correlatedHeader = makeCorrelatedHeadersFromRegis-
ters()

headers.update(Eth, IP, UDP, Report_Group, correlated-
Header)

postcardCount[nodeIndex] = 0
sequence_number++

else
dropPacket()

end if
else

headers.update(Eth, IP)
end if
packet.attachHeaders(headers)
forwardPacket()

end for

4.1.2. The ingress
The ingress checks if the current headers include the telemetry

report header: if so, and in the case of 𝐴𝑔𝑔𝑁 (𝑅) aggregation, then the P4
program stores the extracted report header in a reserved register bank
(the aggregation buffers) and checks if the end of the buffer is reached.
If the end of the buffer is not reached then the current telemetry packet
is assigned to the default drop interface to be dropped at the switch. The
drop of the packet does not lead to a loss of its content as the telemetry
report has already been extracted and stored in the buffer, and the
8

related metadata will later be forwarded to the telemetry server in an
aggregated packet. When a buffer is full then a new header is created
from the telemetry reports included in that buffer. This header will
then replace the payload of the last received telemetry packet (i.e., the
telemetry packet that contains the telemetry report which filled the
last position in the aggregation buffer). In addition, the headers of
that packet will be modified to update the relevant fields, for example,
the Time to Live (TTL), the Source IP, and the Length fields in the IP
header. Finally, the egress interface will be assigned to the packet to
be forwarded to the telemetry server.

The register bank can be visualized as a table with 𝑅 columns and
𝑁 rows (buffers), the row is determined by a match action table based
on the source IP address of the node that generated the postcard. While
the P4 program uses a ‘‘cursor’’ variable to keep track of the last column
stored in the register bank.

The process for performing the correlation of the telemetry reports
(i.e., a 𝐶𝑜𝑟 level of aggregation) at the P4 aggregation switch is ob-
tained by reserving three registers for each measurement parameter:
a first register for holding the sum of the readings, a second register
for holding the minimum value, and a third register for holding the
maximum value. When the telemetry report is detected and extracted
by the P4 aggregation switch each reading in the report is added to
the first register storing the sum of the values, and then the reading
is compared against the current minimum and the maximum values
to evaluate if they need to be updated. When the selected aggregation
level is reached, the values within those registers are extracted and a
new payload is constructed that contains a correlated telemetry report.
This payload then replaces the payload of the last received telemetry
report packet, and the headers of that packet are updated accordingly.

4.1.3. The egress
In the P4 program related to the aggregation and correlation of

the telemetry reports the egress block remains empty as no further
processing is needed at this stage.

4.1.4. The deparser
The deparser block checks for valid headers. A header is valid if it

has been extracted earlier at the parser or if it has been constructed
during the processing of the packet in the pipeline either at the ingress
or at the egress blocks. If the headers are found to be valid, then they
are re-attached to the packet in the correct order and the packet is sent
to the proper egress interface.

Computer Networks 227 (2023) 109727F. Alhamed et al.
4.2. Correlation on the P4 aggregation switch

The P4 switch can perform correlations on the contents of the
telemetry report to calculate and send maximum, minimum, and av-
erage values to offload this process from the telemetry server’s CPU
and to reduce the traffic on the links toward the telemetry server. For
calculating the average value 𝑥 we use the equation 𝑥 =

∑

𝑝,𝑣
𝑅 where

∑

𝑝,𝑣 is the sum of the value readings 𝑣 that belong the parameter 𝑝
that we want to average and 𝑅 is the number of value readings which
equals the number of aggregated reports. In the previous equation, it is
worth selecting 𝑅 = 2𝑦 where 𝑦 is a positive integer. When the number
of value readings is a power of two, then the division process is just
a matter of shifting the value to the right by a number of bits which
avoids time-demanding calculations.

4.3. The telemetry server

The telemetry server is a basic implementation written in Python3
using the Scapy library. Other tools might have been used for the
telemetry server, for example, a server written in C that leverages a
DPDK implementation for quick extraction and parsing of the aggre-
gated telemetry reports. However, as our experiment mainly focuses
on the implementation of the P4 aggregation switch and uses bmv2
software switches [34], the performance offered by Scapy is sufficient
to support our application and demonstrate the benefits of aggregation.

The code of the telemetry server uses multi-threading for handling
different packets. The server listens to the network interface for in-
coming telemetry packets and when a telemetry packet is detected its
content is then dissected and the values are written to a local InfluxDB
database.

4.4. The network switch

The network switch has the functionality of forwarding the data
packets to their destination based on IP addresses. In addition, they are
programmed to generate postcards (telemetry packets) and send them
to the server. Flow rules are installed at each switch to properly forward
the packets and trigger the generation of telemetry reports based on
matching the source IP address and port number of each packet passing
through the switch.

