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a b s t r a c t 

Background and Objectives: Magnetic tracking involves the use of magnetic sensors to localize one or 

more magnetic objectives, in those applications in which a free line-of-sight between them and the op- 

erator is hampered. We applied this concept to prosthetic hands, which could be controlled by tracking 

permanent magnets implanted in the forearm muscles of amputees (the myokinetic control interface). 

Concerning the system design, the definition of a sensor distribution which maximizes the information, 

while minimizing the computational cost of localization, is still an open problem. We present a simple 

yet effective strategy to define an optimal sensor set for tracking multiple magnets, which we called the 

Peaks method. 

Methods: We simulated a proximal amputation using a 3D CAD model of a human forearm, and the 

implantation of 11 magnets in the residual muscles. The Peaks method was applied to select a subset of 

sensors from an initial grid of 480 elements. The approach involves setting an appropriate threshold to 

select those sensors associated with the peaks in the magnetic flux density and its gradient distributions. 

Selected sensors were used to track the magnets during muscle contraction. For validating our strategy, 

an alternative method based on state-of-the-art solutions was implemented. We finally proposed a cali- 

bration phase to customize the sensor distribution on the specific patient’s anatomy. 

Results: 80 sensors were selected with the Peaks method, and 101 with the alternative one. A localization 

accuracy below 0.22 mm and 1.86 ° for position and orientation, respectively, was always achieved. Unlike 

alternative methods from the literature, neither iterative or analytical solution, nor a-priori knowledge on 

the magnet positions or trajectories were required, and yet the outcomes achieved with the two strategies 

proved statistically comparable. The calibration phase proved useful to adapt the sensors to the patient’s 

stump and to increase the signal-to-noise ratio against intrinsic noise. 

Conclusions: We demonstrated an efficient and general solution for solving the design optimization prob- 

lem (i.e. identifying an optimal sensor set) and reducing the computational cost of localization. The op- 

timal sensor distribution mirrors the field shape traced by the magnets on the sensing surface, being an 

intuitive and fast way of achieving the same results of more complex and application-specific methods. 

Several applications in the (bio)medical field involving magnetic tracking will benefit from the outcomes 

of this work. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Magnetic tracking has recently drawn the attention of many 

esearchers because of its potential applications in several fields, 

ncluding medical procedures and biomedical equipment. Indeed, 
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6025 Pontedera PI, Italy. 
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hanks to the transparency of the human body to low-frequency 

agnetic field [1] , magnetic tracking has been devised for a num- 

er of intra-body applications in which a free line-of-sight between 

he operator and the end effector is hampered [2–6] . Generally 

peaking, in remote tracking a set of magnetic field sensors is used 

o retrieve the unknown pose (i.e., the position and orientation) 

f one or more magnetic markers, namely permanent magnets or 

ransmitting coils. We recently proposed the use of magnetic track- 

ng for controlling hand prostheses, by localizing permanent mag- 
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Fig. 1. Frontal view (upper left) and sectional view (upper right) of the implanted 

magnets and the sensor grid (blue dots, N = 480). L MM − sensor indicate the distance 

from a magnet to the nearest sensor (an example is schematically represented be- 

low the sectional view). Deeper magnets ( L MM − sensor ≥ 15 mm ) are in red and have 

a radius and height equal to 2 mm. More superficial magnets are in black, and their 

dimensions are halved. Acronyms in Table I . 
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[  
ets implanted into the forearm muscles through external sensors 

osted in the socket [6] . Concerning the system design, while the 

enefit of using more sensors for improving the localization ac- 

uracy has been widely demonstrated [7–10] , the definition of an 

ptimal spatial design for the sensing assembly remains an open 

roblem. 

Indeed, although different solutions have been proposed in the 

iterature [ 8 , 9 , 11 , 12 ], all of them considered a single marker track-

ng system, most of them were limited to a 2D grid sensor lay- 

ut [ 8 , 9 , 12 ] whereas others were designed for specific applica-

ions [11] . As an example, Talcoth and Rylander [9] exploited the 

isher Information Matrix (FIM) to iteratively select an optimal 

ensor subset from a planar grid. Considering a single transmit- 

ing coil, they investigated how the optimal design varied for dif- 

erent poses of the transmitter. This approach had limitations: to 

ompute the FIM, the knowledge of the exact pose of the consid- 

red transmitter was needed. Furthermore, the selection problem 

as solved through an optimization procedure that required com- 

uting the determinant of the FIM, whose dimensions increase lin- 

arly with the number of magnetic objectives. This makes the ap- 

roach poorly scalable for multi-objectives tracking systems. More 

ecently, Maréchal et al. [11] proposed a different approach to 

ptimize the magnetic localization of catheters used in ventricu- 

ostomy procedures. They derived an optimal sensor arrangement 

sing genetic algorithms (GAs) which proved better than classical 

rid configurations when localizing a permanent magnet. The se- 

ection problem was solved by exploiting a-priori knowledge on 

he reference trajectory travelled by the magnet during such pro- 

edures, as it is quite similar across patients. However, GAs usually 

equire to set multiple parameters (and possibly constraints), and 

his is not always trivial to address [13] . Here, we propose a dif-

erent approach which only takes as input the magnetic flux den- 

ity and its gradient to select an optimal sensor subset. We applied 

t to a 3D anatomical workspace with multiple magnets, and con- 

rmed that it led to accurate localization without requiring a-priori 

nowledge on their positions or trajectories. 

We proved in early works [ 14 , 15 ] that a correlation exists be-

ween the presence of peaks in the magnetic flux density distri- 

ution and the localization accuracy. Indeed, a simple visual in- 

pection of the recorded field distribution could provide an intu- 

tive and rough anticipation on the accuracy of the localization 

14] . Here, we assessed the viability of a sensor selection strat- 

gy embracing such concept for a myokinetic prosthesis controller. 

e called it the Peaks method. Starting from the anatomical setup 

sed in [15] , we simulated a representative proximal amputation 

nd the implantation of 11 magnets into an equal number of resid- 

al forearm muscles. 480 magnetic field sensors were arranged 

round the residual limb. 

