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Abstract

INTRODUCTION: Early identification of Alzheimer’s disease (AD) is necessary for a

timely onset of therapeutic care. However, cortical structural alterations associated

with AD are difficult to discern.

METHODS:Wedevelopeda corticalmodel ofAD-relatedneurodegeneration account-

ing for slowing of local dynamics and global connectivity degradation. In amonocentric

study we collected electroencephalography (EEG) recordings at rest from partic-

ipants in healthy (HC, n = 17), subjective cognitive decline (SCD, n = 58), and

mild cognitive impairment (MCI, n = 44) conditions. For each patient, we estimated

neurodegenerationmodel parameters based on individual EEG recordings.

RESULTS: Our model outperformed standard EEG analysis not only in discriminating

between HC and MCI conditions (F1 score 0.95 vs 0.75) but also in identifying SCD

patients with biological hallmarks of AD in the cerebrospinal fluid (recall 0.87 vs 0.50).

DISCUSSION: Personalized models could (1) support classification of MCI, (2) assess

the presence of AD pathology, and (3) estimate the risk of cognitive decline progres-

sion, based only on economical and non-invasive EEG recordings.

KEYWORDS

Alzheimer’s disease, Computational models, Computational neuroscience, EEG, Novel
Biomarkers

Highlights

∙ Personalized cortical model estimating structural alterations from EEG recordings.

∙ Discrimination ofMildCognitive Impairment (MCI) andHealthy (HC) subjects (95%)

∙ Prediction of biological markers of Alzheimer’s in Subjective Decline (SCD) Subjects

(87%)

∙ Transition correctly predicted for 3/3 subjects that converted from SCD to MCI

after 1y

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Authors. Alzheimer’s &Dementia: Diagnosis, Assessment &DiseaseMonitoring published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

Alzheimer’s Dement. 2024;16:e12526. wileyonlinelibrary.com/journal/dad2 1 of 17

https://doi.org/10.1002/dad2.12526

mailto:LorenzoGaetano.Amato@santannapisa.it
mailto:alberto.mazzoni@santannapisa.it
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12526
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fdad2.12526&domain=pdf&date_stamp=2024-02-16


2 of 17 AMATO ET AL.

1 BACKGROUND

Alzheimer’s disease (AD) is the major form of dementia, with more

than 10 million people worldwide suffering from it.1 This number is

expected to rise to 50million in 2050,2 and several steps forward inAD

research are needed to face this challenge. The disease develops a dis-

tinct symptomatology only years or decades after its initial stages, with

a progressive decline inmemory and other functions. Early diagnosis of

AD is therefore a key goal in addressing the progressionof thedisorder.

In the past years, growing attention has been paid to the prodro-

mal and preclinical phases of AD. A prodromal phase is the subjective

cognitive decline (SCD) condition,3 in which the patient reports a self-

concerned experience of reduced cognitive function, whilemaintaining

normal scores on standardized cognitive tests. In the mild cognitive

impairment (MCI) condition,4 the effect on the patient’s cognition is

detectable with standardized tests (see4 and Methods), but there are

no direct effects on everyday life. These conditions, although linked to

an increase in probability of transition to overt AD,3 are a weak proxy

of the disease presence,withmany people suffering from themwithout

ever transitioning to overt AD. SCD patients are a very diverse group

in both evolution and manifestation of the disease, with little predic-

tion power about progression toADgiven by the SCDdiagnosis alone.3

Nowadays, some diagnostic power about AD progression has been

achieved capturing the structural and functional alterations due to the

disease with magnetic resonance imaging (MRI) and positron emission

tomography (PET) scans,5,6 or cerebrospinal fluid (CSF) profiles.7 How-

ever, these procedures are either expensive for the medical facility or

discomforting and/or painful for the patient.8 Evaluation of prodromal

and preclinical phases of AD through electroencephalography (EEG),

which is an affordable and non-invasive procedure, is currently limited

to quantifying EEG features known to be biomarkers of the disease,9,10

such as spectral features and functional connectivity (FC) between

brain regions.11,12 Despite some interesting results,13 EEG biomarkers

fall far behind thoseobtained from imaging techniques such asMRI and

PET scans.14

The approach that we propose to overcome this issue is that of the

personalized brain models.15 We present a computational framework

in which a network model simulating cortical activity evolves from a

healthy condition (HC) toward AD, with progressively degenerating

local synaptic and global connectivity parameters (respectively lp and

cp). In this way, knowing the specific EEG features of a given patient

we can estimate the values of local and global degeneration (from lp

and cp parameters) and hence evaluate the stage of the patient in the

evolution toward AD. Briefly, we proceeded as follows (Figure 1). First,

we extracted standard biomarkers from experimental EEG recordings

(spectral content and FC, Figure 1 top row) of patients (grouped as

SCD, MCI, and HC), and we assessed the ability of these features to

discriminate between the patient groups (Figure 1, top right). Then we

developed an AD progression model starting from The Virtual Brain

(TVB) platform16−19 framework. We developed a network model in

which AD progression is described by two parameters depicting local

micro-circuital and globalmacro-scale structural alterations of the net-

work caused by AD20 (Figure 1, bottom left). The model was validated

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using standard sources (eg, Scopus) with relevant key-

words, alongside meeting abstracts and presentations.

All relevant works (particularly those focusing on early

diagnosis) are cited.

2. Interpretation:We present a novelmodel of Alzheimer’s-

related neurodegeneration enabling mild cognitive

impairment classification from EEG and shedding light

on the relations between structural alterations and func-

tional anomalies observed in the EEG of pre-demented

subjects. Moreover, we predicted with unprecedented

precision the presence of biological culprits of the disease

before symptoms onset, all from a simple, non-invasive

scans.

3. Future directions: This study proposes a novel diagnos-

tic pipeline for the early detection of Alzheimer’s disease.

Further improvements and validation of our approach

could include (1) validation based on comparison with

structural data; (2) longitudinal study of longer duration

for assessing the prediction of possible clinical outcomes;

and (3) translational use of the model for simulating

therapeutic approaches.

by comparing the simulated signal features with population data in

the three groups. Patient-specific values of local and global degen-

eration (network features) were then estimated from the individual

values of the experimental EEG features (Figure 1, bottom middle).

We then assessed the diagnostic efficacy of these network features

in discriminating between patient groups (Figure 1, bottom right) and

we compared it with the performance of the EEG features. Finally, we

compared the efficacy of both EEG and network features in predicting

the presence of ADpathology (previously assessed byCSF extraction7)

from EEG recordings. We also validated these predictions with the

outcome of the 1 year follow-up for SCD patients.

