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Abstract

With the rise of soft robotics technology and applications, there have been increasing interests in the devel-
opment of controllers appropriate for their particular design. Being fundamentally different from traditional
rigid robots, there is still not a unified framework for the design, analysis, and control of these high-dimensional
robots. This review article attempts to provide an insight into various controllers developed for continuum/soft
robots as a guideline for future applications in the soft robotics field. A comprehensive assessment of various
control strategies and an insight into the future areas of research in this field are presented.
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Introduction

B iological organisms exploit softness of the body for
compliance to reduce the complexity in interacting with

the environment. This characteristic is promising to advance
robotic systems to operate robustly and adaptively in un-
structured environments. Incorporating softness in robotic
systems, in particular robotic manipulators, the focus of this
article, is studied under the domain of ‘‘soft robotics.’’ This
term is associated with two distinct design approaches: (1)
compliant joints (active or passive) within rigid-link robots1,2

and (2) continuum robotic manipulators.3 The discussion in
this article is restricted to the latter one.

Although the field of continuum robotic manipulators was
founded in the 1960s, a formal research on the design and
control can be dated back to the early 1990s. These systems
are the result of the evolution of manipulator design from
discrete mechanisms constructed from a series of rigid links
to mechanisms without rigid links but rather with elastic
structures capable of continuous bending along their length
depicted in Figure 1.

A novel subdomain of continuum manipulators, referred to as
‘‘soft robotic manipulators,’’4,5 has been rapidly growing in the
past decade since roboticists found inspiration in boneless bio-
logical organisms such as octopus arms, which are able to ex-
ploit the ‘‘mechanically intelligent’’ arrangement of just their
muscles to exhibit dexterous advanced manipulation capabilities

in cluttered environments. This has been translated into new
range of continuum manipulators made up of soft materials such
as silicone due to their ability to undergo a large deformation
under normal operation. The underlying idea is to use principles
of embodied intelligence6 and morphological computation7 to
exploit the soft material properties to enable machines with
properties such as inherent compliance, variable stiffness, and
highly dexterous motion in an unstructured environment. The
resulting systems have the ability to simplify a wide range of
well-known complex tasks. In addition, they offer a low-cost
alternative to numerous robotic applications.5 Furthermore, the
deformability of the soft material offers compliance, which fa-
cilitates safe human–robot interaction in comparison to the rigid
counterparts. These desirable characteristics are the fundamen-
tal reason behind the rapidly increasing demand in industrial,
surgical, and assistive applications.

However, the long-term success for the practical application
of these systems is dependent on the development of real-time
kinematic and/or dynamic controllers that facilitate fast, reli-
able, accurate, and energy-efficient control. This is nontriv-
ial because (1) unlike rigid manipulators, the movement of
which can be specified by three translations and three rota-
tions, elastic deformation of soft robotic manipulators re-
sults in virtually infinite degrees-of-freedom (DoF) motions,
(bending, extension, contraction, torsion, buckling, etc.); (2)
the material properties exhibit nonlinear characteristics such as
compliance and hysteresis that restrict high-frequency control;
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(3) the wide range of design and actuation techniques, which
makes each of these robots have unique properties (refer to
Ref.8 for a detailed review on design and actuation technolo-
gies for soft robots). However, as this is an active field of
research still in its infancy, the fundamental purpose of this
survey is to provide an in-depth assessment of various control
strategies established within the domain of continuum robotic
manipulators, in the past decade, with the aim to segue into a
guide for researchers toward possible directions for developing
controllers for soft robotic manipulators.

Comprehensive reviews of control strategies for contin-
uum robotic manipulators3,9–12 are primarily focused on de-
sign, fabrication, modeling, and sensing. However, there is no
in-depth analysis of the control approaches that have emerged
over the years. Furthermore, they lack focus on the recent
development of controllers via model-free approaches. This
survey tries to first enumerate all such developments in this
field in the past decade; second, it aims to provide a unified
overview of key terminologies, advantages, and drawbacks
of these controllers; and finally, we aim to summarize these
concepts in a table that, in addition to a systematic review, also
provides the readers an overview into the chronological de-
velopments that have led to the current landscape and pros-
pects of development in this domain. As the focus of this
article is restricted to controllers developed within the domain
of continuum manipulators that can be adopted for soft robotic
manipulators, the article does not dwell much into modeling
techniques, theoretical studies, wearable robots, and concen-
tric tube robots. The role of sensing and variable stiffness
actuation for control is also beyond the scope of this article.

Preliminaries

Although a lot of classic terminologies used for rigid ro-
bots can be directly adapted to this field, special care must be
given to understand the applicability and limitations of these
terms. Consequently, we first state key terminologies and
their corresponding definitions that will be used throughout
the article to describe the controllers in a unified manner.
Next, we lay out the classification schema used to systemi-
cally analyze the controllers summarized in Table 1.

