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Abstract— The design of prosthetic controllers by means
of neurophysiologicalsignals still poses a crucial challenge
to bioengineers. State of the art of electromyographic
(EMG) continuous pattern recognition controllers rely
on the questionable assumption that repeated muscular
contractions produce repeatable patterns of steady-state
EMG signals. Conversely, we propose an algorithm that
decodes wrist and hand movements by processing the
signals that immediately follow the onset of contraction
(i.e., the transient EMG). We collected EMG data from the
forearms of 14 non-amputee and 5 transradial amputee
participants while they performed wrist flexion/extension,
pronation/supination, and four hand grasps (power, lateral,
bi-digital, open). We firstly identified the combination of
wrist and hand movements that yielded the best control
performance for the same participant (intra-subject clas-
sification). Then, we assessed the ability of our algorithm
to classify participant data that were not included in the
training set (cross-subject classification). Our controller
achieved a median accuracy of ∼96% with non-amputees,
while it achieved heterogeneous outcomes with amputees,
with a median accuracy of ∼89%. Importantly, for each
amputee, it produced at least one acceptable combination
of wrist-hand movements (i.e., with accuracy > 85%).
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Regarding the cross-subject classifier, while our algorithm
obtainedpromisingresults with non-amputees (accuracy up
to ∼80%), they were not as good with amputees (accuracy
up to ∼35%), possibly suggesting further assessments
with domain-adaptation strategies. In general, our offline
outcomes, together with a preliminary online assessment,
support the hypothesis that the transient EMG decoding
could represent a viable pattern recognition strategy,
encouraging further online assessments.

Index Terms— Myoelectric control, pattern recognition,
transient EMG, hand wrist prosthetics, cross-subject clas-
sifier.

I. INTRODUCTION

DECODING neurophysiological signals produced by
humans during voluntary motor tasks for controlling

limb prostheses, in a seamless manner, is an essential yet
unsolved challenge in applied neuroscience and rehabilitation
engineering. People with a below-elbow (or transradial)
amputation preserve in their residual limb the musculature
originally serving the wrist and the hand. Hence, the inter-
preted electromyogram (EMG) acquired from such extrinsic
muscles in the forearm, represents an ideal solution for
controlling multi-degrees of freedom (DoF) hand prostheses,
in a biomimetic manner [1], [2]. In the last two decades,
the implementation of new surgical techniques allowing the
implantation of myoelectric sensors or electrodes proved the
possibility of restoring direct access to the neurophysiological
paths disrupted by the amputation [1]. Nevertheless, the
recording of surface EMG remains today the most widely
spread, reliable, and clinically viable approach for controlling
battery-operated transradial prostheses [3]. One of the most
common approaches available today is substantially the
two-state amplitude controller proposed by Bottomley in the
60’s [4], in which the opening/closing of the motorized
prosthetic hand (one DoF) is controlled using a pair of
agonist/antagonist muscles (also termed direct control). Albeit
relatively intuitive and simple to fit, its main limitation is
that it can distinguish only between two opposite movement
intentions (e.g. open and close), and therefore it fails to be
intuitively extended to multi-DoF control in multiarticulated
hand prostheses.

EMG pattern recognition represents a viable alternative to
direct control and builds on the hypothesis that individuals
with upper limb amputation can intentionally produce distinct
and repeatable muscular contractions for different intended
movements. In such application, a set of mathematical features
is extracted from an array of EMG signals recorded during
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constant, somewhat steady-state contractions. These features
are then fed into a classification algorithm previously trained
to differentiate between patterns relative to different muscular
contractions, thus producing a continuous stream of motor
predictions meant to ultimately control the robotic hand [5].

A wealth of EMG pattern recognition systems has been
proposed so far by the research community using several kinds
of machine learning techniques [6]. Such systems are usually
assessed in the vast majority via offline analysis [1], [6],
and more rarely via online tests with both amputee and non-
amputee participants [1]. Unfortunately, only a few reached
a level of performance relevant for clinical translation [7],
[8], and even less reached the commercialization stage [9],
[10], [11]. Nonetheless, a few of the great promises of
machine learning, namely, the possibility to: (i) learn how
to deal with a range of different contractions, (ii) adapt
to varying environmental conditions [12], [13], and (iii)
generalize across different individuals, have been hindered
by the stochastic nature of the picked up EMG signal.
In fact, the assumption that repeated muscular contractions
produce repeatable (mathematically describable) patterns of
steady-state EMG is statistically weak, due to physiological
reasons [14]. On the contrary, the EMG associated with the
onset of the myoelectric activity (i.e., the transient EMG)
shows a clearer temporal structure, likely due to the orderly
recruitment of the motor units [14], [15]. Remarkably, in one
of their studies on prosthetic control, Hudgins and colleagues
first observed that the transient EMG was more descriptive of
the intended movement than the steady-state EMG [16].