First, a single case study was conducted for comparison of the 

eaks method with results from [9] , considering only the magnet 

mplanted in the flexor carpi ulnaris (FCU). The study allowed to 

ssess the dependence of the selected sensor (namely, the active 

ensor) positions on the magnet pose. Then, the Peaks method was 

ompared with an alternative strategy based on state-of-the-art 

pproaches, which we called the FIM-GA method. Both methods 

onsidered all implanted magnets in their initial (rest) position. 

he former selected only those sensors corresponding to the peaks 

n the magnetic flux density and its spatial gradient. The latter 

ombined and adapted the approaches from [9] and [11] to draw 

n optimal sensor subset, by using a multi-objective GA to min- 

mize three FIM-based cost functions. Thus, we could exploit the 

bility of GAs to search a wide range of the solution space rapidly, 

hile evaluating the selection based on the information content 

f each sensor. This was intuitively more in line with the concept 

ehind the Peaks method, which analyses the sensor recordings, 

nd thus allowed to perform a fairer comparison for validating our 
2 
pproach. Evidence of the comparability between the two meth- 

ds emerged from the outcomes of this work, featured in the first 

lace by the topological similarity of the derived active sensor dis- 

ributions. Following the selection process, magnets were indepen- 

ently moved along discrete trajectories to simulate muscle con- 

raction, accounting for both axial and radial deformations. The ori- 

ntation of the moving magnet was also varied by applying tilting. 

ose localization accuracies obtained with the two configurations 

i.e. the two sets of active sensors) were compared. Accurate and 

omparable localizations were always achieved, with errors below 

% the total trajectory length and below 9% the applied tilting. 

Finally, we extended the proposed method by introducing a cal- 

bration phase which sought to boost the customization of the ac- 

ive sensors according to a patient’s specific anatomy. Simultane- 

us displacement of multiple extrinsic hand muscles was also im- 

lemented, mimicking the neural and mechanical connections cou- 

ling inter and intra-muscle contractions that exist in humans [16–

1] . The accurate localization of magnets was confirmed, with a 

aximum error below 4% the trajectory length and below 9% the 

pplied tilting. This study represents an important step forward to- 

ards the definition of an optimal sensing system design, not lim- 

ted to myokinetic interfaces, but potentially useful for all magnetic 

racking applications. 

. Materials and Methods 

Aided by a 3D CAD model of a healthy human forearm, we sim- 

lated a representative proximal amputation ( Fig. 1 ). Following the 

rocedure described in [15] , 11 magnets were arranged in the bel- 

ies of 11 forearm residual muscles, which we will refer to by us- 

ng their acronyms, specified in Table I . A grid of 480 three-axes 

agnetic field sensors was arranged around the residual limb. The 

istance between adjacent sensors, indicated as L inter − sensor , corre- 

ponded to a 12 ° angular step along the circumference and 10 mm 

istance along the axial direction. 

It has been shown that a negative correlation exists between 

he localization accuracy and the distance between the mag- 

ets and the sensors, due to a reduced signal-to-noise ratio 

 7 , 8 , 10 , 11 , 14 , 22 ]. To address this aspect, we tuned the dimensions
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Table I 

Targeted muscles that received the implantation. 

Acronyms Muscles 

EDM Extensor digiti minimi 

FCR Flexor carpi radialis 

ECRL Extensor carpi radialis longus 

ECU Extensor carpi ulnaris 

ECRB Extensor carpi radialis brevis 

FCU Flexor carpi ulnaris 

ED-I Extensor digitorum – I compartment 

ED-II Extensor digitorum – II compartment 

ED-III Extensor digitorum – III compartment 

ED-IV Extensor digitorum – IV compartment 

FDS-I Flexor digitorum superficialis – I compartment 
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Fig. 2. Representative magnet trajectory. Red dots represent the magnet, whereas 

coloured arrows indicate the change in orientation due to the applied tilting. Since 

the magnet is implanted above the distal aponeurosis insertion (black dashed line), 

it moves proportionally to its distance from the muscle origin (see the inset on the 

left). 
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f the magnets based on their distance from their nearest sensor 

 L MM − sensor ). Specifically, magnets were modeled as Nd-Fe-B N45 

rade cylindrical magnets (axial remanent magnetization Br = 1.27 

), with a 1 mm radius and height for more superficial magnets, 

nd doubled dimensions for deeper ones ( Fig. 1 ). We considered 

deeper” all magnets having a L MM − sensor above or equal to 15 

m, so that the saturation limit of typical commercial magne- 

ometers (LIS3MDL, STMicroelectronics), with a full scale of ± 16 

, was not reached. Once the magnets were arranged in the mus- 

les (implanted) and their dimensions tuned, muscle contraction 

as simulated by displacing them along predefined discrete tra- 

ectories, described in the next section. 

.1. Muscle Contraction Model 

In early work [15] we considered a simplified muscle contrac- 

ion model which captured axial deformations only. In fact, skele- 

al muscles operate as a near-constant volume system, thus muscle 

hortening during contraction is transversely linked to radial defor- 

ation [23] . A technique called tensiomyography was developed 

n the recent years to measure radial displacement of muscles, by 

xploiting a high-precision digital displacement sensor applied to 

he muscle belly [24] . Parameters extracted from typical displace- 

ent curves indicate a peak radial displacement (i.e. an absolute 

patial transverse deformation) in the order of half a centimeter 

24] . Accordingly, we simulated muscle contraction by considering 

oth an axial ( d a ) and a radial ( d r ) displacement component. As in

15] , the amount of displacement was tuned based on the mag- 

ets implantation site. Specifically, magnets implanted in the dis- 

al belly moved by a maximum amount equal to d a max = 10 mm 

nd d r max = 5 mm, respectively. Magnets implanted in the prox- 

mal muscle section moved proportionally to their distance from 

he muscle origin. Thus, the following rules applied: 

 r ( x ) = 

⎧ ⎨ 

⎩ 

x 

L/ 2 

D r−max , x < 

L 

2 

D r−max , x ≥ L 

2 

(1) 

 a ( x ) = 

⎧ ⎨ 

⎩ 

x 

L/ 2 

D a −max , x < 

L 

2 

D a −max , x ≥ L 

2 

(2) 

here x is a coordinate lying on the curve that runs along the lon- 

itudinal axis of the muscle, and L is the length of the muscle belly 

t rest ( Fig. 2 ). As in [15] , the length of the distal aponeurosis was

ssumed equal to L /2. 