5. Results

Using the testbed in Fig. 1 we evaluated the performance of our pro-
posed telemetry server. The testbed comprises three network switches
each of which supports data plane programmability through P4. The
purpose of the network switches is to generate the telemetry reports
and send them via telemetry packets (Postcards) to the two-stage
telemetry collector. The testbed is also composed of the two-stage
telemetry collector with the first stage being the P4 aggregation switch
and the second stage being the telemetry server. Each of the switches
we used in our testbed is a bmv2 software switch based on the v1model
architecture and is running on its own general-purpose Ubuntu server
(CPU AMD EPYC 7262 8-core 3.4 GHz, 16 GB RAM).

A traffic generator is used to generate traffic that traverses the
network in Fig. 1 at a rate of 10,000 pps (packets per second). This
traffic triggers the generation of 10,000 postcards at each network
switch, thus a total of 30,000 postcards are sent to the telemetry server.

The number of generated postcards may not be representative of a
real network scenario, as our experiment uses software switches run-
ning on general-purpose hardware and have performance limitations.
The number has been selected to be high enough to overload the CPU
of the telemetry server and allow the comparison between the various
proposed solutions.

The WireShark capture of Fig. 8, recorded at the P4 collector, shows
9

the 𝐴𝑔𝑔𝑁 (16) packet along with the last two postcards originated from
the same switch (i.e., with IP address 1.1.1.1) subject to aggregation.
Each postcard has a payload of 68 bytes where 8 bytes belong to the
telemetry group header and the other 60 bytes belong to the report.
Another WireShark capture is shown in Fig. 9, referred to as the
𝐶𝑜𝑟𝑁 (2) packet conveying the minimum, maximum, and average values
of the collected intra-switch latency.

5.1. CPU load of the telemetry server

We evaluate the capability of the proposed schemes to reduce the
number of packets that need to be decapsulated and sent to higher
layers at the telemetry server, as the number of such packets greatly
affects the telemetry server CPU load. Fig. 10(a) shows the results
obtained in the testbed as a comparison between three aggregation
levels. The 𝐴𝑔𝑔(0) case is considered as a baseline, as the P4 aggre-
gation switch just forwards postcards to the telemetry server without
any modification. From 𝐴𝑔𝑔(0) we can clearly see a CPU overload event
(i.e., 100% CPU) which can be explained by the need to dissect a high
number of packets received at the network interface.

The second case considers the P4 aggregation switch performing
𝐴𝑔𝑔(15). Results show a reduction of the CPU load down to around
50% due to the reduced number of received packets, accounting for a
reduction factor of around 15.

The third case is 𝐴𝑔𝑔(25) when the number of received packets is
reduced by a factor of around 25 and we observe even further reduction
in the CPU load down to less than 30%.

For reference, we ran a tcpdump process [35] which is a high-
performance tool for reading packets from a network interface. The
numbers we obtained when measuring the CPU usage of the tcpdump
process were 13% when no aggregation was applied, and 8% for the
𝐴𝑔𝑔(25) aggregation level that shows a 5% reduction in CPU usage
or a 38% improvement. However, in the case of tcpdump no further
dissecting or writing to the database was performed.

We can conclude that the decapsulation process of the received
packets is a very expensive task in terms of CPU usage and reducing
the rate of received packets by performing aggregation at the P4 switch
frees a significant amount of CPU cycles that can be allocated to other
useful tasks. It is worth noting that in each case there is no actual loss
of any information and the benefit is obtained merely by aggregating
the reports from multiple packets in one.

In the next step, we compare the impact of 𝐴𝑔𝑔 and 𝐶𝑜𝑟 solutions
at the telemetry server. In 𝐴𝑔𝑔, the telemetry server is receiving an
aggregated packet, extracts all the different values, and computes the
statistics (i.e., average values in addition to maximum and minimum
values). In 𝐶𝑜𝑟, the calculation of minimum, maximum and average val-
ues is done by the P4 aggregation switch before sending the correlated
packet to the telemetry server.

We did not measure a significant difference in the CPU load on the
telemetry server between the two cases of correlation when the packets
are received by the network interface of the telemetry server due to the
fact that most of the load on the CPU was caused by the decapsulation
process of the received packets, and since the number of the packets is
the same in both cases the CPU load was almost identical.

For this reason, we conducted a similar experiment; however, in-
stead of reading packets from the network interface at the telemetry
server, we read the packets from two packet-capture files (a .pcap
file). Both files include a total of 1000 packets. The first .pcap file
contains 1000 telemetry packets, each aggregating 16 telemetry reports
originating from a single node. The reports are not modified and are
kept as they were exported by their original node with no correlation
inside the reports. In this case, the telemetry server reads the sixteen
reports from each packet and calculates the minimum, maximum,
and average values. At the end of each packet, the calculated values
are written to a local database. The second .pcap file contains 1000
telemetry packets that originated from a single node in the network.

