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Abstract
Motivation: The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which 
they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in 
several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the 
available literature is still challenging.
Results: We introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set 
of input texts—i.e. in the form of full-text or abstract of PubMed Central’s papers, free texts, or PDFs uploaded by users—and models them as 
a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that 
works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experi
mental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision–Recall metrics when 
compared to state-of-the-art approaches.
Availability and implementation: https://netme.click/.

1 Introduction
Scientific investigations produce massive amounts of data col
lected daily in publications, databases, clinical trials, etc. In 
particular, in the bio-medical area, thanks to fast-track publica
tion journals, the number of published papers has increased 
significantly (Ioannidis et al. 2023), so identifying relevant 
knowledge from such sources is almost impossible for a human 
being. In this regard, computational methods for extracting 
knowledge representations are a suitable tool that has sup
ported scientists in formulating novel hypotheses and deriving 
new conclusions (intelligent medicine) (Qu 2022). As a result, 
network analysis over BioMedical Knowledge Graphs (BKG) 
has become a pivotal technology to uncover the fundamental 
biological processes underlying living organisms for precision 
medicine (Wu et al. 2023) and clinical decision support systems 
(Caufield et al. 2023); to identify new markers that indicate im
mune drug response in multiple cancer cohorts for immune 
therapies (Tagliamento et al. 2023, Tan et al. 2023); to reduce 
costs, time, and efficacy of clinical trials (Chen et al. 2022) and 
translational bio-medicine (Bang et al. 2023).

In light of these critical applications, relationship inference 
between biomedical entities and their representations through 

a BKG is of growing interest both in academia and the health
care industry (IBM’s Watson Health, Ali Health’s medical, 
Google Health, etc.).

Google introduced the notion of a Knowledge Graph (KG) 
in May 2012 (Hogan et al. 2021). It is defined as a directed 
graph with labels on both edges and nodes. In medicine, 
nodes represent biomedical entities (e.g. genes, diseases). In 
contrast, edges (or predicates) represent relations between 
these entities (e.g. gene-to-disease relationships). Extracting 
entities and relationships from biomedical texts is challenging 
due to synonyms and abbreviations and is costly in data vali
dation since it requires domain experts to check quality and 
accuracy (Milo�sevi�c and Thielemann 2023).

BKGs can be built manually from scientific literature (high- 
quality but small BKGs) or automatically from ontologies, 
databases, or other unstructured (possibly textual) sources. 
In recent years, thanks to the advancements in Information 
Retrieval tools (Milo�sevi�c and Thielemann 2023), as well as 
in AI/ML and natural language processing and understanding 
(NLP/U) (Krallinger et al. 2005), the research community has 
focused on computational approaches for extracting and 
modeling (possibly in the form of BKGs) valuable knowledge 
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from several sizeable open-access article repositories [such as 
PubMed Central (PMC) (Beck 2010), arXiv (available at 
https://arxiv.org website), bioRxiv (available at https://www. 
biorxiv.org/ website), etc.].

The literature offers some promising approaches: (i) 
BioKG (Walsh et al. 2020); (ii) BIOS (Yu et al. 2022); (iii) 
DARLING (Karatzas et al. 2022); (iv) NetMe 1.0 (available 
at https://netme.click/ website) (Muscolino et al. 2022); (v) 
SPOKE (Morris et al. 2023); and (vi) Hetionet (Himmelstein 
and Baranzini 2015).

Finally, it is worth mentioning that other approaches build 
BKGs from multi-modal data, clinical trials, or specific bio- 
molecular interactions (Do�gan et al. 2021, Zitnik et al. 
2018). However, they are too specific to compare to a 
“generic” BKG like the one built by NetME.

Overall, the above BKGs are open source. However, only 
NetME 1.0 works with full texts. The others extract biomedi
cal entities from abstracts of papers or a few paragraphs of 
unstructured texts. In addition, all BKGs except NetME are 
statically generated offline from a massive set of documents 
in PubMed or biomedical ontologies, thus necessitating peri
odic updates to keep up with new articles.