2 METHODS

2.1 Participants: Recruiting and diagnosis

Patients included in this study were recruited as part of a clinical

neuropsychological-genetic inquiry on pre-AD conditions such as SCD

andMCI (ClinicalTrial.gov identifier: NCT05569083). All patients self-

referred to the Centre for Alzheimer’s disease and Adult Cognitive

Disorders of the Careggi Hospital in Florence, Italy. Relevant demo-

graphic information on enrolled participants can be found in Table

S1. Inclusion and exclusion criteria follow standard clinical guidelines

and are described in detail in the Supplemental Materials. All patients
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AMATO ET AL. 3 of 17

F IGURE 1 Workflow summary. Top row, left to right: EEG data are acquired fromHC subjects and patients with SCD andMCI. Themost
group-informative EEG features based on spectral and FC analysis are extracted and then used to discriminate betweenHC andMCI. Finally, the
same algorithm partitions patients with SCD according to their probability of progressing to AD, deduced from biological hallmarks of the disease.
Bottom row, left to right: Development of a networkmodel of neurodegeneration in TVB frame based on two parameters, a local synaptic
parameter lp and a global connectivity cp. The values of these parameters for each participant are determined based on the features extracted from
their EEG recordings. Discrimination between the HC andMCI groups is performed in the network features’ space. Partitioning of the SCD group
is performed in the network features’ space. AD, Alzheimer’s disease; cp, connectivity parameter; EEG, electroencephalography; FC, functional
connectivity; HC, healthy condition; lp, local parameter; MCI, mild cognitive impairment; SCD, subjective cognitive decline; TVB; The Virtual Brain.

underwent an exhaustive neuropsychological screening (see Supple-

mentary Materials) to determine the magnitude of their cognitive

complaints. Based on the results of these analyseswedivided the initial

sample into two groups: (1) patients classified as SCD (n= 58),3 and (2)

patients classified as MCI (n = 44), following the National Institute on

Aging−Alzheimer’s Association (NIA-AA) criteria for MCI diagnosis.4

As a control group, we also included healthy subjects (HC, n= 17) who

volunteered to enroll in the study. The studywas approved by both the

Committee onHuman Experimentation of the Careggi University Hos-

pital and the local Institution Review Board (“Comitato Etico di Vasta

Centro”, reference: 15691oss). Before experimentations we collected

written consent from all participants. All procedures related to liv-

ing human participants experimentationwere done in accordancewith

both specific national laws and the ethical standards of the Committee

on Human Experimentation of the institution, in accordance with the

Helsinki Declaration of 1975.

2.2 Candidate biomarkers of disease progression
in EEG

EEG recordings and pre-processing are discussed in detail in another

work from our group.13 Briefly, we recorded EEG at rest, with patients

resting on a chair in a comfortable position. We used the 64-channel

Galileo-NT system (EB Neuro S.p.A.), using as montage the extended

10/20 system. The sampling rate for unipolar signal recording was

512Hz. TheEEGrecording session comprisedaeyes-closedacquisition

of 10 min, with a subsequent alternation of eyes-opened and eyes-

closed periods (3 minutes each). This alternation of eyes-opened/eyes-

closed stateswas repeated twice.Wemonitoredelectrode impedances

during recording,with the requirement of being in the range between7

and 10 kΩ. We used only the 10minute eyes-closed acquisition for the

analyses reported herein.

The candidate biomarkers for disease progression (EEG features)

were extracted from two main attributes of EEG recordings at rest:

FC and whole-scalp power spectral density (PSD). FC was estimated

by computing envelope correlation21 between electrodes. Envelope

correlation is calculated as the Pearson correlation between cou-

ples of orthogonalized electrode signals. Briefly, the common phase

between the two time series is first computed by Hilbert transfor-

mation of the signals and is then subtracted, thus avoiding spurious

interactions due to the poor spatial resolution of electrophysiological

recordings.22 We computed envelope correlation for delta, theta and

alpha bands, and for the whole 0.5−45 Hz range, to study the change

in significant broadband connections.23–25 FC values were tested for

significance and only values larger than half of the average value of

FC over all participants were kept.26 The features extracted as can-

didate biomarkers for each patient from the FC data were as follows:

(1) mean and standard deviation of broadband FC (BFC) values over

all electrode pairs; (2) count of relevant connections; and (3) average

connectivity in the delta, theta and alpha ranges. The PSD was esti-

mated by a fast Fourier transform algorithm, using the Welch method

with Hannning windowing27 with non-overlapping segments, and a

resolution of 0.5 Hz was used in both cases. Coherent with previous
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literature on cognitive decline,11,12,22,28 features extracted as candi-

date biomarkers from PSD were as follows: (1) alpha/delta ratio, (2)

alpha/theta ratio, (3) ratio of alpha power over combined lower (delta

and theta) frequency bands (A/LF ratio), and (4) individual alpha fre-

quency. Beta and gammawere excluded fromPSDanalysis since values

in these ranges areordersofmagnitude smaller andmoredisperse than

in the lower frequency bands.

2.3 Biomarkers selection

We then selected the best candidates among the FC and PSD fea-

tures introduced in the previous section. This was done by studying

the mutual information between such features and the considered

diagnostic conditions (HC, SCD, MCI). We computed the mutual

information for each feature f about the group g according to the

equation:

I(c, f) =
∑

g∈groups;
f∈features

p(groups,features)(g|f)log pgroups, features (g|f)
pgroups (g) pfeatures (f)

, (1)

where g is the diagnostic group, and f one of the features of the

set features. The term (g|f) represents the conditioned probability of

observing the feature value f given the pertinence of the participant

to group g. The two most informative EEG features, one computed

from the FC and one from the PSD of the recorded signals (see above)

were then selected for classification. See Supplementary Methods for

further information.

The two features selected as most informative were used as exper-

imental classifying features in the machine learning pipeline (see

below), constituting the so-called “feature space.”

2.4 Classification algorithm

We then tested several machine learning algorithms to perform a

binary classification between HC subjects and MCI patients based on

the EEG features identified in the previous section. Hyperparameters

were optimized by means of nested cross-validation.29 Performances

in discriminatingHCandMCIwere evaluated in termsof both accuracy

and F1 score.29 This allowed us to pick the best classifying algo-

rithm among the ones we considered (see Figure S1). In a second

set of analyses, we used the selected algorithm (ie, the random for-

est) to classify SCD patients in a semi-supervised fashion. Using MCI

patients and HC subjects as a training set, the random forest algo-

rithm divided the bidimensional feature space into two regions, one

for the HC group and one for the MCI group. We then checked, for

each of the SCD patients, the region in which they were located. In this

way SCD patients were partitioned into those closer to HC (SCD→HC)

or closer to MCI (SCD→MCI) according to their EEG features. Our

hypothesis was that the SCD→MCI patients may present a greater

neurodegeneration severity than SCD→HC patients. We then tested

this hypothesis and the predictivity of the algorithm by assessing its

performance in identifying SCD patients carrying biological hallmarks

of the disease, strictly linked with the presence of neurodegeneration

(see next subsection). We computed the performance scores with rel-

ative confidence values by bootstrapping 100 times the experimental

distribution, deriving the range with 95% confidence level (p < 0.05)

with the Clopper-Pearsonmethod.

2.5 CSF analysis and follow-up

A subset of 23 SCD patients underwent a lumbar puncture to ana-

lyze the CSF for the presence of biological hallmarks of AD pathology

such as amyloid beta (Aβ)42, the Aβ42/Aβ40 ratio, t-tau and p-tau,

with cutoff values determined from the Fujirebio guidelines.30 Patients

were rated according to the amyloid, tau, neurodegeneration (A/T[N]))

system31 and divided between carriers of ADbiomarkers (CSF+, n= 8)

and noncarriers (CSF−, n = 15). We then compared the percentage of

carriers (CSF+ patients) in the two subgroups of SCD (SCD→MCI and

SCD→HC; see previous subsection), according to both the EEG-based

algorithm and the network-features based algorithm. Moreover, up to

now we performed follow-up screening at 1 year for the first 20 SCD

patients, checking for possible conversion from SCD toMCI.