However, each packet contains a correlated telemetry report in which

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 8. WireShark captures showing the payload of an 𝐴𝑔𝑔𝑁 (16) along with the payload of the last two received postcards.
Fig. 9. WireShark captures showing the payload of a 𝐶𝑜𝑟𝑁 (2) along with the payload of the two correlated postcards.
Fig. 10. (a) Comparing the load on the CPU for different aggregation levels, and (b) time in seconds taken by the telemetry server to process 1000 packets from a .pcap file.
only the minimum, maximum, and average values for the 16 telemetry
reports that otherwise should be carried in the packet’s payload. We
show the impact carried by 𝐶𝑜𝑟 levels of aggregation by feeding .pcap
10
files to the telemetry server and thus skipping the reading of the packets
from the network interface. The result is a reduction of the processing
time of 1000 telemetry packets taken by the telemetry server from an

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 11. Agg(R): normalized bandwidth consumption for different values of R.
.

average time of 2.969 s down to an average time of 2.6255 s, reaching
about 11.57% reduction of the processing time as shown in Fig. 10(b).

5.2. Bandwidth usage

The aggregation of report packets leads to the removal of packet
headers encapsulating individual reports, which in turn leads to a re-
duction of the bandwidth. We can derive a simple formula for calculat-
ing such reduction. Let 𝐻𝑂 be the length of the headers encapsulating
the payload which contains the telemetry report, this can be assumed
as a stack of an Ethernet header followed by an IP and UDP headers.
Assuming minimum lengths, 𝐻𝑂 = 14 + 20 + 8 = 42 bytes. A single
telemetry report, according to [26], has a group header with length
𝐻𝐺 = 8 bytes (used to identify the source node and the hardware
that generated the report) and an individual report header with length
𝐻𝑅 = 60 bytes for a report carrying the entire set of P4 metadata [26].
Thus, the total postcard length is 110 bytes. In the case of 𝐴𝑔𝑔(𝑅),
the total length of an aggregated packet will be: 𝐻𝑂 + 𝑅 × (𝐻𝐺 +𝐻𝑅)
where 𝑅 is the level of aggregation, instead of 𝑅 × (𝐻𝑂 + 𝐻𝐺 + 𝐻𝑅)
in case of no aggregation. Using the above numbers, the normalized
bandwidth can be derived as a function of the aggregation level: 𝐵𝑊𝑛 =
(42 + 𝑅 × 68)∕(𝑅 × 110). The plot of the normalized bandwidth con-
sumption for different values of 𝑅 for an 𝐴𝑔𝑔(𝑅) level of aggregation is
shown in Fig. 11. Fig. 12(a) shows the normalized usage of bandwidth
for different 𝐴𝑔𝑔(𝑅) levels of aggregation, and we can see the total
bandwidth used by the telemetry packets is reduced to 66% for 𝐴𝑔𝑔(8)
while the bandwidth usage is down to only 63% of its original amount
when using 𝐴𝑔𝑔(25) level of aggregation.

When performing the correlation at the P4 aggregation switch, it
is possible to achieve higher bandwidth savings due to the fact that
most of the data inside the telemetry reports are discarded. For exam-
ple, neglecting timestamps and interfaces and sending only minimum,
maximum, and average values, only 𝐻𝑅+𝐻𝐺 = 68 bytes are necessary
for a total telemetry packet length of 110 bytes. We can see the benefits
of correlation in terms of bandwidth savings in Fig. 12(b), which
shows the usage of the normalized bandwidth in cases of 𝐶𝑜𝑟(8) with
a reduction to only 110∕(8 × 110) = 12.5% of the original bandwidth
consumed by telemetry packets, and 𝐶𝑜𝑟(16) which can achieve a
further reduction to less than 7% of the original bandwidth used.
11
Table 1
Different delays in milliseconds at the P4 aggregation switch for different arrival rates

Agg. level

Arr. rate (pps) Agg(4) Agg(8) Agg(16) Agg(25)

2000 2 4 8 12.5
5000 0.8 1.6 3.2 5

10000 0.4 0.8 1.6 2.5

5.3. Delay

Besides CPU load and bandwidth occupancy, each proposed solution
has a different impact in terms of the delay of the whole telemetry
process. The delay includes the time needed to wait for the reception
and the aggregation of subsequent telemetry packets, and the time
needed at the aggregation switch to process the single postcards reports
and generate the aggregated version.