Inspired by Hudgins’ original work, we recently proposed a
computational framework for recognizing the grasp intention
from the forearm EMGs associated with the onset of muscle
contraction [17]. We found that the transient EMG phase can
be indeed used for predicting/classifying the intended grasp
type (power, lateral, bi-digital grasps, open movement) and for
controlling multi-grasp prosthetic hands with remarkable real-
time performance. In parallel, we also proved that the onset
of contraction includes relevant information predictive of the
pre-planned grip force [18] and can be extracted in real-time
using a regression algorithm [19]. In this work, we sought to
further investigate the potential and limitations associated with
the transient EMG controller by assessing its classification
ability on a more complex problem of eight classes, including
both wrist (flexion, extension, pronation, supination) and
hand movements (open hand and power, lateral and bi-digital
grasps). To this aim, we collected EMG data from the forearms
of 14 non-amputee and 5 transradial amputee participants
while they performed the aforementioned eight movements.
Through offline processing, we extracted the portions of data
associated with the onset of the muscular contraction and
processed these to identify the intended movements using a
representative classifier (intra-subject analysis). In addition,
one of the amputee participants preliminarily assessed the
online performance of the proposed classifier by means of the
target achievement control (TAC) test developed by Simon and
colleagues [20].

Moreover, we assessed for the first time whether the
informative content of the transient EMG could be used
to train a cross-subject classifier, i.e., whether the data

collected from multiple users could be used to train a
classifier able to decode the movements of a new user
(not present in the training set). The clinical appeal of
this approach lies in the fact that, eliminating the need of
collecting the new user data, would allow both to shorten the
procedure for training the algorithm as well as to increase
the control stability over multiple days [21], [22]. Cross-
subject classification approaches were already investigated for
conventional continuous classification schemes, i.e. using the
steady-state phase of the EMG. These studies yielded to very
different outcomes with accuracies ranging between 10% and
80% [21], [22], [23], [24], [25]. Such large variability seems
to be due to the kind of movement under investigation: cross-
classification proved acceptable for gross movements (like
wrist movements or power grasps) [22], but rather modest
for finer movements (e.g. precision grasp or individual digits
movements) [21], [23]. Furthermore, suboptimal results have
motivated the use of more complex mathematical approaches
to pre-process the data in order to maximize the features
space correlation across participants [22], [26], [27]. Those
achieved by Sheng and colleagues, proved among the most
promising outcomes, reaching an accuracy of ∼75% over
seven classes (including wrist movements and the power
grasp) and using data from six participants for training (LDA
classifier) [22]. All in all, while machine learning proved
capable to tackle the inter-subject variability as described by
steady-state EMG patterns (at least for gross movements), it is
still unknown whether the transient EMG could or not. Likely
is unknown whether this may apply to the target population:
to the best of our knowledge, cross-subject classification using
signals collected from participants with amputations was never
reported.

The intra-subject classification of the eight class problem
exhibited a median classification accuracy of 96.2% (Inter
Quartile Range (IQR) 5.6%) with non-amputee participants,
and 89.2% (10.5%) with amputee participants. Moreover,
at least one sub-combination of wrist and hand movements
(from four to eight movements) with considerable accuracy
(>85%) was found for each amputee participant [28].
In the preliminary online assessment, the amputee participant
was able to successfully control the eight wrist and hand
movements, completing 81.2% TAC test trials. Regarding the
cross-subject classifier, the results for the eight class problem
proved promising (∼65% accuracy) for non-amputees, albeit
rather poor for amputees (∼30% accuracy), possibly due to the
anatomical differences across amputations. However, we invite
future studies in which implantable electrodes [29] and domain
adaptation strategies [22], [26], [27] are used either to reduce
or compensate for the inter-subject variability.

II. MATERIALS AND METHODS

A. Participants and Experimental Protocol

Five unilateral amputees (three males) with a transradial
short amputation (0% - 55% from the elbow [30]), myoelectric
hand users (Table I), and 14 non-amputees (aged 24-34, four
females) with no known history of neuromuscular disorders,
participated in the study. Informed consent in accordance with
the Declaration of Helsinki was obtained before conducting the
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TABLE I
DEMOGRAPHIC DATA OF BELOW-ELBOW AMPUTEES

experiments from each participant. The study was approved by
the local ethical committee of the Scuola Superiore Sant’Anna,
Pisa, Italy (request no. 02/2017). The methods were carried out
in accordance with the approved guidelines.