2.6 Cortical model

Healthy cortex was modelled in the TVB framework. The cortex was

modelled as a network of 76 interacting regions. The mesoscopic

activity of the regions was modelled with the Jansen-Rit neural mass

model.32 The Jansen-Rit model depicts the voltage fluctuations due

to neuronal activity in cortical structures with a mean-field approach.

Cortical regions are depicted as an ensemble of three subpopulations

each: one population is of pyramidal cells (excitatory), one is of stellate

cells (excitatory), and the last is of inhibitory interneurons. Mathemat-

ically, the activity of these subpopulations, for each node, is given by

the solutions of a set of stochastic differential equations. The stochas-

tic term is given by the input injected in each region, which has a source

of additive stochastic noise (see below). The thus obtained activity is

then passed as input in the equations of other regions, connected to

the source region by the rules specified by the structural connectivity

matrix. The equations of themodel are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d

dt
y0 (t) = y3 (t) ;

d

dt
y3 (t)

=
A

𝜏e
Sigm [y1 (t) − y2 (t)] −

2

𝜏e
y3 (t) −

(
1

𝜏e

)2
y0 (t)

d

dt
y1 (t) = y4 (t) ;

d

dt
y4 (t)

=
A

𝜏e
{p (t) + C2Sigm [C1y0 (t)]} −

2

𝜏e
y4 (t) −

(
1

𝜏e

)2
y1 (t)

d

dt
y2 (t) = y5 (t) ;

d

dt
y5 (t) =

B

𝜏i
C4Sigm [C3y0 (t)] −

2

𝜏i
y5 (t) −

(
1

𝜏i

)2
y2 (t)

,

(2)

where y0, y1, and y2 are the post-synaptic potentials of respectively the

pyramidal, stellate, and interneuron populations, and y3, y4 and y5 are

their derivatives. The term p(t) is the input written as a firing rate, that
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is, the combination of the activity of other regions μ(t) and a stochas-

tic term η(t) that models the physiological noise: p(t) = η(t) + μ(t). The
stochastic term η(t) is an additive, Gaussian white noise, equal for all

regions. The Sigmoid term represents the physiology-inspired nonlin-

ear gain function that transforms the average population post-synaptic

potential into amean firing rate:

Sigm (v) =
vmax

1 + er(v−v0)
,

where νmax is the maximum firing rate of the population, ν0 is the

value of the potential for which there is a 50% firing rate, and r is the

sigmoid slope at ν0. The term ν0 is also referred to as the excitabil-

ity parameter of the population. We defined a model to describe the

dynamics of each single node of the network, and then we linked

these nodes by using a structural connectivity matrix, in which each

couple of regions is characterized by a connective weight Cweight that

mathematically transcribes the number of axonal fibers connecting the

regions, and a distance between regions called Clength that describes

the length of the fibers. In the model, Cweight determines the directed

coupling strength between two nodes. The higher this value is, the

more the activity of a region can influence the activity of other

regions by increasing the value of μ(t) in the input equation. Both the

model and the connectivity matrix we utilized come from the TVB

framework.33 In particular, the structural connectivity matrix and the

cortex parcellation are derived from the standard TVB atlas, which

combines high precision and reliability.33 The weights Cweight of the

TVB connectome are assigned integer values ranging from 0 to 3,

that transcribe null ( Cweight = 0), weak (Cweight =1), medium (Cweight =

2), and strong (Cweight = 3) anatomical connections. The connectiv-

ity constants C1,2,3,4 are proportional to the number of synapses that

link the subpopulations together. The constants A and B, expressed

in mV, are the maximal amplitude of the post-synaptic potentials for

excitatory and inhibitory neurons. 𝜏e, 𝜏i, expressed in ms, are the

time constants of excitatory and inhibitory population, which lump

together dynamic features such as delays of the synaptic transmis-

sion and the delay in signal transmission. These last two parameters

are those that we altered in order to depict the progression of the

disease, and also the major reason why we chose this model, due to

the fact that tuning the 𝜏e∕ 𝜏i ratio is a simple yet highly effective

way of implementing the excitation/inhibition imbalance recurrent in

AD.34 Model parameters are summarized in Table 1. FC was computed

for simulated EEG as the Pearson correlation between brain regions’

activity. PSD analysis was performed as we did for experimental

signals.

2.7 Disease progression model

We modeled the progression of pathology with two quantities: a con-

nectivity parameter (cp) of global network connectome degeneration

and a local parameter (lp) of regional synaptic degeneration. These

quantities describe respectively the alteration of white matter fiber,

in terms of both white matter atrophy and neuroplasticity,35,36 and

the degeneration of synaptic transmission (mainly excitation/inhibition

imbalance)20 according to the equations:

Cweight →

{
CHC
weight

− cp × Cth
weight

, if Clength > Cth
length

CHC
weight

+ cp × Cth
weight

, if Clength < Cth
length

, (3)

𝜏i → 𝜏HCi + lp ×
(
𝜏max
i − 𝜏HCi

)
𝜏e → 𝜏HCe + lp ×

(
𝜏min
e − 𝜏HCe

), (4)

where Cth
weight , 𝜏

max
i , and 𝜏mine are the extremal values of the highlighted

quantities, and are Cth
weight = 2, 𝜏maxi = 40 ms, 𝜏mine = 8.9 ms, deduced

from biophysical constraints.32,33 Arrows represent the modification

of original values tomodel diseaseprogression. Both cp and lp are range

between 0 and 1, with 0 being the healthy and 1 being the most severe

condition.

Note that we introduced, alongside excitation/inhibition imbalance

and white matter fibers atrophy, a model of the correcting mech-

anisms operated by the brain in order to cope with the disease,

such as synaptogenesis and neural plasticity.36–38 This effect is mod-

elled as an increase in short range connection (ie, an increase in

connective weights of the structural connectivity matrix) with ini-

tially impaired regions, that is introduced along with the reduction

in long range connections implemented for the same regions (Equa-

tion 3). The discrimination between short and long connections is

made on the length of axonal tracts connecting the regions, Clength
with short (long) connections existing between regions that are sep-

arated by a distance smaller (greater) than a threshold, that we

deduced to be equal to Cmax
length∕3 from anatomical considerations of

the utilized connectome.33 AD appearance is not ubiquitous in the

brain, and there is a subset of cortical regions in which the disease

spreads significantly faster than in others.39 To model this spreading

anisotropy we induced the connectome and 𝜏i alterations only in a

subset of regions, mostly temporal/entorhinal regions taken fromwell-

known Braak stages, while 𝜏e modifications appear in the whole cortex

(Equation 4).

These initially impaired regions are orbitofrontal and polar regions

of prefrontal cortex, and the polar, central, inferior, and ventral tempo-

ral cortex.

2.8 Brain signal simulation

Regional activity is obtained by solving the set of stochastic differ-

ential equations given by the Jansen-Rit model (Equation 2), which

are computed by means of the stochastic Heun method,40 with a

timestep of 0.1 ms. For each run, we simulated 10 seconds of local

electrophysiological activity, with a resolution of 1ms.