The maximum queuing delay (i.e., the time elapsing between the
arrival of the first and last postcard in the queue) can be estimated
using the formula 𝐷 = 𝑅∕𝐴 where 𝐴 is the arrival rate of the telemetry
packets measured in packets per unit time and 𝑅 is the aggregation
level, i.e. the number of reports that need to be stored in memory
before building the aggregated packet to the telemetry server. 𝑅 can be
set in terms of priority where lower values of 𝑅 correspond to higher
priorities, and 𝑅 = 0 corresponding to 𝐷 = 0 is the highest possible
priority with no extra delay introduced in the arrival of telemetry
reports. We calculate in Table 1 the queuing delay in milliseconds
introduced by the aggregation process at the P4 aggregation switch for
different aggregation levels and different arrival rates.

Another source of delay referred to as aggregation delay, is intro-
duced in the P4 aggregation switch due to the processing of the aggre-
gated packet, including reading the aggregated packet from memory
and the deparsing of the headers. The aggregation delay is measured
as the time elapsing between the arrival of the last postcard in the
queue and the transmission of the aggregated packet out of the output
interface. We measured the aggregation delay inside the P4 aggrega-
tion switch (i.e., a BMv2 software switch) and we observed a similar
performance between different aggregation levels for a certain postcard
arrival rate, around 60 μs. This result is interesting and confirms that
the P4 aggregation switch implementation introduces a fixed delay
regardless of the selected aggregation level. The maximum delay in the

Computer Networks 227 (2023) 109727F. Alhamed et al.
Fig. 12. (a) Normalized bandwidth usage for different 𝐴𝑔𝑔(𝑅) levels of aggregation. (b) Normalized bandwidth usage for different 𝐶𝑜𝑟(𝑅) levels of aggregation.
arrival of a telemetry report will be equal to the sum of queuing delay
plus the aggregation delay.

5.4. Scalability

We evaluate the resources needed by the P4 aggregation switch
in order to perform the various aggregation levels. For all levels of
aggregation, the P4 aggregation switch must detect the existence of
a telemetry report via the parser and by matching the flow through
the destination IP address and UDP port number. Thus, a new state is
needed at the parser state machine, and the amount of resources needed
for every aggregation level is quantified as follows:

1. 𝐴𝑔𝑔(𝑅) ∶ for the aggregation of the telemetry reports the P4
aggregation switch needs a register bank of capacity 𝑅×𝐿𝑟 where
𝐿𝑟 is the length of the telemetry report and 𝑅 is the number of
aggregated reports. An addition register of size 𝐿𝑝 is required for
storing the variable that points to the last location of the register
bank in which a telemetry report was written. In this case, the
resources needed at the P4 aggregation switch are independent
of the number of switches and flows in the network.

2. 𝐴𝑔𝑔𝑁 (𝑅) ∶ for this level of aggregation the switch requires a
register bank of the capacity of 𝑁×𝑅×𝐿𝑟 where 𝑁 is the number
of monitored switches as well as a match-action table with 𝑁
entries for setting a switch ID to identify the register to which
the telemetry report must be written. In addition, a register bank
of size 𝑁 ×𝐿𝑝 is required to store the different variables needed
to point to the locations in the register banks of each switch to
which it was written last. In this aggregation level the hardware
requirements scale with the number of monitored switches in the
network.

3. 𝐴𝑔𝑔𝑁,𝐹 (𝑅) ∶ in this aggregation level a register bank of the
capacity of 𝐹 × 𝑁 × 𝑅 × 𝐿𝑟 is needed where 𝐹 is the number
of monitored flows assuming the same number of monitored
flows at every switch. In addition to the previous register bank,
another bank of registers of size 𝐹 × 𝑁 × 𝐿𝑝 is needed to keep
track of various pointers that belong to different switches and
different flows. Also, two match-action tables are needed for the
setting of switch ID and flow ID for the identification within the
P4 program of the proper registers within the P4 aggregation
switch. In this solution the hardware requirements scale with the
product between the number monitored of flows and the number
of monitored switches.

4. 𝐶𝑜𝑟(𝑅) ∶ for this aggregation level in our implementation three
registers of adequate size (variable per the monitored parameter)
were needed to store the maximum, minimum, and the sum of
12
values of every monitored parameter the average values are then
calculated by dividing the sum by the number of aggregated
reports. In addition, a single register is needed to hold the value
of a counter variable for detecting when the correlation level is
reached. The hardware requirements are constant regardless of
the network size and the number of flows.

5. 𝐶𝑜𝑟𝑁 (𝑅) ∶ for this solution the number of registers needed is the
same number as 𝐶𝑜𝑟(𝑅) multiplied by the number of monitored
switches in the network N. In addition to requiring a match-
action table with 𝑁 entries for setting identifying the correct
registers in the P4 program. The hardware requirements for this
solution scale with the number of monitored switches in the
network.