Eight surface bipolar electrodes were placed around the
participants’ forearm in a cuff fashion, starting distally to
the elbow joint with the ground electrode placed on the
elbow (Fig. 1). The EMG signals were sampled by a custom
acquisition device (500 Hz sampling rate, 20 Hz second order
Butterworth high-pass filtered and 50 Hz notch filtered) [31]
and sent to a laptop wirelessly (Bluetooth serial port). The
participants sat on a chair in front of a computer screen with
the elbows flexed at 90◦ on a soft cushion. As instructions
were prompted on the screen, the participants were asked to
contract muscles as to perform the eight different movements.
Four were relative to the hand (power grasp, lateral grasp,
bi-digital grasp, hand opening) and four to the wrist (flexion,
extension, pronation, supination). Initially, participants were
instructed to perform one repetition for each movement at
the maximum voluntary contraction level (MVC). Then, they
were asked to perform 20 repetitions of each movement,
at a moderate, non-fatiguing force level (about 40% of the
MVC), and were allowed to pause between each movement.
Contemporarily, the average mean absolute value (aMAV)
from all EMG channels was displayed in real time to the
participant as a bar with variable length (0% representing rest,
100% representing MVC). This biofeedback signal helped the
participants contracting their muscles in a repeatable fashion.
Moreover, participants were asked to focus on intuitive and
“natural” movements of the phantom limb (if any were
perceived) while performing the muscular contractions. All
instructions were provided verbally by the experimenter, then
briefly verified with a few minutes training, and re-iterated if
needed. The recorded EMG data was automatically labelled,
stored, and analyzed offline.

Finally, a preliminary online assessment of the proposed
controller was performed using the TAC test [20]. One of the
amputee participants (i.e, A1) controlled the movement of a
virtual hand shown on the PC screen (Fig. 1) to reach a target
posture, by contracting his forearm muscles. The task included
the execution of all movements included in the offline analysis.

Fig. 1. Experimental setup. A) Participants sat on a chair with the
elbow flexed at 90◦ on a cushion wearing a matrix of EMG electrodes
and looking at a computer screen. The latter displayed in real time a
biofeedback signal proportional to the average mean absolute value
across the channels. B) Placement of the EMG electrodes around the
forearm.

Fig. 2. Transient EMG classifier components. Once the Onset Detection
Algorithm (ODA) identifies an onset (at ts), the portion of EMG MAV
(Mean Absolute Value) within the window WL is extracted and fed to the
classifier.

B. Transient EMG Classifier

A transient EMG controller was implemented in Matlab
(R2017b, The Mathworks, Natick, MA, USA): albeit it
is capable to operate online [17], it was used here for
offline processing of the pre-recorded data. In the current
implementation, the mean absolute value (MAV) was first
computed from each EMG channel with a moving average
filter (100 ms windows, 50 ms overlap). Then, an onset
detection algorithm (ODA) was used to monitor the MAV
time series in order to detect the onsets tS of the muscular
contraction and consequently trigger the classifier. Once an
onset was found, the MAVs contained in a window starting
at tS and lasting for WL (200 ms) were fed into a classifier
(Fig. 2). The length of WL was retrieved from our previous
study [17].

Specifically, about the ODA, it was based on an individually
calibrated threshold detector which relied on the derivative
of the aMAV (daMAV) to detect the beginning of an
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incipient muscular contraction. The calibration procedure
started by defining 800 candidate-thresholds as equidistant
values between a noise baseline (defined empirically as six
times the standard deviation of the daMAV during rest) and the
median of the peaks of all repetitions of a particular movement.
Then, the movement-specific threshold was calculated as the
mean of all candidate-thresholds that yielded to a number of
rising crossings of daMAV equal to the number of repetitions
within the training set. Finally, the minimum value across
movement-specific thresholds was used as the actual ODA
threshold.

The output of the ODA identified the beginning of the
transient EMG phase and triggered the classifier. The latter
was an Error-Correcting Output-Codes classifier with a one-
versus-all coding matrix [32], comprising N binary support
vector machines using a linear kernel, with N being the number
of possible movements. The classifier was fed with time series
of EMG windows starting at tS and lasting for 200 ms, from
which two different feature sets were extracted. The first (FS1)
exploited widely used time domain features (i.e., MAV, zero
crossing (ZC), waveform length (WL), slope sign changes
(SSC) and root mean squared (RMS)) [16], the second (FS2)
exploited the MAV extracted for three consecutive windows
(i.e., MAV(t=50), MAV(t=100), MAV(t=150)), building on our
previous study [17]. FS1 was included to compare our method
with the state-of-the-art steady-state EMG control techniques.