The orientation of the k-th magnet was encoded with a unit 

ector of the form [ a k , b k ,c k ]. In the magnet’s rest position, the

agnetic moment vector was set to point radially towards the 

earest sensor, to maximize the sampled magnetic field. However, 
3 
ince variability in the orientation due to both manual implanta- 

ion and muscle contraction can be expected, tilting of the magnet 

uring contraction was implemented. Specifically, it was simulated 

y applying an alternate ± 0.5 factor on a randomly selected com- 

onent of the orientation vector, and subsequently normalizing it 

 Fig. 2 ). 

.2. Sensing System Spatial Design 

In the following, we describe the Peaks and the FIM-GA meth- 

ds, implemented to determine an optimal sensing system design. 

wo different studies were performed. First, the Peaks method was 

pplied to a single case study, to inspect how varying a single 

agnet pose affected the derived active sensor positions. Specifi- 

ally, three conditions were tested for the single magnet implanted 

n FCU: (i) magnet in its original implantation site; (ii) tilting ap- 

lied to the x component of the magnet orientation, by inverting 

he component sign; (iii) magnet radially moved 10 mm further 

rom its nearest sensor. Then, the Peaks and the FIM-GA methods 

ere used to select the active sensors when considering all mag- 

ets in their implantation sites. The obtained active sensors were 

ubsequently used to collect the magnetic flux density while the 

argeted muscles underwent contraction. As in [15] , we simulated 

he magnetic field generated by the magnets through the analyti- 

al model for a cylindrical magnet described and validated earlier 

 25 , 26 ]. All simulations were run in Matlab (MathWorks, Natick, 

A) on a desktop computer with an Intel i7-6700 CPU running at 

.4 GHz, 32 GB of RAM and Windows 7. 

1) Peaks method: with the magnet(s) in their rest position, the 

enerated (compound) magnetic flux density was acquired on the 

ntire sensor grid ( N = 480 sensors). Random Gaussian noise with 

 standard deviation of 4 mG was added on the sampled signals, to 

imic the characteristics of commercial magnetometers (LIS3MDL, 

TMicroelectronics). Then, following the procedure first introduced 

n [15] , the 2D gradient (i.e. along the axial and the radial direc- 

ion of the forearm) of the sampled magnetic flux density was 

omputed ( Fig. 3 ). Peaks locations on the initial sensor grid were 

dentified by applying thresholding both to the magnetic flux den- 

ity and its gradient distributions. Concretely, the threshold corre- 

ponded to the minimum amplitude difference allowed between 

n identified peak and its neighbors. Sensors associated with the 

ggregated peaks, i.e. with the compound peak locations identified 
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Fig. 3. Peaks method (upper panel) and FIM-GA method (lower panel) flow-charts for a single magnet. Peaks method: the first threshold value (T) is set, and the sensors 

associated with the peaks locations (identified through thresholding) are selected and used to localize the magnets. As long as localization is accurate, T is increased and 

the processed iterated, until at least one magnet is localized outside of its target muscle (critical T value). The final T is defined by lowering the reached critical value by 

200 mG. FIM-GA method: the initial population matrix is defined. Each individual encodes the weights associated with the sensors of the grid (length equal to N = 480). 

An evolutionary process is applied to find the best individual. When termination criteria are met, the final solution is identified as the first row of the Pareto front matrix. 

Sensors having w ≥ 0.5 are selected as active sensors. 
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n the field and in its gradients, were selected as active sensors and 

sed to solve the localization problem ( Fig. 3 ). 

The threshold value was set empirically to ensure a trade-off

etween the number of selected sensors and the tracking accu- 

acy. Such accuracy was evaluated by solving the localization prob- 

em (see next section) during muscle contraction, by considering 

ll magnets and different active sensors derived using different 

hreshold values. More precisely, starting from a threshold of 50 

G, the latter was incremented in steps of the same value un- 

il the localizer was no more able to retrieve the magnets poses 

critical threshold value). Such critical value could be easily spot- 

ed when at least one of the magnets was localized outside of its 

orkspace, i.e. outside of the corresponding targeted muscle belly. 

ndeed, we previously showed that, as long as magnets arrange- 

ent in space respects specific geometrical rules and the field spa- 

ial distribution is informative enough, then the localization of an 

ndefinitely high number of magnets is accurate [ 14 , 15 ]. Here, mag-

ets were arranged in the muscles through a placing procedure de- 

igned to fulfil such geometrical requirements. Thus, when the lo- 

alization failed, it was most likely caused by a lack of information 

ue to an oversampling of the measuring sites. When the critical 

hreshold was reached, the search was stopped and its value was 

owered by 200 mG to ensure a safety interval against noise. In- 

eed, the more the final threshold is set close to its critical value, 

he more the localization accuracy in presence of noise is likely to 

egrade, because the smoothing effect given by multiple acquisi- 

ions decreases [ 7 , 8 , 10 , 11 , 14 , 22 ]. 