Definitions

Figure 2 provides the definitions and terminologies that we
will be referring to throughout the article. The purpose of the

figure is to give the readers an idea of the different levels of
mapping involved in the control of a continuum/soft ma-
nipulator and its differences from traditional rigid robot
control.

Classification schema

1. Modeling approach:
a. Model-based controllers rely on analytical models

for deriving the controller.
b. Model-free controllers use machine learning

techniques or empirical methods.
c. Hybrid controllers combine model-based and model-

free approaches.
2. Design:

a. Actuation: tendon-driven, pneumatic, interleaved,
simulated platforms.

b. Actuation details: number of segments/actuators,
arrangement, shape, material.

c. Manipulator details: intended applications.
3. Control:

a. Operating space:
i. Low-level: joint and/or actuator space.
ii. Mid-level: inverse static/kinematic,* dynamic.{

iii. High-level: path planning.{

b. Controller details: tested for planar/nonplanar ap-
plications, required sensors.

c. Performance: error measurements, theoretical error
convergence, stability.

Model-Based Static Controllers

Soft robots present a formidable challenge to modeling
due to their high dimensionality. Nonetheless, tractable ki-
nematic models can be developed by adopting a steady-state
assumption; that is, under force equilibrium, the full configuration

FIG. 1. Evolution of rigid-
link manipulators based on
discrete mechanisms to bioin-
spired continuum robotic ma-
nipulators based on structures
capable of continuous bend-
ing, studied in detail in Ref.4

*Static controllers are time invariant controllers where the con-
trol variables are zero order.

{Dynamic controllers consider the configuration space and/or
task space variable velocities in the control algorithm.

{High-level controllers that prescribe the reference path in task
space are primarily application based. Since the area of soft robotics
is still in its incipient phase, a review on high-level controllers is
beyond the scope of this article.
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of the soft manipulator can be defined by a low-dimensional
state space representation. In all the articles that are reviewed,
this assumption is valid and therefore we interchangeably use
the term ‘‘statics’’ and ‘‘kinematics’’ even though this is not a
common practice in traditional robotics.

The simplest and most commonly used kinematic/steady-
state model assumes that the configuration space of a three-
dimensional (3D) continuum/soft module can be parameter-
ized by three variables, more commonly referred to as the
constant curvature (CC) approximation.13 It reduces an in-
finite dimensional structure into just 3D, thereby ignoring a
large portion of the manipulator dynamics. This has been
found to be a very good approximation if (1) the manipulator
is uniform in shape and symmetric in actuation design, (2)
external loading effects are negligible, and (3) torsional ef-
fects are minimal. It is important to realize that the CC model
arises due to a constant strain approximation along the length
of the manipulator and therefore is a model truly valid only in
the steady-state condition.14 In Ref.,15 it was demonstrated
that the variations in the kinematic manipulability ellipsoid
are very less when going from a low-dimension to a high-
dimension representation of the manipulator configuration.
This could explain the relative success of the CC model. For
multisection continuum/soft manipulators, each CC section
can be stitched together to provide the piecewise constant
curvature (PCC) model.16 Concurrently, a more complex
modeling approach using beam theory was pursued using
beam theory14 and Cosserat rod theory.17 However, the im-
provement in accuracy attained by a more complex model was

not significant enough considering their computational and
sensing cost and therefore have been limited in their usage.

Once a kinematic model is established, it is necessary to
invert the kinematics to obtain the desired actuator or con-
figuration space variables. This can be pretty straightforward
and has been widely studied for rigid manipulators and can
be done with differential inverse kinematics (IK),16,18 by
direct inversion,19 or by optimization.20 Furthermore, a low-
level controller takes care of tracking in the actuator/joint
space, usually using a simple linear closed loop controller.
In addition, actuator compensation techniques might have to
be used because of the presence of friction, hysteresis,21 or
tendon coupling22 that can cause deviations from the forward
steady-state model.

The need to model and compensate for slackening tendon
load coupling and tendon path coupling for multisection
manipulators was first addressed in Ref.19 A numerically
estimated static model used for the forward model and in-
verse model was obtained by optimization. However, there
still lacked an expression for friction effects and the approach
was used only for configuration tracking.

One of the fundamental modeling difficulties involved
with cable-driven actuators is the path coupling among sec-
tions. For independent actuation methods, only the load cou-
pling needs to be considered. Further on, researchers started
investigating the importance of sensors for compensating
modeling uncertainties without the necessity for formulating
very complex compensation techniques.20,23 As an extension
of Ref.,19 a closed-loop task space controller was proposed and

FIG. 2. Operating spaces of a continuum manipulator and their definitions.
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experimentally validated for the first time in Ref.20 with a 5-
DoF per section kinematic model. For this, the IK problem is
formulated as a constrained nonlinear optimization problem
where the desired joint configuration that reduces the current
tracking error is estimated while satisfying the forward kine-
matic model and cable tension constraints (to avoid slacking).
By representing the kinematics in the velocity level, their ap-
proach gains leverage in terms of higher accuracy (submilli-
meter) and robustness to model uncertainties, but would need to
solve a high-level path planner (Fig. 3). The downside of the
direct task space controller is instability (can be solved by lower
control frequency; 5 Hz for Ref.20) and slower convergence.