C. Offline Data Analysis

The data were processed offline using the BioPatRec
toolbox for Matlab [33] and the classification accuracy
was used as the performance metric. The definition of the
accuracy was borrowed from the literature and adapted to
the case of transient classification, by computing the ratio
between the number of correctly predicted movements over the
number of total predictions. Besides investigating the general
performance of the transient EMG classifier, we sought to
identify the best combinations of movements that could be
decoded as well as the generalization capability, i.e., the ability
to classify contractions by participants not included in the
training set (cross-subject analysis).

A four-fold cross validation was used to assess the accuracy
of the classifier. For each fold, the classifier was trained
with 5, 10, or 15 repetitions per movement and tested
using 5 repetitions. In all cases, the testing folds contained
the same data. When 10 and 5 repetitions per movement
were used for training, the training fold (which holds
15 repetitions per movement) was randomly down-sampled
to the desired number of repetitions. While we analyzed
the group performance for non-amputees and amputees
using both FS1 and FS2, we performed the successive
intra-subject analyses using FS2, in accordance with our
previous study [17]. The number of training repetitions
that yielded optimal global performance for FS2 was then
used for assessing the performance achieved with different
combinations of movements. Such combinations or subsets
were inspired by those state of the art upper limb prostheses
potentially capable of performing them [34]. Specifically, the

following five combinations were evaluated: all movements
(AM, 8 classes), hand grasps (HG, 4 classes), hand grasps plus
wrist pronation/supination (HGPS, 6 classes), hand grasps plus
wrist flexion/extension (HGFE, 6 classes), and hand open/close
plus wrist movements (OCWR, 6 classes).

Finally, the ability of the transient EMG classifier to classify
contractions by participants whose data were not included in
the training set was investigated using a leave-one-subject-
out cross validation. In particular, the relationship between
accuracy and the number of participants included in the
training set was assessed, in three cases: (i) training and testing
on data from non-amputees (NA-NA), (ii) training and testing
on data from amputees (A-A), and (iii) training on data from
non-amputees and testing on data from amputees (NA-A).
Also in this case, we analyzed the performance using both
FS1 and FS2.

After evaluating the normality and homogeneity of the
data, a one-way repeated measures ANOVA was used to
determine statistical differences among the evaluated groups,
with Bonferroni post-hoc correction. A p-value below 0.05 was
chosen as the threshold for statistical significance.

D. Online Assessment

A1 executed the TAC test in a three-DoF task [20].
In this task, the 8-class (i.e., AM) classifier was trained with
FS2 using the whole acquired dataset (i.e. 20 repetitions
per movement). The wrist movements were combined with
hand grasps for a total of 48 trials (4 grasps × 4 wrist
movements × 3 repetitions). Analogously to the work of
Simon and colleagues [20], the trial timeout, the dwell
time, the maximum speed (proportional to the EMG signal
amplitude), and the target width for matching the target were
set to 45 s, 2 s, 100 ◦/s, and 5 ◦, respectively. To emulate as
much as possible the usage of a real prosthesis we switched
the target and the starting positions, initializing the trial from
the neutral position instead of the position assumed after the
execution of the three DoFs, differently from the work of
Simon et al.

We assessed the functional metrics proposed by Simon et al.
[20]: the completion time (CT), the completion rate (CR)
and the path efficiency (PE). The PE was the ratio between
the shortest path for reaching the target divided by the total
distance traveled by the virtual hand [25].

III. RESULTS

The performance of the classifier significantly increased
with both the number of training samples and the number
of features (i.e., FS1 vs FS2) (Fig. 3). In particular, for non-
amputees, FS1 ranged from a median accuracy of 92.2% (8.7%
IQR) with five repetitions, to a median of 96.2% (5.6%) with
15 repetitions, and FS2 ranged from a median accuracy of
85.9% (8.1% IQR) with five repetitions, to a median of 91.9%
(3.7%) with 15 repetitions. Amputee participants performed
worse, ranging from 80.5% (14.1%) to 89.2% (10.5%) for
FS1 and from 75.6% (11.4%) to 81.6% (8.6%) for FS2.
In non-amputees, the performance with 15 or 10 training
repetitions proved statistically better than with five repetitions
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Fig. 3. Classification accuracy for different features and repetitions in the
training set for non-amputee (A) and amputee participants (B). Features
set 1 (FS1): mean absolute value (MAV), zero crossing, waveform length,
slope sign changes and root mean squared). Features set 2 (FS2): MAV.
Points and triangles represent median and mean values, respectively.
Statistically significant differences, as determined by the Bonferroni post-
hoc correction, are displayed (∗: 0.05 ≥ p > 0.01; ∗∗: 0.01 ≥ p > 0.001;∗∗∗: 0.001 ≥ p).