2) FIM-GA method: GAs are a class of optimization algorithms 

nspired by the natural evolution [27] . They usually have one (or 

ore) predefined goal in the form of a cost function, which the 

ptimization process seeks to minimize. Candidate solutions are 

alled individuals, which together form a population. Starting from 

n initial population, biologically inspired operations (namely se- 

ection, crossover and mutation) are iteratively applied to the in- 

k

4 
ividuals to derive an optimal solution, i.e. an individual with a 

ower value of the cost function [27] . Here, we considered the ini- 

ial sensor grid as a nodes space where each node represented a 

ossible sensor position. No geometrical constraint was imposed to 

he sensor arrangement, except for the physical distances imposed 

y the grid design. Individuals forming the population were nu- 

eric arrays with a length equal to the total number of nodes (i.e. 

 = 480). Each array element encoded the weight w of a specific 

ensor and could assume a continuous value between 0 and 1. The 

 values were iteratively updated by the algorithm until conver- 

ence, i.e. until an optimal weight array was found. At this point, 

nly sensors associated with a w ≥ 0.5 were selected as active sen- 

ors. The process was individually repeated for each magnet, and 

he active sensors selected for each magnet were finally gathered 

o form the final sensor grid. 

A three-objective cost function was defined, which computed 

he FIM of the three magnetic flux density components ( B x , B y , B z ).

et p k = [ x k ,y k ,z k ,a k ,b k ,c k ] denote the vector of parameters describ-

ng the position and orientation of the k-th magnet in the Cartesian 

pace. According to [9] , the weighted FIM relative to B x for the k-th 

agnet can be computed as: 

 I M x,k = 

J ∑ 

j=1 

w j 

⎛ 

⎜ ⎜ ⎜ ⎝ 

(
δB x j 
δx k 

)2 

· · ·
(

δB x j 
δx k 

) (
δB x j 
δc k 

)
. . . 

. . . 
. . . (

δB x j 
δc k 

) (
δB x j 
δx k 

)
· · ·

(
δB x j 
δc k 

)2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(3) 

here J is the number of sensors having w j ≥ 0.5. The same ap- 

lies to B y and B z . Assuming that the noise terms in the sen-

or readings are independent, maximizing the FIM corresponds 

o minimizing the effect of noise on the parameters ( p k ) estima- 

ion. This can be achieved by exploiting the D-optimality criterion 

9] which involves computing the FIM determinant. Thus, for the 

-th magnet, a solution was found by simultaneously minimizing 
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hree (weighted) fitness functions defined as: 

 x,k = − ln 

( 

∣∣∣∣∣
J ∑ 

j=1 

w j F I M j,x,k 

∣∣∣∣∣
) 

(4) 

 y,k = − ln 

( 

∣∣∣∣∣
J ∑ 

j=1 

w j F I M j,y,k 

∣∣∣∣∣
) 

(5) 

 z,k = − ln 

( 

∣∣∣∣∣
J ∑ 

j=1 

w j F I M j,z,k 

∣∣∣∣∣
) 

(6) 

ubject to: 

w j ∈ [0.5,1], j = 1, ..., J 

J − 10 ≤ 0 , J > 10 

−( J − 10 ) ≤ 0 , otherwise 

ere | • | denotes the matrix determinant. FIMs were previously 

ormalized by the total sum of the weights ( 
N ∑ 

i =1 

w i ) , which al- 

owed reducing weights for the non-selected sensors, while favor- 

ng higher weights for the selected ones. This was needed because 

any sensors would perform better than fewer sensors, as averag- 

ng would lower the noise effect. On the other hand, the imposed 

onlinear constraint was needed to fix a (non-rigid) upper bound 

o the number of selected sensors. The bounding value was sug- 

ested by several studies searching for an optimal sensor number 

nd spatial design that agree on the need of ∼8-15 sensors per 

agnet [ 6 , 9 , 11 , 12 , 15 , 28 ]. 

The initial population matrix had 50 individuals on its rows, 39 

f which were randomly initialized, one had all elements w i ≥ 0.5 

i.e. all sensors selected with random weights), whereas ten were 

efined through the Peaks method. To do this, the magnetic flux 

ensity generated by the k-th magnet on the whole sensor grid 

as simulated. Ten equally spaced thresholds in the interval [ 30 , 

00] mG were then used to select the active sensors corresponding 

o the peaks, as described above. For each considered threshold, 

ne individual was encoded by assigning a random w in [0.5, 1] to 

ll elements (sensors) corresponding to the detected peaks, while 

etting the others to zero. As previously shown in [11] , building the 

nitial population with a mix of random and optimized individuals 

ffectively maximizes its diversity, which helps to avoid local min- 

ma. 

The gamultiobj algorithm from the Matlab Optimization Toolbox 

as used to solve the optimization problem, and a trial-and-error 

empiric) strategy was applied to select the best parameter set. As 

 result, we promoted mutation (with a rate of 0.08) instead of 

rossover (with a ratio of 0.1), and set the constraint tolerance to 1 

n order to relax the upper-bound imposed to the sensor number. 

he maximum number of (stall) generations was set to (50) 250, 

hile the default values were left unchanged for the other param- 

ters. The algorithm finds the Pareto front of multiple cost func- 

ions, i.e. a set of individuals in the parameter space that have non- 

nferior cost function values [27] . As these individuals are equally 

ood from the cost function perspective, after having verified that 

either the number of sensors nor their distribution varied signif- 

cantly across individuals (including the nearest individual to the 

topia solution [29] ), we arbitrarily selected the one encoded in 

he first row of the final matrix to build the active sensor grid 

 Fig. 3 ). 

.3. Localization Problem 

Once the two sets of active sensors were selected, the move- 

ent of the MMs along anatomically appropriate trajectories (de- 
5 
cribed previously) was simulated. Similarly to [15] , the displace- 

ent of the MMs was approximated by translating them, one at a 

ime, along 11 equidistant checkpoints (0%, 10%, 20%, …, and 100% 

he trajectory length). At each checkpoint, the simulated magnetic 

ux density was sampled on the two grids of active sensors and 

aussian noise was added. Sensor recordings at each checkpoint 

ere stored and subsequently fed to a Matlab script that ran the 

evenberg-Marquardt algorithm [30] to retrieve the poses of the 

Ms offline. The algorithm requires some user-defined initial con- 

itions for the parameters to be estimated (i.e., the magnets poses). 

or the very first localization, the initial conditions were set by us- 

ng the actual magnets orientation, while applying a random shift 

ithin 5 and 10 mm to their real spatial coordinates. Indeed, it is 

nknown how accurate the information about the magnets loca- 

ion following the implantation procedure would be. For the fol- 

owing localizations, the poses retrieved at the previous step were 

sed as starting point for the algorithm search. Akin to several 

revious works [ 7 , 15 , 28 ], the algorithm approximated the MMs as

oint-like dipoles for solving the localization problem. 