2.9 Tuning the model to patient-specific EEG
features

We estimated lps and cps for each individual patient as follows. First,

we computed in simulated data for the A/LF ratio and average BFC as
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TABLE 1 Model parameters.

Parameter label Description Unit of measure Value

A Maximum excitatory mV 3.25

post-synaptic potential

B Maximum inhibitory mV 22.0

post-synaptic potential

𝜏e Excitatory time constant ms 10

𝜏i Inhibitory time constant ms 20

v0 Voltage threshold for which a mV 6.0

50% firing rate is achieved

νmax Maximum firing rate of s−1 0.0025

neural population

r Steepness of sigmoidal mV−1 0.56

transfer function

C1 Average probability of synaptic contacts pure number 1.0

in the feedback excitatory loop

C2 Average probability of synaptic contacts pure number 0.8

in the slow feedback excitatory loop

C3 Average probability of synaptic contacts pure number 0.25

in the feedback inhibitory loop

C4 Average probability of synaptic contacts pure number 0.25

in the slow feedback inhibitory loop

η Mean input noise s−1 0.22

μ Mean input from other regions s−1 0.22

Cweight Connectiveweights with other nodes pure number 0–3

Clength Distance from other nodes mm 0–138

Note: Quantities in bold are thosemodified in order to depict Alzheimer’s disease effects.

a function of lp and cp. We did a grid-search by changing the values of

both lp and cp in 50 linear steps between 0 and 1.We thus obtained the

twomatrices of simulated EEG featuresA/LFmod(lp, cp) andBFCmod(lp,

cp).

We also computed the vectors A/LFexp (subj) and BFCexp (subj),

containing respectively the values of the A/LF ratio and of the BFC

for each participant. We then normalized both the experimental

and the simulated features between their minimum and maximum

values.

We then computed the total weighted Euclidean distance between

the experimental values of the EEG features of each participant and

each value of the simulated features matrices:

D(subj, [lp, cp])
2
= DistanceBFC

2
+W ×DistanceA∕LF

2,

where the quantities DistanceA/LF and DistanceBFC are defined by the

equations:

DistanceA∕LF = A∕LFexp(subj) − A∕LFmod(lp,cp),

DistanceBFC = BFCexp(subj) − BFCmod (lp,cp).

The distance operator allows to select the optimal values of cp and

lp for each patient. This is done by finding the combination of cp and lp

that minimizes the squared difference between experimental values of

A/LF and BFC (the A/LFexp (subj) and BFCexp (subj) vectors), and their

simulated counterparts (the A/LFmod(lp, cp) and BFCmod(lp, cp) matri-

ces). The purpose of the parameterW is to find the weighted distance

from the experimental EEG features that, when minimized, identifies

the distribution of network features that best classifies HC subjects

andMCI patients. Each value ofWunivocally identifies a distribution of

cp and lp. We determined the optimalW by looking for the distribution

thatmaximized theHC−MCI classification performance in theW value

range 0.005−16. We found W = 12 to be the best weight value, and

we then determined the lp−cp combination for each patient, by mini-

mizing the distance with that value ofW as the weight. By identifying

these value pairs, we unequivocally found the combination of network

features that best describes the given patient in terms of the relevant

features computed from their EEG. We also checked the robustness

of this procedure, by applying a gaussian random noise to the exper-

imental A/LFexp (sub) and BFCexp (sub) values used to determine the

best fitting parameters. The noise was distributed for each feature

in an interval centered in its original value, with the interval length
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AMATO ET AL. 7 of 17

given by 10% of the same value. We then recomputed the network

features from the new distribution of EEG features. For better clarity,

the pseudocode for the fitting function is reported in Supplementary

Materials.

2.10 Classifying patient conditions with network
parameters

The classification of the participants’ condition described in Section

2.4 (Classification algorithm) was then repeated based on the network

parameters lp and cp rather than the EEG featuresA/LFexp and average

alpha FC. First, the patients’ specific values of lp and cp were used to

discriminate between HC and MCI. Then, SCD patients were assigned

by the same algorithm either to the HC or to the MCI category as

we did for EEG features. Finally, to check if our model could deter-

mine the degree of structural alterations due to disease progression,

we compared the percentage of CSF+ patients in the two subsets iden-

tified by the classifier (see Section 2.5, CSF analysis an follow-up). This

was done to assess if our proposed classification and prediction could

outperform the one based on standard experimental data.

2.11 Outlier management

Outliers, defined as participants whose computed features were more

than four standard deviations away from the mean value, were dis-

carded from both the statistical analysis of the dataset and from the

classifying pipeline. We did not find outliers in the EEG features, while

we found one in the network features of the HC group, reducing the

group size to n= 16 subjects.

2.12 Graph theoretical analysis

To link the functional and dynamic non-linearities observed during the

simulated structural connectivity degeneration, we performed a graph

theoretical analysis of the structural matrices of the model while vary-

ing the cp parameter. We utilized the Randic index,41 a quantity that

has already been used in studies concerning AD.42

This quantity, defined as the sum of
1

(Cweight(i,j)Cweight(j,i))
out of every

possible (i, j) pair, is anti-correlated with the tendency of each node

to be linked with nodes of similar degree, the so called “rich-club

phenomenon.”43 The rich-club phenomenon is known to apply to the

connections in the healthy cortical network.43 We studied the evo-

lution of the Randic index during the progression of the disease, by

computing this quantity for every value of cp, comparing the results

with the variation of both A/Lfmod and BFCmod according to the same

variable. We also investigated the Randic index evolution in a network

model with a random structural connectivity matrix, that is, with ran-

dom connective strength Cweight(i, j) between regions. By increasing cp

in the random network model, and by computing the Randic index for

each cp value,we could check if thenon-linearities observed in theorig-

inal network depends solely on cp or if they could derive also from the

non-trivial network topology.

2.13 Statistical analysis

Distribution normality was assessed by using the Shapiro−Wilk test.

For approximately normally distributed variables (p > 0.01) we used

a one-way analysis of variance (ANOVA) f-test, otherwise we chose

the Kruskal−Wallis non-parametric test to compare the three groups.

Similarity in distribution of connective weights was assessed with the

Kolmogorov−Smirnov test. Post hoc analysis was conducted by Bon-

ferroni correction after pairwise comparisons between groups. We

also tested the effect size by means of Cohen’s d. Only differences

with d>0.50 (large effect size) were listed as significant. All tests were

two-tailed, except for the test for the significance of the CSF+ predic-

tion, which was a one-tailed test on the binomial distribution with 50%

probability as the null hypothesis, and for the significance test for the

performance metrics of the machine learning pipeline. The confidence

ranges of performance metrics for the MCI versus HC classification

were assessed by generating a null distribution with the bootstrap

test with 250 iterations and by taking the 2.5% and 97.5% percentiles

(p = 0.05). For the confidence ranges of the CSF prediction, since the

sample sizes were smaller than in the previous case, we opted for

the Clopper-Pearson method. Statistical analysis was implemented in

Python using the standard Scipy package.