We present NetMe 2.0, an improved version of NetMe 1.0 
that enables users to create on-the-fly BKGs from different 
sources and interact with them in a user-friendly way. NetMe 
2.0 makes use of several new algorithmic technologies, in
cluding (i) OntoTagMe, a customized Wikidata-based entity 
linker that extends TagMe (Ferragina and Scaiella 2010) with 
a knowledge base of � 3M bio-entities, (ii) a relationship- 
inference tool for bio-entities, developed on top of SpaCy 
(Honnibal and Montani 2017), (iii) an on-the-fly GraphRAG 
module (Cai et al. 2022, Li et al. 2022) that summarizes BKG 
knowledge through OpenAI, and (iv) and a set of visual tools 
and algorithms for network analysis working on top of the 
built BKG.

To assess the performance of NetMe 2.0, we conducted an 
experimental evaluation based on four case studies on manu
ally curated gene–disease association (GDA) gathered from 
DisGeNET (Pi~nero et al. 2019) (see Section 3).

In the first case study, we evaluated NetMe 2.0’s effective
ness in extracting biomedical knowledge (in the form of enti
ties and their relations) from a set of document IDs. Only 2 
out of 46 edges were missed by NetMe 2.0, while eight misses 
were due to the lack of evidence in the provided PubMed IDs.

In the second case study, NetMe 2.0 was tested to extract 
known GDAs directly from a list of input genes. The values 
reported for the Recall metric were significant, ranging from 
0.58 to 0.77.

In the third and fourth case studies, we compared the per
formance of NetMe 2.0 to that of other BKG builders. 
Specifically, the third case study focused on high-quality 
edges, while the fourth analyzed the impact of noisy edges. 
The raw experimental data are provided in the file 
“SupplementaryTables.xlsx;” the description and results of 
the first three Case Studies are in Sections 2.4, 2.5, and 2.6 of 
the Supplementary Material; while Case Study 4 is described 
in Section 3. Table 2 reveals that NetMe 2.0 outperforms all 
the other BKG builders with an absolute improvement rang
ing from 2% to 87%. In light of these achievements, we be
lieve that NetMe 2.0 will help scientists to identify highly 
reliable relations among biomedical entities based on their 
(co-)occurrences and mentions in PubMed’s articles or other 
textual sources, thus empowering their ability to formulate 

novel hypotheses and derive new conclusions about 
their researches.

2 NetMe 2.0
NetMe 2.0 is a friendly web app allowing users to visually 
analyze a BKG built on-the-fly from various sources, such as 
full texts (extracted from PubMed Central via user queries), 
free texts, or PDFs.

BKG construction leverages two main tasks: node/entity 
extraction (NE) and edge/relation extraction (RE). NE identi
fies biomedical entities in the input texts (e.g. genes, tumor 
markers, diseases, drugs, and biological processes) via 
OntoTagMe (see the Annotator module in Section 2.1). RE 
extracts the semantic relations between those entities (e.g. 
interactions, regulations, etc.) via the SpaCy library applied 
to the sentences of each input document.

NetMe 2.0 now has an enhanced front-end for better user 
experience and analytics. It also includes a faster rendering 
engine for the BKG and a richer set of functionalities for ex
ploring the graph structure and content (i.e. shortest path 
computation between entities, clustering, node neighborhood 
exploration, connected components, BFS, DFS, betweenness 
centrality, PageRank). It also features a new graph-based 
RAG module that generates a summary text from user- 
selected entities (through our BKG) and their connecting 
paths using OpenAI.

NetMe 2.0 can be deployed through Docker, enhancing 
portability and scalability. Its modules and their interactions 
are described in the following sections. For details about the 
differences and upgrades with NetMe 1.0, refer to Section 
2.2 of the Supplementary Material.