The localization errors, in terms of position and orientation, 

ere assessed as: 

 p ≈ e p,m 

+ e p,ct (7) 

 o ≈ e o,m 

+ e o,ct (8) 

here e p,m 

and e o,m 

account for inaccuracies in tracking the dis- 

lacement of the moving magnet (i.e., model error), whereas e p,ct 

nd e o,ct account for false predictions of simultaneous displacement 

ffecting the non-moving magnets (i.e., crosstalk effect) [6] . Specif- 

cally, E p and E o respectively represent the difference between the 

ctual and the estimated position and orientation displacement of 

he magnets, relatively to their rest poses. 

.4. Statistical Analysis 

A statistical analysis was used to assess the comparability of 

he localization accuracy obtained with the active sensors selected 

ith the Peaks and the FIM-GA method. To do this, the median 

alues of e p,m 

, e p,ct , e o,m 

and e p,ct obtained for each magnet in

ach configuration were computed. The derived values were stored 

nto eight separate vectors with a length equal to the number of 

agnets. The agreement of each paired measures (i.e. same er- 

or vector from the two configurations) was verified by deriving 

he Bland-Altman plot [31] . The latter is a statistical tool used to 

uantify the agreement between two quantitative measures. Prac- 

ically, a 2D scatter plot is constructed in which the difference of 

he two paired measures is plotted against their mean value. The 

greement between the two methods is established if at least 95% 

f the data points lie within ± 2 standard deviations of their mean 

ifference (limits of agreement). 

.5. Calibration Phase and Muscles Co-Activation 

Given the variability across patients, the customization of the 

ensor arrangement for a specific person could be obtained by pro- 

iding information on the magnets trajectories to the sensors se- 

ection algorithm. Since such information is not available a-priori, 

e extended the proposed method by implementing a calibra- 

ion phase which involved collecting the sensors recordings while 

he targeted muscles underwent contraction. Thus, a different set 

f active sensors could be identified in correspondence of each 

heckpoint along the magnets displacement, by applying the Peaks 

ethod. The active sensors selected at each checkpoint were fi- 

ally gathered, and a compound active sensor grid was defined. In 

 real scenario, this could be achieved by performing multiple sen- 

or acquisitions at a selected frequency while the subject is asked 
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o contract those muscles that received the implant. The threshold 

alue set for the non-calibration case was used as starting point 

or the threshold setting procedure (the same described in section 

.2). Once the critical value was reached and the final threshold 

et, the active sensors were determined. The latter were subse- 

uently used to sample the magnetic field during muscle contrac- 

ion and localize the magnets offline, after that Gaussian noise was 

dded. 

Rather than moving one magnet per time, we assessed the 

easibility of localizing multiple magnets during muscle co- 

ctivations, by simultaneously displacing multiple magnets along 

heir entire trajectories. Our goal was to evaluate whether we 

ould discriminate simultaneous muscle displacements, although 

ithout affecting the localization accuracy. First, we co-activated 

uscles acting on the wrist joint in an antagonist fashion, to 

imic the biological way in which joint stabilization is achieved 

18] . Thus, the co-contraction of ECU – FCU, and that of FCR - 

CRL- ECRB, were implemented. Secondly, the simultaneous acti- 

ation of ED-I - ED-II and that of ED-II - ED-IV were considered. 

his was done in consideration of several studies which proved a 

imited ability in humans to independently control distinct digi- 

al extensor compartments [ 19 , 21 ], with stronger influence given 

y adjacent digits compared to further ones [21] . EDM and FDS- 

 were treated as independent muscles, like in previous simula- 

ions. As multiple muscles (compartments) contracted together, no 

istinction was made between model and crosstalk errors for co- 

ontraction simulations. 

. Results 

.1. Peaks and FIM-GA Method 

Considering all implanted magnets, the critical threshold was 

dentified when a value of 400 mG was reached, as the magnet 

n ED-IV was localized outside of the muscle volume. Thus, a final 

hreshold of 200 mG was set for the magnetic flux density (and of 

00 mG/ L inter − sensor for the gradient, respectively), which was ∼50 

imes higher than the typical intrinsic noise of the sensor. Notably, 

uning the magnets dimensions according to L MM − sensor allowed to 

elect a higher threshold compared to the one used in [15] (equal 

o 5 mG), thus providing the system with a significantly increased 

obustness against noise. 

First, results from the single case study are reported. The same 

hreshold identified when considering all magnets was used for 

his study. The magnet implanted in FCU had a L MM − sensor of 15.3 

m. The active sensors selected with the Peaks method in such 

onfiguration formed a compact rectangular like shape around the 

earest sensor ( Fig. 4 a). When tilting was applied on the x compo-

ent of the orientation (inverted from - 0.71 to + 0.71), the active 

ensors distributed asymmetrically, forming a sort of arrow shape 

ointing towards the new magnet orientation vector ( Fig. 5 b). 

hen the magnet was moved 10 mm further from the nearest 

ensor, the active sensors also moved further from it ( Fig. 4 c). For

his latter case only, a halved threshold (100 mG) was used in or- 

er to gain a better visualization of the results, given the increased 

 MM − sensor . 