(p<0.001 and p<0.05, respectively); similarly, a statistical
difference was found between 10 and 15 repetitions (p<0.01).
Analogously, for both 5, 10 and 15 repetitions the performance
proved significantly better using FS1 instead of FS2 (p<0.01).
In amputee participants, both the training repetitions and the
number of features did not yield to statistically different
performances.

More in detail, in non-amputee participants, albeit all
movements were seldom misclassified as the lateral and the bi-
digital grasps, the overall performance proved rather consistent
across classes and participants, exhibiting an accuracy of
91.9% for the 15 repetitions and FS2 (Fig. 4A). This was
not the case in amputee participants, which demonstrated
instead highly subjective results both in terms of overall and
detailed (class-wise) classification (Fig. 4B-F). Nonetheless,
some common behaviors emerged. For A3, A4 and A5, the
open hand was rarely properly classified (31.6%, 36.8% and
47.2%, respectively) and frequently misclassified with the
wrist extension movement. In addition, the bi-digital proved
the most difficult to classify among the grasps, exhibiting an
accuracy of 75.0%, 60.0%, 87.5%, 85.0%, and 70.0%, for
A1, A2, A3, A4, and A5, respectively. Taken collectively the
most misclassified movements concerned the wrist district,
in particular flexion and extension. Interestingly, while for the
amputees the supination was the most accurately classified
movement (A1: 100%, A2: 100%, A3: 89.5%, A4: 95.0%,
A5: 94.4%), it was actually the second worst (90.7%) for the
non-amputee group (Fig. 4).

With respect to the combination of movements, in non-
amputee participants, the median accuracy ranged from 91.9%
(3.7%) for AM (all eight movements in the hand and wrist)

to 96.7% (3.4%) for OCWR (hand open/close plus wrist
movements) (Fig. 5A). The differences in performance proved
to be statistically significant between OCWR and each of AM
(p < 0.001), HGFE (p < 0.01), and HGPS (p < 0.01). Yet,
the narrow IQR in each combination signified comparable
behaviors (i.e., consistent outcomes) across participants.

In amputee participants, the accuracy spanned from 81.6%
(8.6%) with AM to 91.2% (7.7%) with HG, albeit no statistical
differences were found among the combinations, likely due
to large variability in the data (Fig. 5A). More in detail, the
individual performance of the amputee participants appeared
highly subject-specific (Fig. 5B). As an example, HGFE
yielded the best accuracy for A5 (85.3%) and A1 (86.7%) but
the worst one for A3 (75.0%) (Fig. 5B). HGPS yielded exactly
opposite outcomes, proving the worst configuration for A5
(82.6%) and the best for A3 (92.9%). Participant A1 proved
the only one exhibiting a relatively high accuracy (>86.0%)
for all tested combinations. All in all, at least one acceptable
combination of wrist and hand movements (with accuracy
>85.0%) proved possible for each amputee participant [28].

The cross-subject classification proved considerably worse
than the intra-subject one (Fig. 4A vs. Fig. 6). However,
the transient EMG classifier proved capable of recognizing
muscle contractions of unseen non-amputee participants (NA-
NA case) far beyond the random guess value (Fig. 6A).
In other words, the system could be trained with EMG patterns
from a number of non-amputees and fairly operate with a new
non-amputee participant. For FS1 the accuracy increased with
the number of (non-amputee) participants used in the training
set, reaching a plateau of ∼65% in the 8 class problem (AM in
Fig. 6A), and a more promising ∼80% in the 6 class problem
(OCWR in Fig. 6A). The accuracy exhibited a high variability
among participants as indicated by the IQR which ranged
from 14.3% to 26.9% and from 11.3% to 27.6% for AM and
OCWR, respectively.

The classifier barely succeeded in classifying EMG patterns
from amputees when trained on non-amputees (NA-A)
(Fig. 6B) and the same did when training on amputees and
testing on unseen amputees (A-A) (not shown). Also in this
case, for FS1, the data showed a large inter-subject variability
with an IQR ranging from 5.6% to 17.4% and from 8.6% to
24.3% for AM and OCWR, respectively.