6. 𝐶𝑜𝑟𝑁,𝐹 (𝑅) ∶ for this solution the number of the required register
is the same as the number needed by 𝐶𝑜𝑟𝑁 (𝑅) multiplied by the
number of flows F, assuming the same number of flows at every
switch. In addition, a second match-action table is required for
adding the flow ID and correctly identifying the register to which
the values must be written. The hardware requirements of this
solution scale with the product between the number of switches
times and the number of flows. This solution may not realistic
in the majority of cases. However, a network manager might
still choose to implement this solution for a selected configurable
number of flows to collect only a summary of the telemetry data.

Among the different solutions that we have shown in this paper,
we conclude that the 𝐴𝑔𝑔(𝑅) solution is the easiest to implement in
the P4 aggregation switch as the needed hardware resources do not
change with the number of the switches and the number of flows in
the network and requires a static number of registers; in addition, the
𝐴𝑔𝑔(𝑅) solution does not compromise any of the information included
in the telemetry reports. Meanwhile, the 𝐶𝑜𝑟(𝑅) solution blurs all the
details about the network state and only offers a general insight which
may not be very useful in most cases.

The 𝐴𝑔𝑔𝑁 (𝑅) and solution could also be feasible for a low and
known number of switches in the network. The same thing can be said
about the 𝐶𝑜𝑟𝑁 (𝑅) solution in case the network operator can tolerate
the loss of some info due to the correlation process.

On the other hand, the 𝐴𝑔𝑔𝑁,𝐹 (𝑅) along with 𝐶𝑜𝑟𝑁,𝐹 (𝑅) solu-
tions may not be practical as the costs of such implementations may
overwhelmingly outweigh any benefits.

6. Conclusions

In this paper, we proposed pre-processing postcard telemetry mes-
sages at a dedicated P4 capable switch forming the first stage of

Computer Networks 227 (2023) 109727F. Alhamed et al.
a two-stage telemetry collector. We demonstrated the potential CPU
load reduction at the telemetry server and bandwidth savings in the
network at the cost of an extra, limited, introduced delay due to the
postcards queuing behavior. The different levels of aggregation, along
with the concept of distributed telemetry aggregation allows to adapt
the application to the hardware available at the P4 switch and makes
the application suitable for various hardware capabilities. We proposed
a complete P4 design for the aggregation switch and evaluated a proof
of concept in an SDN network testbed using the P4 reference software
switch. We introduced the 𝐴𝑔𝑔(𝑅) solution which offers the greatest
scalability independently from the number of switches and flows in
the network and we demonstrated that it is possible — using the
𝐴𝑔𝑔(25) solution to reduce the load of the CPU by around 70% and
the bandwidth consumed by telemetry packets by almost 35% at the
cost of a maximum added delay of around 72.5 μs for an arrival rate
of 2000 pps. By performing correlations in the P4 aggregation switch
we showed that it is possible to reduce processing time in the CPU by
around 11% and reduce the bandwidth consumption by up to over 93%
at the cost of losing some of the information contained in the telemetry
reports. The next research steps will investigate implementations using
commercially available P4 switches in the market and explore the true
feasibility and limitations of our application.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Acknowledgments

This work has been funded by the European Commission Hori-
zon Europe SNS JU DESIRE6G project, under grant agreement No.
101096466, and by the KDT JU ID2PPAC Project, under grant agree-
ment No. 101007254.

References

[1] R. Tkach, Network traffic and system capacity: Scaling for the future, in: 36th
European Conference and Exhibition on Optical Communication, 2010, pp. 1–22.

[2] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, H.
ElBakoury, Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet
standards and related 5G ULL research, IEEE Commun. Surv. Tutor. 21 (2019)
88–145.

[3] S. Wang, U. Franke, Enterprise IT service downtime cost and risk transfer in
a supply chain, Oper. Manag. Res. 13 (6) (2020) 94–108, http://dx.doi.org/10.
1007/s12063-020-00148-x.

[4] P. Smith, D. Hutchison, J. Sterbenz, M. Schöller, A. Fessi, M. Karaliopoulos, C.
Lac, B. Plattner, Network resilience: A systematic approach, IEEE Commun. Mag.
49 (2011) 88–97.

[5] E. Jafarnejad Ghomi, A. Masoud Rahmani, N. Nasih Qader, Load-balancing
algorithms in cloud computing: A survey, J. Netw. Comput. Appl. 88 (2017)
50–71, https://www.sciencedirect.com/science/article/pii/S1084804517301480.

[6] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, P. Casas, A survey on big data
for network traffic monitoring and analysis, IEEE Trans. Netw. Serv. Manag. 16
(2019) 800–813.