When the two selection strategies where applied by considering 

ll implanted magnets, results revealed 80 active sensors selected 

hrough the Peaks method and 101 identified though the FIM-GA 

ethod. This corresponded to a reduction of ∼83% and ∼79% the 

nitial grid, and to a sensor-to-magnet ratio of 7.3 and 9.2, respec- 

ively. The active sensors selected by the Peaks method generally 

lustered around the magnets rest position ( Fig. 5 ). Active sen- 

ors appeared to be roughly normally distributed across the dis- 

al and central portion of the stump, which hosted the implanted 

agnets. A sparser sensor arrangement resulted from the applica- 
6 
ion of the GA method. The active sensors distribution appeared 

lightly skewed, as few sensors were selected in the more prox- 

mal part of the stump ( Fig. 5 ). Nevertheless, both strategies se- 

ected sensors mostly concentrated around the central portion of 

he stump ( Fig. 5 ). Considering the computation time instead, no- 

ably the Peaks method could reach the final solution ∼15 times 

aster than the FIM-GA method. 

Such similarity in the sensor distribution was seamlessly re- 

ected in the achieved localization accuracy ( Fig. 6 ). Indeed, the 

atter proved comparable in the two configurations both in terms 

f absolute localization error, and in terms of error distribution 

cross different magnets (muscles). Concerning the position error, 

 maximum e p,m 

of 0.18 mm (0.17 mm) was obtained with the 

eaks ( FIM-GA ) method, along with a maximum e p,ct of 0.22 mm 

0.21 mm) ( Fig. 6 ). Maximum e p,m 

values were obtained for the 

agnet implanted in FDS-I, whereas maximum e p,ct values were 

btained for the magnet implanted in ED-II ( Fig. 6 ). Overall, the 

otal distances travelled by the magnets during contraction ranged 

etween a minimum of 5.3 mm (ED-IV) to a maximum of 11.4 mm 

ED-II and ED-III). The maximum position error associated with 

he shortest muscle displacement (ED-IV) in the two configura- 

ions, respectively equal to 0.17 mm and 0.16 mm, proved below 

% its entire trajectory length. In both configurations, the magnets 

mplanted in ECRB, ED-II and FDS-I showed higher median errors 

ompared to those implanted in the remaining muscles, both in 

erms of e p,m 

and e p,ct ( Fig. 6 ). 

The conclusions derived for the position error held true for the 

rientation error, as their trends closely matched ( Fig. 6 ). The mag- 

ets implanted in ED-II showed the highest e o,m 

, equal to 1.86 ° and 

.69 ° for the Peaks and GA method, respectively. Concerning the 

aximum e o,ct , it proved equal to 1.80 ° in both cases and again for 

he magnet implanted in ED-II. Overall, the angular tilting applied 

o the magnets during contraction ranged between a minimum of 

.6 ° (FCR) to a maximum of 30 ° (FDS-I). The maximum orienta- 

ion error associated with the minimum angular variation (FCR) in 

he two configurations, respectively equal to 0.62 ° and 0.49 ° mm, 

roved below 9% and 6% the applied tilting. Overall, the magnets 

mplanted in ECRB, ED-II and FDS-I showed again higher median 

rrors compared to the others, for both e o,m 

and e o,ct and in both 

onfigurations. 

.2. Statistical Analysis 

As reported above, the localization accuracy obtained with the 

wo selection methods proved overall comparable ( Fig. 6 ). The 

greement between the achieved results was confirmed by inspec- 

ion of the derived Bland-Altman plots ( Fig. 7 ). The resulting lim- 

ts of agreement for position errors went from -0.02 mm to 0.03 

m, and from -0.01 mm to 0.01 mm for e p,m 

and e p,ct , respectively.

or the orientation errors, limits from -0.27 ° to 0.31 ° for e o,m 

, and 

rom -0.11 ° to 0.16 ° for e o,ct were obtained. Only one outlier was 

bserved, showing 0.04 mm of difference in the two methods for 

 p,m 

( Fig. 7 a). 

.3. Calibration Phase and Muscles Co-Activation 

Given that the localization failed in correspondence of a thresh- 

ld value of 800 mG (magnet in ED-IV mislocalized), a final thresh- 

ld of 600 mG (and of 600 mG/ L inter − sensor for the gradient) was 

et. The latter was ∼150 times higher than the typical sensor noise. 

 total of 86 active sensors were identified, resulting in a 7.8 

ensor-to-magnet ratio ( Fig. 7 a). In line with results obtained in 

he non-calibration case, the active sensors clustered around the 

agnets implantation sites, over the distal and central area of the 

tump. Compared to previous results, more sensors were picked up 
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Fig. 4. Peaks generated by the magnet implanted in FCU when considering: the original implantation site (a), tilting of the x orientation component (inverted component 

sign) (b), and increased L MM − sensor by 10 mm, radially (c). The grids are the unfolded sensor array, where each vertex corresponds to a sensor. In (a), peaks distributed in a 

rectangular-like shape around the nearest sensor; in (b), the peaks narrowed towards the new pointing direction of the orientation vector, while widening on the opposite 

side; in (c), the peaks spread out, covering a larger area around the nearest sensor (a halved threshold for peaks was considered, to account for the increased L MM − sensor ). 

Three insets report the 3D view of the magnetic flux density in the three configurations. On the upper-right corner, the magnet positions (grey dots) and orientations (black 

(a)(c) and red (b) lines) are shown, with the black dot indicating the nearest sensor and the blue dots the other sensors. 

Fig. 5. Implanted magnets (black dots), associated trajectories (coloured segments), 

and active sensors (blue dots) derived through the Peaks (on the left) and the FIM- 

GA (on the right) method. The black dashed lines indicate the amputation level. 

The histograms show how the active sensors distributed across the stump in the 

two configurations. 
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Fig. 6. Localization error in terms of position (e p,m and e p,ct ) and orientation (e o,m and e o
Red crosses indicate the outliers, the boxplot encloses data within the interquartile range,

distribution. Acronyms in Table I . 

7 
round and along the magnets trajectories, while those more dis- 

ant from the magnets rest position \ trajectory checkpoints were 

iscarded ( Fig. 7 a). 