2.1 The OntoTagMe annotator module
The task of linking biomedical entities has been scarcely 
addressed in the literature. The most relevant tools are 
PubAnnotation (Kim et al. 2019), which annotates articles by 
using customizable dictionaries; PubTator (Wei et al. 2019, 
2013), which annotates bio-concepts in PubMed abstracts 
and full-texts; BERN2 (Sung et al. 2022), which performs 
biomedical NER and optionally links entities to external 
ontologies; and (Cho et al. 2017), which performs Named 
Entity Normalization with a specific focus on plants and dis
eases. We decided to discard BERN2 because of its high com
putational requirements, operating costs, and REST API 
latency. PubAnnotation and (Cho et al. 2017) were dropped 
since they focus on specific annotation types for highly spe
cialized biological tasks. Thus, we focused on PubTator due 
to its high-quality results, which can be effectively integrated 
into our entity linker.

In this paper, we developed a new entity linker, called 
OntoTagMe, that identifies sequences of words (or mentions) 
and links them to relevant biomedical Wikidata pages (enti
ties). OntoTagMe extends the well-known entity linker 
TagMe. It focuses on linking biomedical entities using a sub
set of Wikidata that includes about 3 million biomedical 
pages, categorized into 15 categories (i.e. genes, tumors, dis
eases, drugs, and biological processes). These entities define 
the nodes of our BKG.

OntoTagMe’s annotations are integrated with PubTator. 
We assessed the reliability of the annotations on two datasets, 
BC2GM (Smith et al. 2008) for genes and NCBI Disease for 
diseases (Do�gan et al. 2014), and compared the results 
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against a baseline matching the input phrases with a biomedi
cal ontology [DiseaseOntology (Schriml et al. 2018) for dis
eases and HGNC (Seal et al. 2022) for genes]. Table 1 shows 
their results on the two experimental datasets. OntoTagMe 
API is publicly available at https://sobigdata.d4science.org/ 
web/tagme/ontotagme-api. For a detailed description of 
OntoTagMe, we refer the readers to Supplementary Section 
S1 of the Supplementary Material.

2.2 Network generator
The NetMe 2.0 network generator module (that improves 
upon NetMe 1.0) uses advanced linguistic analysis to detect 
verbal relations between entity pairs, representing the net
work’s edges and their meta-information.

Specifically, the network generator module splits each 
document into sentences through the spaCy pipeline. Each 
sentence is then tokenized into words and tagged with their 
part of speech (PoS). We keep only the biomedical words. 
Next, SpaCy builds the dependency-parse tree of each sen
tence to extract the syntactic relationships between its 
tokens. This dependency-parse tree is also used to get la
beled relationships (edges) between biomedical entities. 
When we have just one action between the source and tar
get node, the edge label corresponds to that action. For ex
ample, in Fig. 1a, the edge from “TP53 expression” to 
“colon cancer” is labeled with “increased.” Conversely, if 
the number of actions is more than one (see the example in  
Fig. 1b), the edge label is formed by concatenating such 
actions. We score each edge e ¼ ða; bÞ, connecting the enti
ties a and b, with three values: TF-IDF, bio, and ambiguity. 
The TF-IDF measures the relevance of an edge e in the Ne 
input documents. The bio-parameter is the normalized edit 
distance between the edge label and a set of biological verb 
forms (listed in Supplementary Table S3). The ambiguity is 
the number of actions that compose the edge label. Indeed, 

the presence of many actions annotating ða; bÞ could be due 
to missing annotations by OntoTagMe (see Fig. 1b). 
Therefore, ða; bÞ could be a false positive. To deal with 
these, we penalize the edge weight based on the number of 
actions. A final score for the nodes is computed as their 
personalized PageRank (Page et al. 1999) (see step 6 in 
Section 2.1 of the Supplementary Material), in which 
NetMe considers the nodes in the query as teleporting 
nodes. Finally, NetMe 2.0 shows the BKG by our front-end 
GUI developed with AngularJS and CytoscapeJS (see 
Supplementary Fig. S4). Additionally, it allows users to re
port annotation errors or missing entities (see 
Supplementary Fig. S9), which will be used to periodically 
update the OntoTagMe knowledge base after manual 
checking. All the details of the GUI are available in Section 
2.3 of the Supplementary Material.