In Ref.,23 a configuration space controller is proposed, which
uses external sensory information about the configuration and
internal sensory information about the joint variables to achieve
asymptotic tracking of a stationary configuration target. By
providing additional tracking information and framing a cas-
caded controller, they were able to reduce coupling effects and
decrease the phase lag while tracking a time varying trajectory.
Being a configuration space feedback controller, the control
loop was run faster at 150 Hz. Interestingly, significant phase
lag was observed even for tasks at 2 Hz and this is highly
undesirable at the low level. Similarly in Ref.,24 two closed-
loop controllers in the task space (Fig. 4) and joint space (Fig. 5)
were compared. The advantage of a direct closed-loop task
space controller is that it can provide asymptotic convergence
of the error even with model uncertainties. On the contrary, a
joint space controller can offer independent control of the joint
variables allowing for individual tuning and hence more sta-
bility, especially if the joint/actuator motions are discrete. Note
that for all the abovementioned controllers, there is also a
closed-loop actuator space controller, usually a servo control-
ler, which is assumed to provide perfect tracking. All these
methods rely on the CC approximation for modeling.

Following the strong coupling between continuum manip-
ulator’s kinematic and static force model, controllers foraying
into compliance/force control started to emerge.25–27 In Ref.,26

it was demonstrated that by knowing the current internal ac-
tuation forces and the configuration space variables, an esti-
mate of the external generalized forces can be formed. Using
the estimate of the external force and the compliance matrix
(maps the change in actuator forces to the tip wrenches), a
configuration space controller for reducing tip forces for sur-
gical purposes was proposed. As an extension of Ref.,26 a
hybrid position/force controller in the configuration space was

realized in Ref.27 (Fig. 6). Desired twist and wrench vec-
tors are projected orthogonally (for decoupling the control
effort into feasible motions) and transformed to configuration
space references using differential IK and the configura-
tion space compliance matrix (maps the change in configu-
ration space variables to the tip wrenches), respectively.

Hybrid position/force control was realized in Ref.25 without
the need of force sensors. This was done by numerically cal-
culating the transformation matrix that maps the transforma-
tion from the tip of an unloaded continuum manipulator to the
tip position when acted on by external forces using Cosserat
rod theory. With the transformation formulation, the desired
joint position that attains a particular end effector force and
orientation was estimated using fixed point iteration. Com-
pensating model deviations due to friction and other nonlinear
material behavior remains an open research topic.

Further on, researchers started to focus on more complex
kinematic formulations by extending the CC model, mostly
due to the rise of biologically similar tapering continuum ro-
bots. The first such method was the use of the variable con-
stant curvature (VCC) approximation, which models a single
module as n segments of CC, where the curvature of each
segment depends on the radius of the segment, thus creating a
high-dimensional configuration space.28–30 The VCC model
for a three-section, pneumatically actuated continuum robot,
with the procedure for segmentation of the sections, was first
elucidated in Refs.29,30 A resolved motion rate algorithm was
used for the closed-loop control of the robot due to the double
advantage of redundancy resolution and the robustness it
provides to model uncertainties (Fig. 7).

Visual servo control of a two-dimensional (2D) image
feature point in 3D space using a cable-driven soft conical
manipulator was proposed using the VCC model in Ref.28 A
differential kinematic-based controller, similar to the one in
Ref.,29 with the control objective of reducing the feature
point tracking error was proposed. An adaptive algorithm
for depth estimation was also described. Similarly, efficient
numerical techniques for solving in real time the complex
Cosserat models were detailed in Ref.,31 however, no control
experiments were demonstrated.

Contrary to ongoing developments, the use of simplified
kinematic models for control was proposed in Ref.32 The idea
behind this is that the reduced accuracy due to the inaccurate
kinematics can be compensated or even improved with the
increased control cycle frequency gained due to the low

FIG. 3. A closed-loop task space controller implementation. An asterisk (*) represents the desired variable value, and a
subscript ‘‘c’’ represents the commanded variable value. IK, inverse kinematics.

FIG. 4. A closed-loop task
space controller implementa-
tion. PID, proportional inte-
gral derivative.
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computational cost. However, the method was validated only
on simulations and would not be directly transferable to a real
setup at the same frequency without considering the low-level
dynamics as observed in Ref.23 On the other spectrum, a nu-
merically exact approach for statics modeling using asyn-
chronous finite element analysis (FEM) was described in
Ref.33 Optimization using quadric programming (QP) algo-
rithm was used to obtain the inverse solution, which is used to
control the actuators at high frequencies while a low-frequency
loop FEM simulation feeds the inputs to the QP solver.