3 RESULTS

3.1 EEG features in early stages of AD

We recorded EEG signals at rest from patients with MCI and SCD,

along with HC subjects (see Methods for details). We first classified

participants in these groups based on EEG features, extracting for each

one the PSD and FC between pairs of electrodes, two known EEG

biomarkers of AD.11,12

The whole-scalp PSD presented significant differences across the

three groups (see Methods) only within the alpha band (8−12 Hz) and

within the low-beta range (12−20 Hz) (p < 0.05, one-way ANOVA

with Bonferroni correction, Figure 2A). In both ranges the PSD was

higher for the HC than for the SCD, and for the SCD than for the MCI

groups. Theopposite rankingwasobserved for thedelta (0.5−4Hz) and

theta (4−8 Hz) bands, although intergroup differences were not sig-

nificant. We computed the information about the three groups carried

by other spectral EEG biomarkers based on standard frequency bands

(see Methods), and we found the alpha/(delta + theta) power ratio

(A/LF ratio) to be themost informativeEEGspectral feature (seeFigure

S1a). However, this ratio was not significantly different across groups

(Kruskal−Wallis test, statistic = 2.86, p = 0.24, Figure 2B). We com-

puted FC (see Methods) over frequency bands, along with BFC23–25

(see Figure S2). Mean BFC values did not differ significantly between

groups (0.072 ± 0.037 for the HC group, 0.071 ± 0.035 for the SCD
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8 of 17 AMATO ET AL.

F IGURE 2 Decoding of patients’ condition and prediction based on EEG features. (A)Mean PSD for all groups (HC,MCI, SCD), shaded area
around PSD curves representing the standard error of themean. Gray bars indicate frequency ranges displaying significant differences (p< 0.05)
across groups. (B) Ratio between power in the alpha band and lower frequencies (A/LF ratio) for the three groups. (C) FC in the alpha band (alpha
FC) for the three groups. (D) Combined representation of A/LF ratio and average alpha FC for each participant in each group. Cross-shaped
markers indicate themean values of the three groups. (E) Confusionmatrix for HC versusMCI for optimal classification algorithm based on EEG
features (F) Left: SCD patients classified as HC (light red) andMCI (cyan) with the same classification algorithm used in panel D. Black bars indicate
the numbers of patients whose CSFwas positive to AD biomarkers (CSF+) within each set. Right: Percentages of CSF+ patients for each category
(brown red and dark cyan). AD, Alzheimer’s disease; CSF, cerebrospinal fluid; EEG, electroencephalography; FC, functional connectivity; HC,
healthy condition;MCI, mild cognitive impairment; PSD, power spectral density; SCD, subjective cognitive decline.

group, and 0.069 ± 0.031 for the MCI group). We then binarized the

BFC setting using as threshold the mean BFC value26 to study the dif-

ferences in the number of relevant functional connections between

groups (see Methods). The MCI group displayed an average decrease

of significant connections compared to HC subjects (17.8% of connec-

tions present in the HC group are lost in MCI patients while only 7.6%

of the connections present in theMCI group are gained, see Figure S3a

left). Surprisingly, comparing theSCDandHCgroups, theoverall preva-

lence was an increase in the number of significant connections (11.9%

gained vs 6.9% lost, Figure S3a center). Connections were instead lost

in the MCI group compared with the SCI group (18.2% lost vs 2.95%

gained, Figure S3a right). This suggests a non-monotonous progres-

sion of FC weakening across cognitive decline severity.36–38 We then

computed the amount of information carried about the three groups

by the EEG FC biomarkers of AD (Figure S1b). The most informa-

tive was the average alpha band FC even if no significant difference

was present between groups (Figure 2C, Kruskal−Wallis test, statis-

tic = 5.70, p = 0.057). The shape of the BFC distribution, instead,

significantly changed across groups (Kolmogorov−Smirnov test, HC vs

SCD test = 0.077, HC vs MCI test = 0.10, SCD vs MCI test = 0.038,

p << 0.0001 across all groups), with the largest variability being

present in SCDpatients (the coefficient of variationwas 0.051 for SCD,

and 0.047 for both HC and MCI). We tested the classification per-

formance of combinations of PSD and FC features in discriminating

between HC andMCI (Table 2) using the random forest algorithm as it

outperformedother approaches (Table S1). The strongest classification

wasbasedon theaveragealphabandFCandA/LF ratio (see scatter plot

in Figure 2D), achieving an accuracy of 78% [69%−86%] (alpha = 0.05

computed from bootstrap distribution, seeMethods), with an F1 score

of 0.75 [0.68−0.83] and recall (fraction of MCI patients correctly
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AMATO ET AL. 9 of 17

TABLE 2 Top four classifier performances trainedwith
combinations of EEG spectral and FC features.

EEG features Classifier Accuracy F1 score

A/LF ratio—FC

alpha band

average

Random Forest 0.78 0.85

SVM, rbf kernel 0.68 0.73

SVM, polynomial 0.70 0.72

SVM, linear 0.64 0.57

Note: Other algorithms that we considered performed poorly in classify-

ing MCI patients and HC subjects. These were (1) decision tree, (2) native

Bayes, (3) nearest neighbors.

Abbreviations: A/LF, ratio of alpha power over combined lower frequency

bands; EEG, electroencephalography; FC, functional connectivity; HC,

healthy condition;MCI,mild cognitive impairment; rbf, radial basis function;

SVM, support vector machine.

identified) of 0.82 [0.73−0.91]. The HC−MCI inter-cluster separation

was 0.46 (see Methods). We investigated whether we could discrim-

inate SCD patients more at risk of progressing toward AD based on

their similarity with MCI rather than with HC in the EEG features

space.We then used the same algorithm used to discriminate between

HC and MCI (using again the HC and MCI groups as a training set)

to classify SCD patients in a semi-supervised fashion (see Methods).

In this way SCD patients were partitioned into a subgroup classified

as being closer to the HC (SCD→HC) and a subgroup closer to MCI

(SCD→MCI).We checked the performance of this algorithm in predict-

ing the presence of biological hallmarks of AD pathology. We did this

by comparing the results of CSF markers (strongly related to struc-

tural alteration,7 see Methods) for the two subgroups identified by

the algorithm. However, the number of CSF+ patients was the same

in the SCD→MCI and SCD→HC subgroups (4 vs 4, Figure 2F). We

computed the accuracy of the algorithm in discriminating CSF+ and

CSF− (Clopper-Pearson method, see Methods), finding a value of 48%

[38%−58%]. The F1 scorewas equal to 0.40 [0.30−0.50], and the recall

(fraction of CSF+ patients correctly identified) was 0.50 [0.39−0.61]

(see Methods). Finally, at 1 year follow-up, three of the SCD patients

transitioned to MCI. We checked whether the algorithm could pre-

dict such transition (by correctly placing converted patients in the

SCD→MCI subgroup). Only one of them (1/3) was correctly identified.

This suggests that decoders based on standard PSD and FC EEG fea-

tures display a low segregation betweenMCI and HC and could not be

used to provide an outlook on SCD patients’ condition.

3.2 Multiscale cortical network model of
progression to AD

To overcome the limitations of EEG in assessing neurodegeneration

severity, we hypothesized that reconstructing from the model the

specific circuital changes inducedby the early stageofAD-typedemen-

tia in each participant (Figure 1, bottom) could highlight parameters

enabling amoreaccurate classificationof patients than theoneallowed

by EEG features. We started from the model of the healthy cortex

available in the EBRAINS TVB platform (see Methods). Then we mod-

eled the neural circuit correlates of the onset of AD-type dementia

considering changes at the level of both local dynamics and global

connectivity (Figure 3 and Methods). Briefly, structural connectivity

degeneration was modeled by considering both a decrease in long-

range connections due to white matter atrophy and an increase in

short-range connections due to neuroplastic mechanisms (see Meth-

ods). Synaptic degenerationwas accounted for bymodeling alterations

in inhibitory and excitatory synaptic time scales. These two processes

are summarized by two network features: cp for connectivity degener-

ation effects and lp for synaptic degeneration effects (see Equations 3

and 4 in theMethods and in Figure 3).