2.3 Retrieval augmented generation based on our 
biomedical knowledge graph
Products built on Large Language Models (LLMs), such as 
OpenAI’s ChatGPT (https://openai.com/), generate human- 
like text by predicting the likelihood of a term given the pre
ceding ones via transformer-based architectures. However, 
current LLMs are “frozen in time” since (i) frequently updat
ing their training datasets is impossible, (ii) lack domain- 
specific knowledge, (iii) are trained for generalized tasks [see, 
e.g. ChatGPT (OpenAI 2023) or LLama (Touvron et al. 
2023)], (iv) generate responses based on patterns learned dur
ing training, and (v) cannot actively retrieve specific 
information.

Retrieval Augmented Generation (RAG) enhances LLM ca
pabilities by combining generative pre-trained models with 
information retrieval systems. It fetches up-to-date context- 
specific data from an external database, making them avail
able to a generalized LLM and the user query, reducing the 
likelihood of hallucinations. The result is a boost in the per
formance and accuracy of GenAI applications, which can re
turn more context-aware, precise, and informed responses.

However, for complex queries, RAG may retrieve ambigu
ous or uncertain sentences. So researchers proposed combin
ing RAG with Knowledge Graphs [aka, Graph-RAG, see, e.g. 
Sun et al. (2023)] to understand the intent of complex 
queries better.

In this context, the BKG built by NetMe is a perfect candi
date for designing such a Graph-RAG application. We call 
this novel approach on-the-fly Graph-RAG and refer the 
reader to Fig. 1c to illustrate its structure.

Specifically, a user selects two or more nodes in the con
structed network via a simple search box (see Supplementary 
Fig. S12). Then, NetMe 2.0 computes all paths connecting all 
pairs of selected nodes and evaluates their score as the 

Table 2. Comparison with other BKGs—accuracy on 100 random DisGeNET associations with gene BSG.

Graph type Tool Correct Edges extracted from Web-app

Built on-the-fly with labeled and weighted edges NetMe 1.0 63 Full-texts and abstracts Yes
NetMe 2.0 (this paper) 87 Full-texts and abstracts Yes

Precomputed with labeled and weighted edges BIOS 0 Abstract Yes
BioKG 48 Ontologies No
SPOKE 0 Ontologies Yes
Hetionet 2 Ontologies Yes

Precomputed with weighted edges Darling 85 Abstract Yes
BioTagMe 65 Abstract and ontologies Yes

In bold the best performing tool.

Table 1. Results on the BC2GM dataset (top table) and on the NCBI 
disease dataset (bottom table).

BC2GM dataset Precision Recall F1

Baseline 0.43 0.05 0.09
OntoTagMe 0.40 0.29 0.34
PubTator 0.81 0.32 0.46
OntoTagMe þ Pubtator 0.57 0.43 0.49

NCBI disease dataset Precision Recall F1

Baseline 0.65 0.30 0.41
OntoTagMe 0.93 0.45 0.61
PubTator 0.85 0.49 0.62
OntoTagMe þ Pubtator 0.87 0.60 0.71

In bold the best performing tool.
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average of their edge weights [(TF-IDF � bio)/ambiguity]. 
Finally, the most relevant paths with their sentences are se
lected to maximize coverage of the topics of the se
lected entities.

Such sentences are then sent to OpenAI GPT-3.5 [the “gpt- 
3.5-turbo-instruct” model (Roumeliotis and Tselikas 2023)] 
to generate a well-formed text explaining the relationships 
among the user-selected entities. The temperature parameter 
has been set to 0 to mitigate “creativity” and “stochasticity” 
in the summarized text. In addition, NetMe 2.0 introduces 
proper citations into the summarized text (see Supplementary 

Fig. S13) so the user can directly check their significance, thus 
possibly detecting GPT hallucinations.

3 Experimental evaluation
To assess the quality of the BKG built by NetMe 2.0, we con
ducted an experimental evaluation based on manually cu
rated GDA gathered from DisGeNET.