Recent developments in terms of model-based static con-
trollers are factored on the design aspects. A closed-loop task
space controller was applied on an interleaved continuum-rigid
manipulator in Ref.34 The main idea of the approach is to use
the well-behaved rigid links in tandem with the flexible ele-
ments to compensate for the errors obtained while tracking a
desired tip position thereby obtaining much lower bound on the
tracking error. However, the scalability of such designs for
high-dimensional systems is still a question mark. Currently,
the manipulator is designed with the rigid components set up at
the base, but it will be tricky to add further components in serial.

On the contrary, kinematic control of a pneumatically ac-
tuated soft manipulator entirely made from a low durometer
elastomer was detailed in Ref.35 The control architecture is
similar to Ref.23 and tries to achieve tracking of configura-
tion space variables using a cascaded proportional integral–
proportional integral derivative in the configuration space and
actuator space (cylinder displacement, in this case), respec-
tively. The task space to configuration space IK obtained a
nonlinear constrained optimization. Both the abovementioned
approaches used the CC approximation for the configuration
space model.

Summary of model-based static controllers

Model-based static controllers are currently the most
widely used and studied strategy for control of continuum/
soft robots. Majority of the model-based controllers rely
on the CC approximation since more complex models are
computationally expensive and are design specific. However,
with validation of the CC model for a completely soft robot35

and its wide application for control of many continuum/soft
robots, it is still one of the most reliable and easily applicable
methods for static control of uniform, low-mass manipulators.
More complex methodologies have not achieved excep-
tional performance improvements because of their computa-
tional cost and numerous parameters that have to be estimated.
This was also observed in recent comparisons among various
modeling approaches on the same platform.36 In light of this,
model-free approaches provide an alternative means to de-
velop more complex yet accurate, design-specific models
without any prior knowledge about the underlying structure.

In terms of operating space, a closed-loop configuration
space controller or joint space controller would provide more
stable and faster controllers, however, cannot guarantee error
convergence (unless there is a perfect forward model avail-
able). Closed-loop task space controllers can theoretically
provide the best accuracy. In terms of actuation, tendon-
driven systems are more difficult to model, whereas pneu-
matic manipulators would need more sensors.

Model-Free Static Controllers

Model-free-based approaches for control of continuum/
soft robots are a relatively new field and offer a wide range of
possibilities. Although these data-dependent methods have
been used effectively in the field of rigid manipulators,37 the
same cannot be said for continuum manipulators even though
model-free approaches intuitively should fare better in this
case.

The first usage of a model-free approach for development
of a static controller was proposed in Ref.38 The approach
was a straightforward direct learning of the inverse statics of
a nonredundant (with respect to the actuator space and task
space) soft robot using a neural network. Although the method
was correctly able to predict the reference cable tensions for
reaching a target in the task space in simulations, the approach
cannot be scaled for redundant systems and does not consider
the stochastic nature of real soft robots. An experimental
validation of the same approach was done in Ref.39 for a 2-DoF
and a 3-DoF40 cable-driven soft manipulator and compared
with an IK model derived from a numerically exact model.

FIG. 5. A task space con-
troller implemented by closed-
loop control in the joint space.
A subscript ‘‘c’’ represents
the variable estimate.

FIG. 6. Closed-loop task
space control of position and
force implementation. A sub-
script ‘‘v’’ represents the first-
order derivative of the vari-
able.
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Interestingly, the simple neural network-based approach
performed significantly better than the computational com-
plex analytical method. The final controller is similar to the
diagram shown in Figure 8 without the feedback component.

An efficient exploration algorithm for generating samples
for IK learning was proposed in Ref.41 The main idea is to use
goal babbling to generate samples from the task space to
actuator space for high-dimensional redundant systems.
Since the exploration is goal oriented, it can allow for effi-
cient exploration (by avoiding revisiting an explored task
space/actuator space region) and in selecting a desired re-
dundancy resolution scheme. Finally, self-organizing maps
are used to learn the IK mapping with generated samples. A
feedback scheme for reducing tracking error due to the sto-
chasticity of model is implemented by virtually shifting the
target positions proportional to the error in tracking to gen-
erate modified reference positions (Fig. 8).