[7] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, N. Li, In-band
network telemetry: A survey, Comput. Netw. 186 (2021) 107763, https://www.
sciencedirect.com/science/article/pii/S1389128620313396.

[8] H. Zhang, Z. Cai, Q. Liu, Q. Xiao, Y. Li, C. Cheang, A survey on security-
aware measurement in SDN, Secur. Commun. Netw. 2018 (4) (2018) 2459154,
http://dx.doi.org/10.1155/2018/2459154.

[9] P4.org P4 in-band telemetry specification v2.1, 2020, https://p4.org/p4-spec/
docs/INT_v2_1.pdf. (Accessed 16 August 2022).

[10] D. Scano, F. Paolucci, K. Kondepu, A. Sgambelluri, L. Valcarenghi, F. Cugini,
Extending P4 in-band telemetry to user equipment for latency- and localization-
aware autonomous networking with AI forecasting, J. Opt. Commun. Netw. 13
(2021) D103–D114.
13
[11] M. Dimolianis, A. Pavlidis, V. Maglaris, Signature-based traffic classification and
mitigation for DDoS attacks using programmable network data planes, IEEE
Access.

[12] E.F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on P4 pro-
grammable data plane switches: Taxonomy, applications, challenges, and future
trends, IEEE Access 9 (2021) 87094–87155, http://dx.doi.org/10.1109/ACCESS.
2021.3086704.

[13] Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ramanathan, Gabriele Oliaro,
Michael Mitzenmacher, Minlan Yu, Gianni Antichi, Zero-CPU collection with
direct telemetry access, in: Proceedings of the Twentieth ACM Workshop on
Hot Topics in Networks, HotNets ’21, Association for Computing Machinery,
New York, NY, USA, 2021, pp. 108–115, http://dx.doi.org/10.1145/3484266.
3487366.

[14] Minlan Yu, Network telemetry: Towards a top-down approach, SIGCOMM Com-
put. Commun. Rev. 49 (1) (2019) 11–17, http://dx.doi.org/10.1145/3314212.
3314215.

[15] J. Hyun, N.Van Tu, J. Yoo, J. Hong, Real-time and fine-grained network
monitoring using in-band network telemetry, Int. J. Netw. Manage. 29 (2019)
e2080, https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2080.

[16] F. Alhamed, D. Scano, P. Castoldi, F. Paolucci, F. Cugini, I. Verschkov, J.
Vegas Olmos, P4 postcard telemetry collector in packet-optical networks, in:
2022 International Conference on Optical Network Design and Modeling, ONDM,
2022, pp. 1–3.

[17] N. Feamster, J. Rexford, E. Zegura, The road to SDN: An intellectual history
of programmable networks, Queue 11 (12) (2013) 20–40, http://dx.doi.org/10.
1145/2559899.2560327.

[18] N. Feamster, J. Rexford, E. Zegura, The road to SDN: An intellectual history
of programmable networks, Queue 11 (12) (2013) 20–40, http://dx.doi.org/10.
1145/2559899.2560327.

[19] P4.org P416 P4runtime specifications v.1.3.0, 2020, https://p4.org/p4-spec/
p4runtime/v1.3.0/P4Runtime-Spec.pdf. (Accessed 20 August 2022).

[20] P4.org P416 language specification v1.2.3, 2022, https://p4.org/wp-content/
uploads/2022/07/P4-16-spec.pdf. (Accessed 10 August 2022).

[21] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: Programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44 (7) (2014)
87–95, http://dx.doi.org/10.1145/2656877.2656890.

[22] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, N. McKeown, I know what
your packet did last hop: Using packet histories to troubleshoot networks,
in: 11th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 14, 2014, pp. 71–85, https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/handigol.

[23] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, HULA: Scalable load
balancing using programmable data planes, in: Proceedings of the Symposium
on SDN Research, 2016, pp. 3–14, http://dx.doi.org/10.1145/2890955.2890968.

[24] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, J. Rexford,
Clove: Congestion-aware load balancing at the virtual edge, in: Proceedings of
the 13th International Conference on Emerging Networking EXperiments and
Technologies, 2017, pp. 323–335, http://dx.doi.org/10.1145/3143361.3143401.

[25] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, D. Mazières, Millions of little
minions: Using packets for low latency network programming and visibility,
in: Proceedings of the 2014 ACM Conference on SIGCOMM, 2014, pp. 3–14,
http://dx.doi.org/10.1145/2619239.2626292.

[26] P4.org P4 telemetry report format v2.0, 2020, https://p4.org/p4-spec/docs/
telemetry_report_v2_0.pdf. (Accessed 20 August 2022).