Regarding the preliminary online assessment, A1 promis-
ingly completed the 81.2% of trials within 45 s (Fig. 7), with
a median CT of 22.3 s (15.6 s). The PE of the completed trials
was 35.6% (16.8%).

IV. DISCUSSION

In this work, we further investigated the claim that the
transient portion of forearm EMG signals, associated with the
onset of a contraction, can predict the intended movements of
upper limbs [17]. Specifically, we collected and classified data
from 14 non-amputee and five transradial amputee participants
while they performed eight movements relative to the hand
and wrist districts. We assessed the ability of a support
vector machine classifier in two scenarios: an intra-subject
one, in which we identified the best combination of wrist
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Fig. 4. Accuracy confusion matrices classifying EMG mean absolute values (i.e, FS2). A) Performance of non-amputee group. B-F) Individual
performance of the amputee participants. The trials classified correctly are in the diagonal. The accuracy (ACC) of each class is indicated on the
right of each matrix. The confusion matrices may be unbalanced either if the weaker contractions were included in the test set (the ODA cannot
detect the onset) or if the participant did multiple contractions (the ODA detected more onset).

TABLE II
CLASSIFICATION ACCURACIES FOR STUDY BASED ON THE STEADY STATE OF EMG SIGNAL

and hand movements, and a cross-subject one, where we
assessed the ability to classify movements by participants not
included in the training set. Furthermore, for both scenarios,
we analyzed the change in performance by changing the
dimension of the training set. Finally, one of the amputee
participants preliminarily assessed the online performance of
the proposed classifier in a virtual environment.

A. Intra-Subject Analysis

Our results proved performance comparable to studies based
on the steady state of EMG signals that classify a similar set
of movements using almost the same features (i.e, FS1) and

with classifiers of comparable complexity (Table II) [28], [35],
[36], [37], [38]. In addition, the performance of transient and
steady state classifiers should be carefully compared: while
in the former case the “rest” class is not considered in the
overall accuracy, in the latter it often represents a bias (i.e.,
with considerably high accuracy).

In our previous work the transient EMG classifier was
capable to classify four hand movements using the FS2 with an
overall classification accuracy of ∼95 % with non-amputees,
and ∼95% with two amputees [17]. Here, we have increased
the complexity of the problem (eight classes vs. four) adding
four wrist movements and achieved contradictory results: data
from non-amputees reached similar classification accuracies
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Fig. 5. Classifier accuracy for different combinations of movements
classifying EMG mean absolute values (i.e, FS2). A) Performance
for both non-amputee and amputee groups. Points and triangles
represent median and mean values, respectively. Statistically significant
differences, as determined by the Bonferroni post-hoc correction, are
shown (∗: 0.05 ≥ p > 0.01; ∗∗: 0.01 ≥ p > 0.001; ∗∗∗: 0.001 ≥ p).
B) Amputees’ individual performance. Each vertex of the pentagon
corresponds to a different combination of movements: AM (all eight
movements in the hand and wrist; 8 classes), HGFE (hand grasps
plus wrist flexion/extension; 6 classes), HGPS (hand grasps plus wrist
pronation/supination; 6 classes), OCWR (hand open/close plus all wrist
movements; 6 classes), HG (hand grasps; 4 classes).

(∼92%) while data collected from amputees did not (∼82%).
However, when considering the same set of four movements
(here, so called HG) the performance of amputees proved
comparable, suggesting a difference between the two groups.

As expected from the state of the art, FS1 outperformed
FS2 [39] (Fig. 3). Nevertheless, building on our previous
study [17], we evaluated a feature set that included only the
MAV because it is known to be comparable to the output of
commercial dry surface EMG electrodes (that are used in real
prostheses). This allowed us to infer the applicability of our
outcomes to a more applicative scenario.

Not surprisingly, the classification accuracy increased with
the training repetitions (in a statistically significant manner for
non-amputees) (Fig. 3) and the best median accuracies were
achieved with 15 repetitions per movement. If compared with
continuous classifiers, this represents a considerably higher
number of training repetitions [36]. Of course, this is due
to the inherent nature of a transient in an incipient muscular
contraction (i.e., single onset/transient thus single sample) as
opposed to continuous classifiers in which the steady-state
phase is segmented in several windows, allowing to extract

Fig. 6. Accuracy of the cross-subject classifier (AM and OCWR
movement subsets) w.r.t. the number of participants’ data included in
the training set. Feature set 1 (FS1): mean absolute value (MAV), zero
crossing, waveform length, slope sign changes and root mean squared).
Feature set 2 (FS2): MAV. A) Accuracy of non-amputee participants using
unseen data from non-amputees participants (NA-NA). B) Accuracy of
amputee participants using unseen data from non-amputees participants
(NA-A). The random guess values for AM and OCWR are also displayed
(horizontal lines).