A highly robust, accurate, and generic approach for closed-
loop task space control of continuum robots was proposed in
Ref.42 (Fig. 9). The article proposes an optimal control strategy
based on empirical estimation of the kinematic Jacobian matrix
online by incrementally moving each actuator. Optimization is
done to minimize the control effort and to keep the cables taut.
There is no internal model used for control, and therefore, the
authors have called the approach as a ‘‘model-less’’ technique.
Although such a strategy solves a lot of difficulties in the
control of continuum robots, even allowing manipulation in an
unstructured environment, the very low control frequency is of
practical concern. The same principle was extended for hybrid
force/position control in Ref.,43 where the stiffness matrix is
also computed empirically. Similar to other hybrid force/po-
sition controllers, the reference position and forces are pro-
jected orthogonally when the manipulator is in contact.

Recent model-free approaches have mostly focused on
learning the IK representation of continuum robots. In Ref.,44

an approach for learning the direct mapping between task
space and joint space (potentiometer voltage, in this case)
is proposed. This involves learning the forward kinematic
model first using a neural network and then inverting this
learned network using distal supervised learning. However,
this approach did not consider the stochasticity of the ma-
nipulator and did not implement a feedback error correction
scheme. As an improvement of the previous work, in Ref.,45

the authors try to address the stochasticity of the mapping
between the joint space (potentiometer values) and actuator

space (chamber pressures) by developing an adaptive sub-
controller. This is because for the case of tendon-driven ac-
tuation, the actuator space and joint space are linearly related,
whereas for pneumatic actuation, an additional nonlinear
mapping between the actuator space and the joint space must
also be considered. The subcontroller comprises a modified
Elman neural network, which emulates the actuator kinemat-
ics, and a multilayer perceptron controller that learns to control
the actuator variables accordingly. However, the kinematic
mapping between the joint space and task space is considered
to be nonstochastic, which is not necessarily the case.

Another technique for learning the IK was proposed in
Refs.,46,47 where the IK problem is formulated like a differ-
ential IK problem using local mappings. This allowed for
redundancy resolution as well as reducing stochastic effects.
However, the approach was validated only by simulations on
a continuum46 and soft arm.47 Another advantage of such an
approach is that it allows multiple solutions to the IK problem
globally and can work even if some of the actuators are
nonfunctional after the learning process. A similar modeling
method strengthened with a feedback controller was experi-
mentally validated in Ref.48 It was also observed that even
with a simple feedback controller, intelligent behaviors can
be obtained in an unstructured environment.

An attempt toward transfer learning has also been made,
however, limited to simulation.49 Authors develop an algorithm
to transfer the reaching skills from a simulated non-CC octopus
arm to a simulated CC soft robotic manipulator. The idea is to
design dynamic motion primitives through a weighted combi-
nation of Gaussian functions representing the joint distribution
of the data. This is combined with a statistical regression ap-
proach making it robust to external perturbations in the envi-
ronment. Although this approach seems promising, it requires
more experimental work to demonstrate its potential.

In a recent work,50 the authors optimize multiple objec-
tives within a reinforcement learning architecture to learn
deterministic stationary policies for a soft robot arm module.
Although it works in high dimensions, it is sensitive to ex-
ternal disturbances. An attempt toward fuzzy logic-based
controllers was attempted in Ref.51 The idea was to develop
numerical estimates of the kinematic Jacobian using prior
knowledge-based local approximations and interpolation
functions. This allows for faster computation, but the ad-
vantage of such a method over data-driven machine learn-
ing approaches is not apparent. Finally, a hybrid controller

FIG. 7. First-order resolved motion rate algorithm for closed-loop task space control. Note the similarity to the first
implementation in Figure 3. The additional feedforward component allows for faster convergence.

FIG. 8. A general model-
free closed-loop task space
controller implementation.
A subscript ‘‘m’’ represents
an auxiliary variable.
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combining both model-based and model-free approaches was
proposed in Refs.52–54 In Ref.,52 the manipulator is modeled
as multiple sections with one translational and two rotational
DoF. Then, multiple neural networks are used to resolve re-
dundancy and to obtain the mapping from the task space to
the high-dimension configuration space. The configuration
space to actuator space mapping is done analytically as it was
found to be more straightforward. A noticeable limitation of
such a method is the high sensory information required,
which in the article, the authors have synthesized from certain
empirical data.

A polar method was adopted in Ref.,53 with the configu-
ration space to task space mapping being analytically mod-
eled using the PCC approximation. The actuator space to
configuration space mapping is learned also considering
possible first-order viscoelastic effects. A feedback strategy
such as in Ref.41 was also used to provide high tracking ac-
curacy, however, only for a planar manipulator. In Ref.,54 it
was shown that by learning only the model error incurred by
an analytical model (a CC model), better forward and IK
models could be obtained. In this way, it is also possible to
leverage the advantages of an analytical model (such as null
space motions) along with the generality of learning methods.