[27] Cesar Gomez, Abdallah Shami, Xianbing Wang, Efficient network telemetry based
on traffic awareness, 2021, http://dx.doi.org/10.36227/techrxiv.15057981.v1,
TechRxiv. Preprint.

[28] S. Sheng, Q. Huang, P.P.C. Lee, DeltaINT: Toward general in-band network
telemetry with extremely low bandwidth overhead, in: 2021 IEEE 29th Inter-
national Conference on Network Protocols, ICNP, Dallas, TX, USA, 2021, pp.
1–11, http://dx.doi.org/10.1109/ICNP52444.2021.9651963.

[29] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, Michael Mitzenmacher, PINT: Probabilistic in-band network teleme-
try, in: Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’20, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 662–680, http://dx.doi.
org/10.1145/3387514.3405894.

[30] P4.org P4 behavioral model targets, 2022, https://github.com/p4lang/
behavioral-model/tree/main/targets. (Accessed 18 August 2022).

[31] H. Harkous, M. Jarschel, M. He, R. Pries, W. Kellerer, P8: P4 with predictable
packet processing performance, IEEE Trans. Netw. Serv. Manag. 18 (2021)
2846–2859.

[32] P. Gupta, N. McKeown, Algorithms for packet classification, IEEE Netw. 15
(2001) 24–32.

[33] P4.org P4 compiler, 2022, https://github.com/p4lang/p4c. (Accessed 03 August
2022).

[34] P4.org behavioral model v2, https://github.com/p4lang/behavioral-model.
[35] 9 (2021) 113061–113076, https://www.tcpdump.org/.

http://refhub.elsevier.com/S1389-1286(23)00172-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb2
http://dx.doi.org/10.1007/s12063-020-00148-x
http://dx.doi.org/10.1007/s12063-020-00148-x
http://dx.doi.org/10.1007/s12063-020-00148-x
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb4
https://www.sciencedirect.com/science/article/pii/S1084804517301480
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb6
https://www.sciencedirect.com/science/article/pii/S1389128620313396
https://www.sciencedirect.com/science/article/pii/S1389128620313396
https://www.sciencedirect.com/science/article/pii/S1389128620313396
http://dx.doi.org/10.1155/2018/2459154
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb10
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb11
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb11
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb11
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb11
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb11
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1145/3484266.3487366
http://dx.doi.org/10.1145/3484266.3487366
http://dx.doi.org/10.1145/3484266.3487366
http://dx.doi.org/10.1145/3314212.3314215
http://dx.doi.org/10.1145/3314212.3314215
http://dx.doi.org/10.1145/3314212.3314215
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2080
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb16
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf
https://p4.org/wp-content/uploads/2022/07/P4-16-spec.pdf
https://p4.org/wp-content/uploads/2022/07/P4-16-spec.pdf
https://p4.org/wp-content/uploads/2022/07/P4-16-spec.pdf
http://dx.doi.org/10.1145/2656877.2656890
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
http://dx.doi.org/10.1145/2890955.2890968
http://dx.doi.org/10.1145/3143361.3143401
http://dx.doi.org/10.1145/2619239.2626292
https://p4.org/p4-spec/docs/telemetry_report_v2_0.pdf
https://p4.org/p4-spec/docs/telemetry_report_v2_0.pdf
https://p4.org/p4-spec/docs/telemetry_report_v2_0.pdf
http://dx.doi.org/10.36227/techrxiv.15057981.v1
http://dx.doi.org/10.1109/ICNP52444.2021.9651963
http://dx.doi.org/10.1145/3387514.3405894
http://dx.doi.org/10.1145/3387514.3405894
http://dx.doi.org/10.1145/3387514.3405894
https://github.com/p4lang/behavioral-model/tree/main/targets
https://github.com/p4lang/behavioral-model/tree/main/targets
https://github.com/p4lang/behavioral-model/tree/main/targets
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00172-X/sb32
https://github.com/p4lang/p4c
https://github.com/p4lang/behavioral-model
https://www.tcpdump.org/

Computer Networks 227 (2023) 109727F. Alhamed et al.
Faris Alhamed received his B.S. in Telecommunication and
Electronics Engineering in 2017 from Tishreen University,
Latakia, Syria. And in 2021 he received a joint M.S. degree
form both Aston University, Birmingham, UK, and Scuola
Superiore Sant’Anna, Pisa, Italy, in Photonic Integrated
Circuits, Sensors and NETworks — PIXNET. He is a currently
a Ph.D. student at Scuola Superiora Sant’Anna expected to
graduate by the end of 2024. His research focuses on data-
plane programmability and its applications in switches and
SmartNICs.