An accurate localization in terms of both position and orienta- 

ion was confirmed during muscles co-contraction ( Fig. 7 b-c). In- 

eed, a maximum E p of 0.36 mm was obtained for the magnet 

mplanted in FDS-I, whereas the one implanted in ED-II showed 

he highest E o of 2.38 °. Considering the shortest muscle displace- 

ent (ED-IV), the highest position error obtained for the corre- 

ponding magnet (0.19 mm) proved below 4% the total trajectory 

ength. Regarding the smallest angular variation (FCR), the maxi- 

um orientation error for the corresponding magnet proved equal 

o 0.66 °, thus below 9% the applied tilting. Again, error trends in 

erm of position and orientation generally matched, as magnets 

hich achieved higher E p values also showed higher E o values and 

ice-versa. In particular, the magnets implanted in ECRB, ED-II, ED- 

II and ED-IV compartments, as well as FDS-I showed higher me- 

ian (position and orientation) errors compared to the other mag- 

ets ( Fig. 7 b-c). 
,ct ) when using the active sensors selected with the Peaks and the FIM-GA method. 

 the red line is the median value, whereas the whiskers extend to the limits of the 
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Fig. 7. Bland-Altman plots used to compare the localization accuracy obtained with the Peaks and the FIM-GA method. A plot was built for each of e p,m (a), e p,ct (b), e o,m (c) 

and e o,ct (d) pairs. Obtained data points always lied between the lower and upper limit of agreement expect for one point (a). The agreement between the two methods was 

confirmed. 
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. Discussion 

In this work, we assessed the validity of the Peaks method for 

dentifying an optimal sensor set for a myokinetic control interface. 

e showed that the relevant information to select an optimal sen- 

or set could be derived from the sensor readings and their spatial 

radient, while no exact a-priori knowledge on the magnets po- 

ition or displacement was needed. The localization achieved us- 

ng the proposed method proved always accurate and statistically 

omparable to that obtained by applying methods adapted from 

he literature. As we indeed observed such performance, we con- 

lude that the purpose of the study was fulfilled. In addition, we 

xtended our approach by proposing a calibration phase aimed at 

ustomizing the sensor arrangement for a specific subject. To our 

nowledge, this is the first time that a sensor optimization algo- 

ithm is applied to multiple magnets while not being restricted 

o a planar configuration or specific application [ 8 , 12 ]. Nonethe- 

ess, these other approaches could be readily adapted/wrapped to 

he 3D case, e.g. by performing a transformation to curvilinear sur- 

aces. 

Outcomes from the single case study showed that the active 

ensor patterns changed according to the magnet orientation and 

mplantation depth ( Fig. 4 ), in a way closely resembling results 

rom Talcoth and Rylander [9] . Notably, the change in the sen- 

or pattern directly reflected that of the bell-shape waveform pro- 

uced by the magnet on the field distribution (insets in Fig. 4 ), 

s already suggested in [14] . This further supports the idea that 

elevant information, like that identified analytically by minimiz- 

ng the FIM, is related to the distinguishability and the topology of 

he peaks in the magnetic field (gradient). Indeed, both the mini- 

ization of the FIM and the Peaks method exploit the gradient of 

he magnetic field for selecting the sensors. The peaks of the gra- 

ients generally distribute around the magnetic marker, and this 

ikely explains why in [9] sensors were selected around the trans- 

itter and not directly above it. Indeed, the magnetic field abso- 

ute value is not involved in the FIM computation, vice versa its 

eaks are exploited here. 

As the GA evolved some starting individuals through multiple 

terations, the best solution reached when considering all magnets 

esembled that achieved by the Peaks method ( Fig. 5 ). With both 

ethods, the achieved position and orientation errors were always 

igher or comparable to the Bland-Altman plot limits of agree- 

ent, which proved below the tenth of a millimeter for the po- 

ition and below 1 ° for the orientation ( Figs. 6 and 7 ). Thus, as

ore than 95% of points lied within such limits (i.e., the differ- 

nce between the paired measures proved always very low), we 

an conclude that the two methods led to comparable results. Nev- 

rtheless, unlike optimization procedures, the Peaks method led to 

uch solution with no need of iterations (indeed, it is ∼15 faster) 

nd no need of setting multiple parameters or constraints, except 

or the threshold value. In this regard, although defining an ap- 
8 
ropriate threshold required to evaluate the localizer performance, 

here was no need of knowing the exact magnets implantation site, 

hich is instead required by the FIM-GA method. On one hand, the 

ocalizer was able to accurately retrieve the correct magnets poses 

ven if we provided it with corrupted initial conditions, in line 

ith results from related works [32] . At the same time, the mus- 

le workspace (i.e. muscles belly) needed to assess the localizer 

erformance could be made available by imaging techniques car- 

ied out before the implantation procedure. As an example, mag- 

etic resonance examinations guarantee a ∼1 mm 

3 spatial resolu- 

ion, and could be useful for planning the surgical implantation. 

n accurate segmentation of muscles could be drawn from such 

cquisitions by applying proper post-processing techniques [33] . 

The muscle contraction model used in this study considered 

oth axial and radial displacements, in accordance with actual de- 

ormations undergone by biological muscles during contraction. In- 

erestingly, it was shown that a negative correlation exists between 

he muscle peak radial displacement and the muscle / tendon stiff- 

ess [24] . The latter is likely to decrease in individuals who ex- 

erienced limb amputation, because of a reduced muscle activity 

hich could lead to a condition known as disuse atrophy [34] . For 

his reason, it was of fundamental importance to assess the ability 

f the localizer in retrieving radial displacements with good accu- 

acy, in view of the target application. 