Summary of model-free static controllers

One of the primary advantages of model-free approaches is
to circumvent the need to define the parameters of the con-
figuration space and/or joint space and is independent of the
manipulator shape. Due to this, arbitrarily complex kinematic
models can be developed depending on the abundance of the
sample data and sensory noise. This is probably why model-
free approaches have fared better for systems that are highly
nonlinear, nonuniform,39 influenced by gravity,41,48 or act
within unstructured environments where modeling is almost
impossible.42 However, for well-behaved compact manipu-
lators in known environments, model-based controllers are
still more accurate and reliable. Furthermore, due to their
black box nature, stability analysis and convergence proofs
are difficult to establish. Static/kinematic controllers assume
little or no dynamic coupling between sections.

As mentioned in the beginning, static/kinematic controllers
rely on the steady-state assumption, which hinders accurate
and fast motion of soft manipulators. Hence, controllers that
consider the dynamic behavior of these manipulators are im-
portant for faster, dexterous, efficient, smoother tracking and
in situations where coupling effects cannot be ignored.

Model-Based Dynamic Controllers

Probably the most challenging field in the control of con-
tinuum/soft robots is the development of nonstatic controllers

that considers the complete dynamics of the whole manipu-
lator. Development of dynamic controllers would require the
formulation of the kinematic model and an associated dy-
namic formulation. The fact that kinematic models are dif-
ficult to develop themselves, a dynamic formulation based on
these imprecise models, aggravates the model uncertainties.55

On the contrary, even if exact kinematic and dynamic models
are available, an appropriate controller would then require
high-dimensional sensory feedback.56 Moreover, some dy-
namic properties/disturbances are inherently uncontrollable
due to their underactuated nature.14 Development of reliable
parameter estimation algorithms and accurate sensory infor-
mation is also crucial.

One of the first theoretical studies on the dynamic con-
trol of continuum robots was done in Ref.57 In Ref.,57 it was
validated through simulations of a planar single multisection
continuum robot that a simple feedforward and feedback
proportional derivative (PD) controller can achieve expo-
nential tracking of a set point. The feedforward component
inputs the actuator torques, satisfying the static holding tor-
ques, and the feedback component ensures the convergence
of the set point position. A similar experimental study
showed that a simple proportional controller can regulate the
orientation of a planar continuum robot and a PD controller
with coupling compensation can damp out manipulator vi-
brations.14 Nonetheless, these studies were conducted on
simplified models that do not capture the true nonlinearities
of continuum/soft robots.

The first closed-loop task space dynamic controller for
continuum robots was demonstrated in Ref.,58 although only
by simulations. The kinematic for the 2D multisection robot
was formulated using the CC model and the corresponding
dynamic model in the configuration was presented in the
Euler–Lagrangian form using lumped dynamic parameters.
One main difference of such a model from the dynamic
model of a rigid robot is the addition of the potential energy
due to bending and extension (dependent only on the kine-
matic configuration). In this dynamic equation, the task space
state variables can be substituted in place of the configuration
state variables using the kinematic model. Note that by this
way small errors in the kinematic model will exponentially
rise when computing the higher order states and thereby af-
fecting the accuracy of dynamic model. The implemented
controller can be described as a PD-computed torque con-
troller where the auxiliary control signal is represented in
terms of the task space variables. An additional term for
controlling the configuration space in the null space is also
added. Although the robustness of the controller is shown by
adding Gaussian white noise, the performance of such a
controller can only be validated experimentally since it hin-
ges on the CC approximation. However, the validity of the

FIG. 9. Model-less control
strategy.
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CC model for the same model was concurrently questioned in
Ref.55 Furthermore, it must be brought to the attention
of the reader that the stability proof was derived assuming
that the kinematic and dynamic model is perfect.

A different control approach for the same kinematic and
dynamic model, in simulation, was done using a sliding mode
controller in Ref.,59 however, only for closed-loop configura-
tion space control. A first-order (assuming that the input/output
relative degree is two) sliding surface is defined as the filtered
tracking error for this purpose. The advantage of a sliding
mode controller over a simple inverse dynamics-based PD
controller is the higher robustness to model uncertainties; the
downside being the slower error convergence, chattering, and
higher gain requirements. An experimental evaluation of this
method was conducted with a planar three-section continuum
arm in Ref.,60 along with comparisons to a simple feedback
linearization-based PD controller in the configuration space. It
was observed that the sliding mode controller performed better
in terms of accuracy and speed indicating that model un-
certainties were significant. In addition, a task space controller
for teleoperation was demonstrated using the controller men-
tioned in Ref.,58 which showed good tracking performance for
a low-frequency reference.