several training samples from just a few contractions (typically
three or four). Hence, while 15 repetitions for training would
surely represent a substantial effort for the individual, it must
be also noted that the system proved fairly good even with
five repetitions. We speculate that this extra burden during
the training phase could be paid off during the online use
of the system, given that the response time of a transient
classifier is intrinsically shorter than continuous classifiers [17]
and that the transient controller should arguably be more user
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Fig. 7. TAC test performance of the amputee participant (i.e, A1). The
curve indicates the percentage of trials completed in a certain amount of
time.

friendly. Indeed, while steady state controllers continuously
update the classification, hence requiring certain cognitive and
muscular efforts from the user to maintain the myoelectric
pattern, the transient controller keeps the class-output constant
after the transient phase, thus allowing the user to focus
only on the following proportional control phase (if any).
Moreover, the transient controller inherently does not need
post-classification algorithms (e.g., majority vote [40]), thus
reducing its computational burden as well as its user-perceived
response time. Finally, it is quite likely that a longer user
training could even reduce the minimum number of repetitions
yielding to acceptable accuracy [41].

The misclassification of wrist extension in open hand
movements and vice-versa, common to the group of amputee
participants (Fig. 4E-F), could be explained bearing in mind
the control scheme of their personal myoelectric hand. As the
contraction of wrist extensors is typically used for opening the
prosthetic hand, it is plausible that they struggled in correctly
differentiating between the two movements. In addition,
we speculate that the extrinsic muscles that originally served
the digits may have likely adhered to each other due to, e.g.,
atrophy or as a result of the amputation surgery, thus needing
a longer training time to produce consistent differentiated
contractions [42]. In light of this, a longitudinal evaluation
of the control would be desirable.

Regardless of the group of participants, the assessment
of the performance achieved with the different combinations
of movements suggests that the number of classes did not
affect the performance of the classifier as much as the
choice of the movements (Fig. 5A). OCWR (hand open-
close plus wrist movements, 6-classes) not only proved
better than AM (all movements, 8-classes) but also than
HGFE and HGPS (both with 6-classes) (Fig. 5A). The
analysis underlined that the bi-digital and the lateral grasps
were the most misleading movements for the classifier
(Fig. 4A). Anecdotally, such misclassifications were uniformly
distributed across participants and may be attributed to the
anatomy of the proximal part of the forearm, i.e., where the
electrodes were placed. For instance, the flexor pollicis lungus
which is the main muscle involved in thumb flexion, thus in
the lateral grasp, lies under the extensor carpi radialis which

serves wrist extension [43], [44]. Hence, it is plausible that
a wrist extension in a radial direction could generate EMGs
misclassified with those of a lateral grasp. Same considerations
may apply for the flexor pollicis lungus and the supinator to
explain the misclassification of wrist supination with the lateral
grasp. Although wrist extension and supination were often
misclassified as the lateral grasp, the opposite did not occur.
Perhaps, this may be explained by the fact that the lateral grasp
was often performed in a mostly isometric condition (with the
thumb in contact with the index before the beginning of a
contraction actually detectable by the ODA) producing, hence,
more repeatable patterns, whereas the wrist extension and
supination were performed moving the upper limb (a dynamic
contraction).

While the performance of A2, A3, A4 and A5 for
different movement combinations (Fig. 5B) seemed to indicate
a negative correlation with the time from the amputation,
A1 proved the most performing participant although owning
the oldest amputation. Hence, analogously to other studies
[45], [46], the time factor alone could not explain lower
performances.

B. Cross-Subject Analysis

Fascinated by the hypothesis that the deterministic structure
exhibited by the transient EMG [15], [16] could present
common features across individuals, we sought to assess the
potential of a transient EMG cross-subject classifier. The
results considering only non-amputee participants (NA-NA)
showed promising results, in line with the 6 class problem
studied by Sheng and colleagues (Fig. 6A, OCWR: ∼80%
accuracy) [22], to our knowledge the only methodologically
comparable study. Here, as the forearms of non-amputees
did not significantly differ in size and the placement of the
surface electrodes was standardized, the latter could roughly
target the same muscles across the participants and thus
pick up consistent signals. The large performance difference
between AM and OCWR in decoding FS2 (even larger than
in the intra-subject scenario), suggests that the bi-digital
and the lateral grasps not only proved the most confounded
ones within-subjects but also across-subjects. This aligns
with earlier studies that used the steady state phase of the
signal [21], [22], [23], [24], [25] and confirms –for the
transient phase as well– that the contractions associated with
digit movements across humans may be less similar to each
other than the contractions produced during wrist movements.