We argue that the higher localization errors achieved for the 

agnets in ECRB, ED-II and FDS-I ( Fig. 6 ) are due to their specific

mplantation sites, in particular to their L MM − sensor . Indeed, both 

he magnets in ECRB and ED-II were not implanted deeply enough 

o have their dimensions doubled, but had a L MM − sensor slightly 

elow the required threshold (respectively equal to 13.9 mm and 

4.8 mm). The same occurred to the magnets in ED-III and ED-IV 

 L MM − sensor equal to 14.9 mm) which in turn showed larger local- 

zation errors, especially for the calibration phase results ( Fig. 8 ). 

ice versa, FDS-I had its dimensions doubled, but was implanted 

n the deepest site ( L MM − sensor of 25.8 mm). Notably, as extensively 

ssessed in early works [ 14 , 15 ], the R value (i.e. the ratio between

he minimum inter-magnets distance and L MM − sensor ) can be used 

o get a more thorough prediction of the expected localization ac- 

uracy. Indeed, we previously showed that lower R values lead to 

ower localization accuracies, because being near to other magnets 

egatively affects the accuracy besides localization depth. In this 

ase, the geometrical arrangement of magnets resulted in a lower 

 value for those (listed above) that achieved lower localization ac- 

uracies, with a mean R value equal to 1.45, against a mean value 

f 2.14 for the remaining ones. 

The co-contractions simulated in the calibration phase were 

ust representative examples of possible real scenarios, in which 

ikely the activation level would not be the same in all involved 

uscles (here, we considered the maximum displacement for all 

nits). Nevertheless, we have no reason to think these results 

ould not extend to other muscles (compartments) or to differ- 
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Fig. 8. Calibration phase results. (a) Actual and estimated magnet poses. Selected active sites without (blue dots) and with (empty red dots) calibration are displayed. The 

inset in the left-bottom corner reports the distribution of the active sites selected with the calibration phase over the stump. Localization errors in terms of position (b) and 

orientation (c) are shown in the boxplots. Boxes having the same colour indicate muscles that were contracted together. The empty dots indicate the outliers, the boxplot 

encloses data within the interquartile range, the dot is the median value, whereas the whiskers extend to the limits of the distribution. Acronyms in Table I . 
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nt activation levels. Notably, the feasibility of achieving accurate 

ocalization in the worst condition, that is when magnets are im- 

lanted in adjacent compartments (thus, particularly near to each 

ther) was assessed here. 

We observed that the threshold used for identifying peaks can 

e significantly increased by tuning the magnets dimensions and 

ntegrating information about muscle contraction. Increasing the 

hreshold allows to improve the system robustness against the in- 

rinsic sensor noise. Notably, the reduction of the critical value by 

00 mG was chosen as a robust safety limit accounting for even- 

ual electromagnetic noise sources [35] . On the other hand, the ab- 

olute final threshold value could vary across individuals, according 

o the magnets and sensors distribution in space allowed by spe- 

ific anatomical conditions. The number of active sensors did not 

ignificantly increase following the calibration phase (from 80 to 

6), and this supports the idea, previously suggested by Maréchal 

t al. [11] , that optimizing the spatial arrangement is more impor- 

ant than increasing the number of sensors. This could possibly ex- 

lain the lower sensor-to-magnet ratio obtained here (between 7.3 

nd 9.2) compared to results from the literature (between 8 and 

5). Indeed, an improved spatial arrangement could allow to re- 

uce the number of sensors needed for achieving the same accu- 

acy. Not least, the calibration strategy proposed here could be eas- 

ly re-applied to adapt to changes in muscle contractile properties 

ollowing the user’s training, thus providing an adaptive, customiz- 

ble active sensor distribution. 

The present study was indeed limited in some respects. First, 

lthough the muscle contraction model used in [15] was improved 

ere by adding radial displacements and magnets tilting, it is still 

 simplification of the biological muscles complexity. Besides, as- 

umptions made in [15] to standardize the maximum displacement 

nd distal aponeurosis length across different muscles were main- 

ained here. To make the contraction model more physiologically 

ppropriate, differences across forearm muscle contractile proper- 

ies, change in muscles conditions after the amputation surgery, 

nd other relevant aspects should be considered. Despite this, here 

e proved the feasibility of accurately tracking position and ori- 

ntation displacements during both independent and dependent 

ctivations. Thus, we hypothesize that localization would be accu- 

ate also in real conditions, as we can expect the displacement im- 
9 
osed by biological muscles to be a combination of those tested 

ere. Furthermore, to our knowledge, no previous study investi- 

ated muscles displacement in depth, because current prostheses 

ontrol strategies rely on electrical signals coming from the mus- 

les and the nerves, and not on such data. Additional clinical in- 

estigations as well as more complex simulators would be needed 

o make the contraction model more realistic. 

Secondly, the choice of setting w = 0.5 as threshold value 

or the sensor weights to be selected was arbitrary. Nevertheless, 

hen inspecting the final weight vectors, we noticed that either a 

ensor was selected (i.e. w ≥ 0.5) or its weight was equal (or re- 

lly close to) zero, also because of the applied FIM normalization. 

hus, no ambiguity in the final sensor selection was present. No- 

ably, the choice of encoding the weights as real number instead 

f binary ones, which introduced the need of setting a threshold, 

llowed in turn to relax the constraint imposed to the weight sum, 

hus reducing the rigidity of the algorithm search. 

.1. Conclusions 

We proved that the Peaks method is a viable, fast, and relatively 

imple approach for optimizing a sensing system design for multi- 

le magnets tracking systems. It allows to achieve results compa- 

able to those obtained with more complex methods and analyti- 

al models, while being based on a simple intuition: discriminable 

agnets will leave discriminable traces in the sensor recordings. 

hanks to the calibration phase, it guarantees a smooth adaptation 

o different anatomical conditions, essential feature for our target 

pplication. Although only clinical trials will allow for a proper 

omparison with alternative advanced methods for prosthesis con- 

rol [36–38] , we advocate that the proposed approach would re- 

arkably improve the effectiveness and efficiency of a myokinetic 

ontrol interface. More in general, all systems and (bio)medical ap- 

lications exploiting magnetic tracking will benefit from the out- 

omes of this study. 
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