Considering the fact that the actuator dynamics of
pneumatic actuators is slower and more nonlinear than
tendon-driven actuators, works focusing on optimal dynamic
controllers for pneumatically actuated manipulators started
to emerge. One such approach for trajectory optimization was
demonstrated using simulations in Ref.,61 where the objec-
tive was to estimate the optimal trajectory that reduces the
transition time and actuator jerk. The nonlinear optimization
problem is formulated with kinematic constraints (CC mod-
el), actuator dynamic constraints, and boundary constraints
with the mass flow as the trajectory variable. Along the same
lines, a trajectory optimization scheme for a comprehensive
dynamic model of a soft planar manipulator was described in
Ref.62 (Fig. 10). Using the CC model for expressing the ki-
nematics of the manipulator, a dynamic model was derived in
the configuration space. A detailed derivation for calculating
the generalized torques from the cylinder displacement and
reference input is described in the article. A direct collocation
approach is used to simultaneously identify the optimal gen-
eralized torques and corresponding manipulator state with the
systems kinematics, dynamics, boundary conditions, and
tracking objective as constraints. The objective function is to
reduce the final end effector velocity. An optimization prob-

lem is used for obtaining the optimal reference inputs to the
actuator to realize the initial trajectory. Another advantage of a
solving the control problem as an optimization problem is that
it alleviates the need for a high-level path planner. The open-
loop policy was successfully able to reach statically unreach-
able target points with high probability; the first demonstration
in the field of continuum/soft manipulators. Even then, an it-
erative learning control scheme to reidentify the system pa-
rameters was required in between trials for best performance.

Another comprehensive model-based controller, seem-
ingly a variation of Ref.,58 based on the dynamics of the joint
space was proposed in Ref.63 The kinematics is based on the
CC model and the dynamic model is represented in the joint
space. A PD-computed torque controller in the joint space is
proposed. To transform the generalized torques used in the
dynamic model to the desired actuator pressures, an inversion
scheme is proposed. Experimental results even without the
PD term showed decent results, validating the dynamic model.
An extension of Ref.,63 which also considers the dynamics
of the pneumatic chambers, was proposed in Ref.64 (Fig. 11).
With this, an inner loop-decoupled PD-computed torque con-
troller is cascaded to the existing controller. Consideration
of the pneumatic dynamics is important because its response
is slower and more nonlinear compared with the dynamics of
electromagnetic actuators. Since the controller does not con-
sider the actuator and kinematic constraints, the performance is
currently limited.

A recent interesting approach in the field of soft robotic
manipulators in terms of design and control was stated in
Ref.65 This soft humanoid robot was constructed such that
the joints are similar to traditional rotational joints. There-
fore, the kinematics of the manipulator can be modeled like
traditional rigid robots allowing for much simpler dynamics
models, which are identified empirically. The authors have
ignored gravitational and cross coupling effects, and the re-
lationship between joint torques and pressure is derived. Due
to the simplified model and design, a model predictive con-
troller (MPC) in the joint space could be implemented at high
frequency (300 Hz).

Summary of model-based dynamic controllers

Dynamic controllers are important for industrial appli-
cations where time and cost are also important along
with the accuracy. Model-based dynamic controllers for
continuum/soft manipulators are still in their nascent stage,

FIG. 10. Trajectory opti-
mization algorithm for open-
loop dynamic task space
control.
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and consequently, there are a multitude of gaps that should
be addressed in design, modeling, and control. Dynamic
models directly mapping the control inputs (voltage, pres-
sure, or encoder values) to the task space variables should
provide the ideal performance for any model-based control
approach. Currently, most of the dynamic control ap-
proaches are focused on the joint space control with an ex-
ception of few.62 Even in this case, due to the computational
complexity, the controller had to be designed in open loop
for a planar uniform manipulator. However, if the feedfor-
ward controller is perfect, this would be the most ideal
choice. MPCs are ideal candidates for control of these con-
tinuum/soft manipulators, allowing for low-gain accurate
control. Their application is currently limited only because of
the computational complexity of the current dynamic models.

With the increase in computational power, sensing cap-
abilities, and intelligent controllers, we can expect better de-
velopments in model-based dynamic controllers. Alternatively,
another route to consider are machine learning-based ap-
proaches for learning open-loop controllers, for dynamic
compensation, or for learning black box dynamic models.

Model-Free Dynamic Controllers

Model-free approaches for dynamic control of continuum/
soft manipulators are still a relatively unexplored area.
Nonetheless, the earliest usage of machine learning tech-
niques for control of continuum robots was implemented for
compensating for dynamic uncertainties in Ref.66 (Fig. 12).
However, the methodology was described only for closed-
loop dynamic control of the joint variables. The control ar-
chitecture is composed of a feedback component, which is
based on a continuous asymptotic tracking control strategy
for uncertain nonlinear systems (similar to a second-order
sliding mode controller),67 and a feedforward component
made using neural networks. The objective of the neural
network is to compensate for the dynamic uncertainties and
thereby reducing the uncertainty bound that improves the
performance of the feedback controller.