We first assessed whether the model was able to reproduce the

alterations of EEG features (PSD and FC) observed in the SCDandMCI

groups. For suited pairs of cp and lp values (see Methods) the model

was able to reproduce qualitatively both connectivity and spectral fea-

tures ofHC, SCD, andMCI fromEEG recordings. The combination of cp

and lp parameters reproducing experimental features was cpHC = 0.48

and lpHC = 0.30 for HC, cpSCD = 0.64 and lpSCD = 0.46 for SCD, and

cpMCI = 0.98 and lpMCI = 0.84 forMCI, coherent with the expected pos-

itive correlation between the magnitude of network features and the

severity of the condition. For these network feature pairs the model

displayed the experimentally observed decrease in alpha band in the

SCD and MCI groups with respect to the HC group, as well as the

decrease in beta band power observed in MCI patients (12.5% ± 2.6

power loss with respect to the HC group values for the MCI group in

the beta band, and 10.3% ± 2.1 and 41.3% ± 8.3 power loss for the

SCDandMCI groups, respectively, with respect to theHCgroup values

in the alpha band). Coherently with the experimental results, the A/LF

ratio decreased for larger values of network features (Figure S3a).

Since we computed FC in the network model between cortical

regions rather than between electrodes, we compared the simulated

network FC with the broadband envelope correlation computed from

EEG signals, as previous studies suggested that this measure is suited

to study functional connections between source regions.44 Note that

BFC was a highly informative EEG feature discriminating the groups

(Figure S1). For the same parameter values reproducing observed

spectral modulations the model also displayed the same observed dif-

ferences in FC across groups (SCD vs HC: 8.3% lost vs 12.1% gained

connections; MCI vs SCD: 15.5% lost vs 6.95% gained connections;

MCI vs HC: 13.1% lost vs 8.30% gained connections, Figure S3b,c).

Coherent with the experimental recordings analysis, the average BFC

displayed similar values across groups (0.074 for HC and SCD, and

0.071 for MCI). Overall, the network model was able to capture

both variation in the low frequency spectrum and the non-linearity in

connectivity progression associated with different conditions in EEG

recordings.

3.3 Relationship between network features and
EEG features

We then investigated the relationship between the average BFC and

A/LF ratio in simulated data and the underlying network features
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10 of 17 AMATO ET AL.

F IGURE 3 Outline of themodel of AD-related structural alterations. Top row: Amacro-scale cp describes the degree of alterations in
structural connectivity, through linear strengthening of short-range andweakening of long-range connections. Thickness of the lines is
proportional to connection strength; white nodes are those affected by AD-type dementia. Bottom row: Ameso-scale lp describes the degree of
synaptic degeneration through a local slowing of inhibitory synapses, alongside a global quickening of excitatory synapses. This leads to
hypo-inhibition in the regions impaired by the disease, alongwith amilder but ubiquitous hyperexcitation. AD, Alzheimer’s disease; cp, connectivity
parameter; lp, local parameter.

modeling the degeneration process cp and lp (Figure 4). We simulated

brain signals as a function of both lp and cp and we computed the

associated BFC and A/LF ratio.

BFC (Figure 4A) increased with lp for all values of cp (Figure 4B).

The relationship between BFC and cp depended instead on lp: when

lp was high BFC displayed a peak value for intermediate values of

cp, suggesting a non-linearity of BFC during progression toward AD,

whereas when lp was low BFC increased monotonously (Figure 4C).

To understand how this was related to the structure of the network,

we measured the assortativity of the network by computing its Randic

index (seeMethods and41,42) as a function of cp (Figure 4D). TheRandic

index displayed a nonlinear trend, with values even lower than those

found in the healthy case for early stages of the disease progression,

followed by a steep increase for high values of cp increases. The Randic

index links the state of structural and functional alterations and could

explain the non-linearity observed in the FC measurements in EEG.

Our model suggests that the gradual decline of long-range connec-

tions and the enhancement of connections between nearby affected

regions could cause a temporary increase in assortativity. This is then

followed by a sharp decrease due to the worsening state of long-range

connections. Our findings suggest that the topology of a healthy cor-

tical network is the source of observed non-linearities indicated by the

Randic index.We tested this hypothesis byprogressively increasing the

cp parameter, this time starting from a random structural connectivity

matrix (ie, with random values of Cweight between regions). We found

that both the simulated FC and Randic index to show monotonic evo-

lution with the progression of the disease (increasing cp parameter),

suggesting that the nonlinear evolution observed in experimental data

stems from the complex topology of the network (Figure S4a—b).

We next investigated the evolution of the A/LF ratio when the

parameters associated with AD progression are increased (Figure 4E).

For high values of lp the ratio decreased with cp, while the opposite

was true for low values of lp (Figure 4F). The increase of lpwas instead

always associated to a steep decline in the ratio.

 23528729, 2024, 1, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/dad2.12526 by Scuola Superiore Santa A

nna D
i, W

iley O
nline L

ibrary on [08/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AMATO ET AL. 11 of 17

F IGURE 4 Relation between cp and parameters and simulated features. (A) Average BFC for the networkmodel as a function of local and
connectivity parameters, lp and cp. (B) BFC as a function of lp for fixed values of cp. (C) BFC as a function of cp for fixed values of lp. (D) Randic index
as a function of cp, showing nonlinear evolution of network assortativity during disease progression. (E) A/LF power ratio for the networkmodel as
a function of lp and cp. (F) A/LF ratio as a function of cp for a fixed value of lp. A/LF, alpha band/lower frequencies; BFC, broad-band functional
connectivity; cp, connectivity parameter; EEG, electroencephalography; lp; local parameter.

3.4 Personalized network features lead to
reliable classification and prediction of AD pathology

We finally proceeded to compute personalized network features cpsubj
and lpsubj to feed them (rather than EEG features) into the classification

and prediction algorithms.

We determined for each participant the subjective combination of

network parameters [cpsubj lpsubj] that allowed the best reproduction

of the EEG features computed from their recording. This allowed us

to define for each participant a personalized network with an esti-

mated measure of connectome degeneration, given by cpsubj, and an

estimated level of synaptic degeneration, given by lpsubj (Figure 5A).

The two parameters were correlated across participants for merged

groups (r2 = 0.077, p = 0.002), but correlation decreases when com-

puted for each group (r2 = 0.40 p = 0.006 for HC, r2 = 0.12, p = 0.008

for SCD, and r2 = 0.083, p= 0.061 forMCI) with a largermean squared

error (MSE) for the SCD andMCI groups (MSE = 0.12 for HC, 0.91 for

SCD, and 0.62 forMCI; see Figure 5B).