Therefore, we designed four case studies to assess NetMe 
2.0 accuracy. The first evaluation involves queries guided by 
paper IDs specified by the user, thus evaluating the 

Figure 1. (a) Dependency-parse tree of the sentences: “TP53 expression increased in colon cancer.” (b) The three mentions “cell viability,” “cell 
motility,” and “circPIP5K1A overexpression” have not been annotated by OntoTagMe, thus the three verbs “attenuates, reduces, facilitates” are used to 
annotate the relationship between the detected mentions “circPIP5K1A” and “colon cancer.” (c) On-the-fly Graph-RAG approach. Users send biomedical 
queries (1) with the NetMe 2.0 GUI. Next, the knowledge graph is generated (2) by analyzing a collection of documents (from PubMed or PubMed 
Central) related to the user query and visualized via the GUI (3). Then, the user can select a set of nodes of interest (4), which are passed to the 
Sentences Retrieval module (5) to extract some phrases associated with the paths connecting such entities (6). These sentences are then transmitted to 
OpenAI (7) to generate a summarized text (8) explaining the (biomedical) relationships among those entities.
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effectiveness of knowledge extraction from a set of papers via 
the comparison with the GDAs present in them and anno
tated in DisGeNET. The second case study queries NetMe 
2.0 with gene names, like in PubMed, to evaluate its ability 
to infer the same GDAs found by experts in DisGeNET and 
compares NetMe 2.0 with DARLING and BioTagMe in 
terms of Precision and Recall metrics. Finally, our third and 
fourth case studies compare NetMe 2.0 annotations against 
those found by other state-of-the-art BKG builders. 
Specifically, the third case study focuses on high-quality 
edges, while the fourth one analyzes the impact of noisy 
edges. We measure the retrieval quality of NetMe 2.0 by the 
Recall metrics since it may detect GDAs that are not in the 
manually curated set, but these should not necessarily be clas
sified as false positives since they could be yet good annota
tions. For example, the gene APP has 485 links on 
DisGeNET, but only 76 are manually curated. The raw ex
perimental data are provided in the file “Supplementary 
Tables.xlsx;” the description and results of the first three 
Case Studies are in Sections 2.4–2.6 of the Supplementary 
Material. Below, we describe Case Study 4.

3.1 Evaluation with other biomedical 
knowledge graphs
We evaluated the recall of existing BKGs against NetMe 2.0.

Since we have three types of BKG builder algorithms, on- 
the-fly, offline, and ontology-based (see Table 2), we tested 
the systems to identify DisGeNET GDAs for the gene BSG. 
First, we extracted 100 random GDAs, each with a list of 
supporting PubMed articles. For NetMe 1.0 and NetMe 2.0 
we counted the amount of correctly identified GDAs on the 
BKGs built on such abstracts. To test DARLING, we built a 
network from all PubMed abstracts containing “BSG” and 
checked how many GDAs were correctly retrieved (no filter
ing). Finally, we counted how many GDAs were present in all 
the other BKGs.

Table 2 shows that NetME 2.0 outperformed all the other 
BKGs in identifying GDAs. First, it significantly improved ac
curacy (þ38%) compared to NetME 1.0, obtaining 24 addi
tional correct relations. It yields better results than other 
BKGs, as they miss many GDAs. Finally, it obtained more re
liable results than DARLING, even if the latter has a perfor
mance close to NetMe 2.0. In fact, DARLING links nodes 
using their co-occurrences in abstracts without considering 
their role and actions.

4 Conclusion
This paper presents NetMe 2.0, an easy-to-use platform for 
inferring BKGs from PubMed and PMC papers, free text, or 
PDFs. It uses OntoTagMe, a customized version of TagMe, 
and a syntactic analysis module based on the Python SpaCy 
libraries. Additionally, it includes an innovative module that 
enables on-the-fly Graph-RAG inference by summarizing 
human-like text on selected sentences from the BKGs. Our 
results show that NetMe 2.0 accurately extracts reliable and 
complete BKGs when documents cover the searched topic 
in-depth.

In future work, we plan on integrating the UMLS 
Metathesaurus (Yip et al. 2019) into OntoTagMe to possibly 
improve the quality of the annotation process. Additionally, 
we foresee the construction of a full-text bio-KG derived 
from the whole set of open-access full-text papers present in 

PubMed Central by extending the algorithmic architecture of 
NetMe to scale to million (full-text) papers and beyond.
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