In the domain of reinforcement learning, a simulated
multisegmented dynamical planar model of the octopus arm
was developed in Ref.68 The authors then addressed the task
of reaching a point by modeling the problem as a Hidden
Markov Model that was solved online through a nonpara-
metric Gaussian temporal difference learning algorithm.
The underlying idea is to learn an action-value function via
Bayesian inference from which an optimal control policy
can be derived. In Ref.,69 it was demonstrated that an actor–
critic-based reinforcement learning approach could solve
the same problem in the context of continuous action spaces.
A significant challenge that, however, remains, to adopt
such methods in practice, is to reduce the real-time costs for
generating solutions.

Recently, the first direct actuator space to task space dy-
namic controller was experimentally demonstrated on a 3D
soft pneumatic manipulator.70 The approach involved learning
the forward dynamic model using a class of recurrent neural
network and using trajectory optimization on the learned
model.62 Such types of controllers reveal a different region of
dynamic behavior that a soft manipulator can attain in terms of
speed, workspace volume, and efficiency. The advantages of a
model-free approach are clearly evident in terms of the ease of
modeling accuracy and low sensory requirements. However,
the controller is purely open loop due to the computational
complexity and it was experimentally validated only on a
single-section manipulator.

Summary of model-free dynamic controllers

To sum up, although model-free approaches offer a rela-
tively simpler path for developing dynamic controllers,
practical applications are limited either due to training time
or stability concerns.71 Nonetheless, it is a possibility that
should be looked upon, especially with the growth of more
robust algorithms for training recurrent dynamic network.72

That being said, hybrid controllers that merge model-based
and model-free approaches could also be a viable approach to
consider.

FIG. 11. Joint space dynamic controller by feedback linearization.

FIG. 12. Model-free dynamic controller in
the joint space.
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Discussions

From our survey on the current control approaches in soft
robotics, it is apparent that the design of controllers for
continuum/soft manipulators is not only application depen-
dent but also influenced by the manipulator design, actuator
and sensor availability. Therefore, it is difficult to compare
and contrast all the approaches under the same umbrella.
However, depending on the design, actuation, and applica-
tion, there are some trends observed. Classification of a
manipulator as continuum or soft did not affect the controller
design; at least, it is not evident. This means that controllers
developed for continuum manipulators can be easily trans-
ferred to their soft subgroup. Medical applications that rely
on compact manipulators, manufactured with high precision,
tend to use model-based approaches because of the reliability
and highly controlled environment. Likewise, manipulators
with nonuniform geometry and high nonlinearity tend to use
model-free methods for a lack of better analytic models. For
manipulation in unstructured environments, currently only
model-free methods have shown promising results.

Another interesting observation is the absence of dynamic
controllers developed for tendon-driven manipulators. This
could be because of the nonuniform loading for cable actu-
ation contrasting to the high damping and low force actuation
provided by pneumatic actuators. Nonuniform loading occurs
due to the physical interactions between the cable guide and
the cable due to friction and this leads to irregular actuation
of the manipulator DoFs. High damping coupled with low force
actuation reduces overall energy supplied to the system there-
fore reducing the chaotic nature of the manipulator dynamics.

The controller regime to some extent depends on the
sensor availability. For instance, closed-loop configuration
space controllers require vision sensors. Model-based closed-
loop kinematic controllers for pneumatically actuated ma-
nipulators used wire cable potentiometers. This is because of
joint space estimation for pneumatic actuation in not so
straightforward-like rigid robots.

With regard to unexplored fields of research, clear voids are
evident in hybrid control approaches and model-free ap-
proaches for dynamic control. Application of machine learning
for learning the dynamic mapping from the actuator space to
task space/configuration space is a viable method to be in-
vestigated. Similarly, hybrid learning approaches incorporat-
ing both model-based and model-free methods is a highly
promising line of research. In addition, machine learning al-
gorithms incorporating prior knowledge of the system would
also provide a way for faster and more stable learning.73 An-
other overlooked topic is the importance of the low-level
controllers (actuator dynamics) in the overall stability and
response of the higher level control architecture.

Continuum/soft manipulators offer a technological solu-
tion to complex tasks in sensitive environments. Leveraged
by their light weight, compact, and inherently safe structure,
they can be used in various complex scenarios with ele-
mentary control strategies.9,10 Current trends in soft robot are
individual efforts based on novel actuation, design, sensing,
and control technologies for particular applications. How-
ever, an overlooked aspect is the interdependencies of these
elements among themselves and with the environment.7 The
possibility of outsourcing computational burden to the body
(morphological computation) has been widely deliberated

and even experimentally proven74 along with the effect of
sensory feedback.75 In a control perspective, this corresponds
to a zero lag adaptive feedback controller. Exploitation of this
intrinsic controller has been achieved in some cases.5 We
believe that the future evolution of controllers for soft robotic
manipulators would also be in this direction, where the
morphological properties of the complex manipulators would
also be utilized for more accurate, robust, and dexterous
manipulation.
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