Davide Scano received his B.S. in telecommunication en-
gineering from the University of Pisa (2017) and his M.S
in computer science and networking from the University of
Pisa and Scuola Superiore Sant’Anna (2019), discussing a
research thesis on software defined networking for guar-
antee QoS in network slicing. In 2020 he got a Research
Scholarship at Scuola Superiore Sant’Anna, Pisa. Currently,
he is Ph.D. student at Scuola Superiore Sant’Anna. His
research interests are software defined networking, network
slicing, optical networks.

Piero Castoldi is a Full Professor and leader of the ‘‘Net-
works and Services’’ research area at the TeCIP Institute
of Scuola Superiore Sant’Anna, Pisa, Italy. He has been
involved with various responsibilities in several national and
EU FP7 and H2020 projects and he has managed several
corporate-sponsored projects with the italian Railway In-
frastructure Company, Ericsson, Telecom Italia. He is the
Director of the Erasmus Mundus Master on Photonic Inte-
grated Circuits, Sensors and Networks (PIXNET). His most
recent research interests lie in the areas of optical network
architectures, interconnection networks for Data Centers,
networks for industrial applications, 5G networking. He is
author of more than 400 technical papers published in inter-
national journals and international conference proceedings.
He has also filed more than 20 patents and he has authored
a book on multiuser detection for CDMA mobile terminals
published by Artech House.

Juan Jose Vegas Olmos received the B.Sc. and the M.Sc.
in Telecommunications and Electronic Engineering, respec-
tively, in 2001 and 2003. He obtained the Ph.D. degree from
the Eindhoven University of Technology, The Netherlands,
in 2006. He also holds a MA in East Asian Studies, a BA
in Business Administration and an MBA. He was a Research
Fellow at Osaka University, Japan, from 2006 to 2008, and
a Research Associate at the Central Research Laboratory,
Hitachi Ltd, until 2011. He is now the Research Program
Coordinator for NVIDIA Corporation in the area of Software
Architecture.
14
Ilya Vershkov graduated from the Technion Israel Institute
of Technology.

He has held diverse leadership positions at Seabridge
and Nokia, until joining Mellanox Technologies, currently
NVIDIA Corporation, in 2021.

Since then, he has been driving R&D efforts in the area
of switches and advanced telemetry systems. He is Senior
Architect in the area of Software Architecture.

Francesco Paolucci Received the Laurea degree in telecom-
munications engineering from the University of Pisa
in 2002, and the Ph.D. degree from Scuola Superiore
Sant’Anna, Pisa, in 2009. In 2008 he was granted a
research Merit Scholarship at the Istitut National de le
Recherche Scientifique (INRS), Montreal, Quebec, Canada.
Currently, he is Senior Researcher at CNIT, Pisa Italy.
His main research interests are in the field of network
control plane, orchestration for edge/cloud platforms, traf-
fic engineering, network disaggregation, advanced network
telemetry, SDN/P4 data plane programmability. He has been
involved in many European research projects on next gener-
ation control networking (E-Photon/ONe+, BONE, NOBEL,
STRONGEST, IDEALIST, PACE, 5GEx, 5GTRANSFORMER,
METROHAUL, 5Growth, BRAINE). He is co-author of 2 IETF
Internet Drafts, more than 180 publications in international
journals, conference proceedings and book chapters, and
filed 4 international patents. He is Executive Editor of the
Transactions on Emerging Telecommunications Technologies
(ETT) and Associate Editor of the IEEE/OSA Journal of
Optical Communications and Networking (JOCN).

Filippo Cugini is Head of Research Sector at CNIT, Pisa,
Italy. His main research interests include theoretical and
experimental studies in the field of communications and
networking.

He serves as Coordinator of the ECSEL BRAINE Project,
an EU-funded project aiming at boosting Artificial Intelli-
gence at the network Edge.

He is co-author of 14 patents and more than 250
international publications.

	P4 Telemetry collector
	Introduction
	Motivation
	Our Early Work
	Paper Contribution
	Organization of This Paper

	Background
	Software Defined Networking (SDN)
	Programmable Data Plane (PDP)
	In-Band Network Telemetry (INT)
	Telemetry Collection
	Related Work on Overhead Reduction

	A Two-Stage Telemetry Collector
	Different Aggregation Levels
	Correlation of Telemetry Reports
	Processing of Telemetry Reports
	Distributed Aggregation of Telemetry Reports
	Priority-Based Aggregation
	Multiple Variable-Size Buffers

	The Implementation
	The P4 Aggregation Switch
	The Parser
	The Ingress
	The Egress
	The Deparser

	Correlation on the P4 Aggregation Switch
	The Telemetry Server
	The Network Switch

	Results
	CPU Load of the Telemetry Server
	Bandwidth Usage
	Delay
	Scalability

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