The poor performance achieved when trying to classify
amputee data (NA-A and A-A), roughly ∼30% for AM and
∼35% for OCWR (Fig. 6), suggests the approach cannot
be applied straightforwardly with over-simplistic methods in
the acquisition and processing of the data. The obvious
anatomical differences that may exist between amputations
(with a variable number, combination, and placement of
the residual muscles), imply that properly operating a
cross-subject classifier might require targeting specific muscles
with the surface electrodes or, even better, use implanted
electrodes [29]. This statement is supported by the outcomes
achieved in the NA-NA case, where the anatomical differences
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were virtually cleared: in that case, indeed, the cross-
classification accuracy proved significantly better. With respect
to the processing of the data, domain adaptation techniques
could be used to maximize the features space correlation
across individuals and consequently reduce the number of
training samples collected from a new user to train the
classifier [22], [26], [27]. In this scenario, the domain of the
general model (i.e., the general informative content) could be
adapted to the new user by exploiting only a few contraction
samples. Our intention here was to provide a reference baseline
to researchers investigating domain adaptation strategies for
cross-subjects generalization.

Luckily, implantable electrodes are becoming a reality [29],
[47], whereas the networking, cloud computing, and data
sharing infrastructures of the IoT are already important parts of
our lives. Hence, it might be no longer impossible to envisage
fleets of interconnected prostheses with learning and adaptive
control systems.

C. Online Assessment

Although in our preliminary evaluation we included more
movements (8 vs 6), A1 performed similarly to the five
participants evaluated within Simon and colleagues’ work [20]
in term of CT [median 22.3 s vs 20.1s ± 4.0s] and CR
(81.2% vs 92.1% ± 7.6%). Conversely, increasing the number
of movements seemed to affect the PE, which worsened
with respect to Simon’s study [ 35.6% vs 54.7% ± 11.1%].
Hence, we could speculate that the increment of the available
movements may have increased the total distance covered
by the virtual hand controlled by the participant, while
maintaining a comparable completion time. Arguably, the
participant adopted an higher velocity with respect to the
Simon’s work. Anyway, while these preliminary results are
somehow promising, we know that they cannot be considered
as a validation of the proposed controller, which necessitates
an assessment with a wider cohort of amputee participants
with either a virtual device or, desirably, with a real one (i.e.
a self-suspending prosthesis).

While it supported the transient EMG classifier as a
viable alternative to continuous classification, this study
exhibited a few limitations that are worth discussing. First,
the current system implementation requires the participant
to always return to the rest state before changing to the
next desired output. While this limit could be overcome
in future implementation (e.g. studying phase transitions
between different movements), we speculate that it only
partially affects the clinical application of the algorithm.
Arguably, a “rest break between grasps” is already quite
common in users of commercially available continuous
pattern recognition systems, and this is particularly true in
case of misclassifications (i.e. the prosthesis moving to an
unwanted grasp). It is a simple measure, often recommended
by occupational therapists during training, that can greatly
improve the grasp selection accuracy. Moreover, we are
aware that offline results provide limited insight about control
usability and reliability. However, the aim of this work was
to demonstrate the feasibility of the transient approach and,
for the first time, offline performance comparable to state-of-

the-art continuous pattern recognition controllers. Specifically,
in the context of decoding wrist-hand movements in intra-
subject and cross-subject problems. Our preliminary, but still
promising, online results point to the mandatory successive
step of online validation with a wider amputees population,
with both virtual and real-world functional assessments.
Additionally, it remains of interest to further explore and
validate the cross-subject scenario for the non-amputee
population, as this has the potential for human-machine
interfaces for consumer and entertainment purposes [48].

V. CONCLUSION

In this work, we proposed a pattern recognition controller
based on the transient portion of the EMG signal. With the
proposed strategy that aimed at decoding several combinations
of wrist and hand movements we obtained performances
comparable to state-of-the-art steady-state EMG controllers.
In addition, the accuracy of our algorithm was greater than
85% with at least one of the proposed movement combinations
with amputee participants, despite the heterogeneous group
performance (Fig. 5B). Last but not least, a preliminary online
assessment into a virtual environment encouraged further
evaluations with amputee participants.

This work opens doors for prosthetic control using the
transient portion of the EMG, bringing the potential benefits of
increased responsiveness and repeatability of the myoelectric
prostheses, thus ultimately of improved quality of life for many
amputees.
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