We found lps to be significantly smaller in HC subjects with respect

to MCI (one-way ANOVA, f = 6.17, p = 0.048, with Bonferroni cor-

rection, Cohen’s d = 0.73) but not to SCD patients (one-way ANOVA,

f = 1.73, p = 0.126, with Bonferroni correction, Figure 5C). The cps

did not differ significantly across groups (Kruskal−Wallis test, statis-

tic=0.35, p=0.70) (Figure 5D).We also computed for each participant

the average Euclidean distance in the [cpsubj, lpsubj] space (Figure 5A)

from the center of the HC group (determined by the average HC val-

ues of cp and lp). This distance was significantly smaller in HC subjects

with respect to MCI (one-way ANOVA, f = 6.56, p = 0.039, Bonferroni

correction, Cohen’s d = 0.61) and to SCD patients prior to Bonferroni

correction (one-way ANOVA, f= 4.89, p= 0.09, Bonferroni correction,

Cohen’s d = 0.75, Figure 5E). We also tested the robustness of this

pipeline by adding a random value (generated with a Gaussian distri-

bution) to the EEG features, checking how this random displacement

influenced the [cpsubj, lpsubj] combination for each patient (see Meth-

ods). Results are shown in Figure S5, which highlights the stability of

the parameter determination procedure.

The fact that network features displayed significant differences

across groups is particularly relevant as this was not the case with the

experimental EEG features. To assess whether this led to an improve-

ment in the classification performance, we repeated the classification

between MCI patients and HC subjects using the same algorithm

utilized for the classification with EEG features (see Methods), but

using only the network features (the [cpsubj, lpsubj] combination). We

found an accuracy of 93% [87%−97%], with an F1 score of 0.95

[0.91−0.98] and a recall (fraction of MCI patients correctly identified)

of 0.91 [0.84−0.96]. The two clusters also displayed a clear separation,

dmod = 1.26.

Since the algorithm based on network features performed bet-

ter than the EEG-based one in discriminating between HC and

MCI, we investigated whether it could determine the presence of
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12 of 17 AMATO ET AL.

F IGURE 5 Decoding of patients’ condition and prediction based on network features. (A) Combined representation of network features lp and
cp for each participant in each group (HC,MCI, and SCD). Cross-shapedmarkers indicate themean values of the three groups. (B)Mean squared
error of the linear fit for each group. (C−E) Distribution across groups of lps (C), cps (D), and Euclidean distance from the healthy cluster center (E).
(F) Confusionmatrix for HC versusMCI optimal classification algorithm based on network parameters. (G) Left: SCD patients classified as HC
(light red) andMCI (cyan) with the same algorithm used for experimental EEG features (see text). Black bars indicate the number of CSF+ patients
within each set. Right: percentages of CSF+ patients for each category (brown red and dark cyan). *p< 0.05 (Fisher’s test). cp, connectivity
parameter; CSF, cerebrospinal fluid; EEG, electroencephalography; HC, healthy condition; lp; local parameter; MCI, mild cognitive impairment;
SCD, subjective cognitive decline.

biological hallmarks of AD in SCD patients, and possibly their future

progression. Following the procedure applied for the EEG features-

based algorithm (see Methods), we partitioned the SCD patients

into SCD classified as MCI (SCD→MCI) and SCD classified as HC

(SCD→HC) based on their personal network features. To test the

hypothesis that the network features partition could predict biolog-

ical hallmarks of AD in SCD patients, we compared the presence of

CSF markers for the two SCD subgroups. We found a significatively

higher number of CSF biomarker carriers in the SCD→MCI group with

respect to the SCD→HC classified group (7 vs 1, Fisher test p = 0.04,

Figure 5G). The accuracy of the partition in discriminating CSF+ and

CSF− was 61% [51%−70%], the F1 score was 0.60 [0.50−0.69], and

the recall was 0.87 [0.78−0.93]. These results suggest that the algo-

rithm based on network features extracted from resting EEG signals

could predict biological hallmarks of AD pathology. We also checked

the performance of the algorithm based on network features in pre-

dicting converted patients, as we did for the algorithm based on EEG

features. Strikingly, we found that all (3/3) patients that converted

from SCD tom MCI at 1 year follow-up belonged to the SCD→MCI

group identified with network features (remember that only 1/3 was

identified with EEG features). This corroborates the strong enhance-

ment in diagnostic and prognostic ability obtained by the network-

driven analysis of EEG signal in comparison with standard quantitative

techniques.

Overall, the network-based algorithm significantly outperformed

the EEG-based algorithm inHC versusMCI classification (Figure 6, top

row), while also allowing for the first time to predict biological hall-

marks of AD pathology from EEG recordings, which was up to now

unfeasible (Figure 6, bottom row). These results appear even more

relevant if we note that converted patients showed no distinct symp-

tomatology (being diagnosed as SCD). Note that network features

replaced the EEG features, rather than being used in combination with

them to enhance the performance of the classifier as done in several

studies (see Discussion).
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F IGURE 6 Performance comparison between EEG-based and network-based algorithms after bootstrapping. Top row: Performance on
predicting the biological hallmarks of the disease in the CSF. Bottom row: Performance on classifying betweenMCI andHC conditions.White dots
represent experimental values. Significance notation: *p< 0.05 for (1) experimental value of EEG-based algorithm below confidence range of the
network-based algorithm and (2) experimental value of network-based algorithm above confidence range of the EEG-based algorithm. ** p= 0.05
for non-overlapping confidence ranges. CSF, cerebrospinal fluid; EEG, electroencephalography; HC, healthy condition;MCI, mild cognitive
impairment.

4 DISCUSSION

We developed a computational model estimating the level of degener-

ation in local connections and global connectivity during the trajectory

towardAD.These changes canbeestimatedonan individual basis com-

bining themodelwith spectral and connectivity attributes of a patient’s

resting-state EEG recordings. Leveraging these attributes as input,

machine learning algorithms demonstrated prowess in classifying early

stages of ADand forecasting their progression, significantly surpassing

algorithms founded solely on conventional informative EEG features.

The potency of our approach stems from its innovative incorporation

of knowledge concerning the course of AD-related neurodegeneration

in the decoding of EEG signals.

4.1 A patient-specific, multi-scale model of
disease progression

Our model replicates salient aspects of healthy and pathological EEG

recordings across varying scales, aptly encompassing the spectral

and connectivity characteristics observed experimentally. The model

captures several structural alterations wrought by the disease, encom-

passing synaptic degeneration and hyperexcitation and white matter

atrophy. While an earlier work on AD modeling introduced a specific

model pertaining to the decline in the alpha/theta ratio,19 our model

extends its scope to accommodate a broader array of structural modi-

fications, thereby becoming capable of accounting for their effects on

connectivity. Furthermore, we have introduced explicit representation

of neuroplastic adaptive phenomena embodied as augmented short-

range increases in structural connectivity within impaired regions

aligning with the observed nonlinear evolution of FC as AD advances.

These structural and circuital shifts, distilled into two parameters (cp

and lp), calibrate the model to each patient’s electrophysiological sig-

nals, thereby linking the experimentally observed EEG biomarkers

with computationally determined structural parameters of neurode-

generation. Distinct from prior work such as,19 which focused on

predicting EEG features from structural changes, our endeavor priori-

tizes the estimate of neurodegeneration severity through non-invasive

recordings, tailoring the model to the unique EEG features of each

participant.

4.2 Classification of MCI with EEG features

The model lay at the core of a clinical pipeline to estimate the severity

of each patient’s neurodegeneration through a quantitative analysis

of their resting EEG signal. The EEG signal was processed through the

model to extract biomarkers more informative than the standard EEG

features. We used as benchmark for EEG analysis the performance

of algorithms for the classification of MCI based on spectral and

connectivity features, which are the most common tool to assess MCI

conditions from EEG11,45–52 and are even investigated as possible

markers of progression to AD.37 The results were in line with previous

studies performing MCI classification with these features,9,10,13,14,53
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but was vastly outperformed by the model-based procedure

(Figure 6).

However, the range of possible EEG features extends beyond

the ones we tested. Promising results have been achieved through

network54 or microstate analysis.13,55 Moreover, EEG features col-

lected during cognitive tasks are likely to be more informative than

those acquired at rest and hence lead to a more efficient classifica-

tion of EEG synchronization in MCI and AD.56 A potential alternative

approach is the automatic learning of features based on deep learn-

ing tools.57 Novel approaches can improve not only classification with

EEG features, but also improve the design of personalizedmodels. Pre-

vious works utilized models personalized with structural scans, such

as,19 to derive novel features to support the classification of AD and

MCI patients.53,58 Besides the difference in approach highlighted in

the previous section, we also note that in our case network model

features replace features basedon recordings in the classification algo-

rithm, rather than being combined with them, nonetheless enabling us

to obtain amuchhigher accuracy in discriminating healthy subjects and

MCI patients.

4.3 Model prediction of AD pathology and clinical
outcome

Detecting AD at its nascent stages is pivotal, as it offers a win-

dow of opportunity for early therapeutic interventions. However,

the complexity of diagnosing SCD arises from its elusive and het-

erogeneous nature, characterized by the absence of distinctive

symptomatology.3 Unlike clinical AD, SCD lacks the objective cog-

nitive deficits that can be readily quantified through standardized

neuropsychological assessments, rendering diagnosis reliant on sub-

jective reports of cognitive decline from individuals themselves or their

informants.

This inherent subjectivity in symptom reporting poses challenges

in ascertaining the validity and specificity of SCD as a clinical entity.

Our model-based approach was able to partition SCD into two sub-

sets with a significant different presence of CSF biomarkers (currently

themost reliable biomarker of AD pathology,20 Figure 5G). The predic-

tion of CSF biomarkers in SCD patients was never attempted before

to the best of our knowledge, and in fact was unachievable when using

standard quantitative EEG analysis (Figure 2F).

This constitutes the first example of prediction of biological hall-

marks of AD from EEG recordings, a fortiori in pre-AD patients

without evident symptomatology. Moreover, we conducted follow-up

screening after 1 year to check for converted patients, finding three

SCD-to-MCI conversions. Strikingly, all three SCD patients that con-

verted were correctly identified in the SCD→MCI group by our model.

These results pave the way for a novel approach to EEG analysis,

which could extract from such an affordable and non-invasive tech-

nique information until now obtainable only via more complex and/or

stressful exams.

4.4 Limitations and future directions

The first limitation of our study pertains to the size of the three par-

ticipant groups, and in particular the smaller size for the control group

compared to the other two groups. We sufficiently minimized the bias

introduced by this discrepancy in the statistical analysis by testing the

effect sizes of statistical differences (see Methods). Furthermore, the

CSF was analyzed only on a limited subset of patients. A larger dataset

will further enable a more detailed investigation of the role played by

demographic factors such as sex and age. In particular, future studies

will address the possibility of using the model to disentangle between

structural changes associated with healthy aging and those associated

with neurodegeneration.

One of the key results of our work, namely, the fact that net-

work features were able to correctly recall CSF+ patients in 7/8 cases

(against 4/8 with EEG features), was achieved by analyzing a limited

subset of 23/58 SCD patients. The results are statistically robust and

the difference between the two decoding performances is significant

(see Methods for details). However, to properly assess the efficacy of

our approach, a multicenter study is needed and will be performed.

Similarly, we reported the observation that our approach predicted

3/3 conversions from SCD to MCI (against 1/3 with EEG features).

Given the small numberof conversions,multicenter studies over longer

timescales are required to statistically assess whether our approach is

better than the standard one in this respect.

Another limitation lies in the selection of the regions of interest that

exhibit impairment. While our work focuses on predicting structural

changes linked to AD in the absence of direct structural data, we had

to draw from existing literature20 to determine the regions of interest,

referring to thewell-knownBraak stages39 (seeMethods). This implies

that our findings might be influenced by the choice of the impaired

regions. To address this, we explored various combinations of impaired

regions (based on Aβ and tau Braak stages, their combination, inter-

section, or considering solely the hippocampus), revealing Aβ Braak

stages as the optimal choice; these changes did not qualitatively affect

the results (data not shown). Other studiesmay encompass analyses of

regional oscillations, for example, by using high density EEG or source

reconstruction software. This can allow to obtain a more precise idea

of regional levels of neurodegeneration from EEG recordings.

Third, the aggregation of meso-scale and macro-scale param-

eters, while facilitating precise model customization and severity

assessment, necessitates nuanced assumptions. Specifically, the pro-

portionality between neuroplastic adaptations (represented in the

model as increased short-range structural connectivity Cweight in

impaired regions) and white matter degradation (represented as a

decrease of long-range structural connectivity Cweight) could be highly

subjective.35,36 While we experimented with diverse ratios of these

quantities to identify the most suitable ratio between short-range

increase and long-range decrease for our dataset (finally settling

for the 1:1 ratio), the inherent subjectivity of deviation from this

aggregated value remains unaddressed in this study.
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These highlighted challenges delineate promising avenues for

future research. One possible direction involves enhancingmodel real-

ism by integrating structural data from PET or MRI scans into the

pipeline, enabling improved identification of impaired regions and

quantification of white matter atrophy and neuroplasticity ratios,

which significantly influence the model’s structural alterations. Con-

tinuation of longitudinal follow-up studies on the enrolled patients,

already planned, will assess the strength of the model’s predictive

capacity. Finally, the model could be validated using EEG recordings

during tasks that assess cognitive impairments by adding an extension

able to capture the effect of visual stimuli.

Advancing the model’s power and versatility could involve co-

simulations with software like NEST59 or ANNarchy,60 mirroring

prior applications in the study of deep brain stimulation effects in

Parkinson’s disease.61 These multi-scale simulations can encompass

alterations extending from microscopic phenomena such as neuron

loss in regions like the hippocampus62 to the meso- and macroscopic

effects discussed in our study.15

In conclusion, our investigation proposes an innovative path where

computational and quantitative EEG analyses converge, extracting

pivotal clinicalmarkers and surpassing traditional approaches. Thepro-

posed pipeline not only enables the quantification of disease severity

through structural insights inferred with non-invasive methods, but

also facilitates the prognosis of disease progression, even in patients

in prodromal stages of the disease who lack evident symptomatol-

ogy. This novel approach lays the groundwork for a more affordable

and effective diagnosis of neurodegenerative disorders. It holds poten-

tial for further evolution through the inclusion of structural imaging

modalities and multiscale co-simulations, paving the way for clinical

investigations integrating non-invasive biomarkerswith computational

frameworks, promising rapid and precisemonitoring of neurodegener-

ative conditions.
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