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CEPB dataset: a photorealistic
dataset to foster the research on
bin picking in cluttered
environments

Paolo Tripicchio† , Salvatore D’Avella*† and
Carlo Alberto Avizzano

Department of Excellence in Robotics and AI, Institute of Mechanical Intelligence, Scuola Superiore
Sant’anna, Pisa, Italy

Several datasets have been proposed in the literature, focusing on object
detection and pose estimation. The majority of them are interested in
recognizing isolated objects or the pose of objects in well-organized scenarios.
This work introduces a novel dataset that aims to stress vision algorithms in
the difficult task of object detection and pose estimation in highly cluttered
scenes concerning the specific case of bin picking for the Cluttered Environment
Picking Benchmark (CEPB). The dataset provides about 1.5M virtually generated
photo-realistic images (RGB + depth + normals + segmentation) of 50K
annotated cluttered scenes mixing rigid, soft, and deformable objects of varying
sizes used in existing robotic picking benchmarks together with their 3D models
(40 objects). Such images include three different camera positions, three light
conditions, and multiple High Dynamic Range Imaging (HDRI) maps for domain
randomization purposes. The annotations contain the 2D and 3D bounding
boxes of the involved objects, the centroids’ poses (translation + quaternion),
and the visibility percentage of the objects’ surfaces. Nearly 10K separated
object images are presented to perform simple tests and compare them with
more complex cluttered scenarios tests. A baseline performed with the DOPE
neural network is reported to highlight the challenges introduced by the
novel dataset.
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1 Introduction

Robotic manipulation is a complex task typically accomplished by employing a robotic
manipulator and a vision system (DAvella et al., 2023a). Inmost of the existing solutions, the
working pipeline consists of visualizing the scene, understanding the objects’ displacements,
detecting the target, synthesizing a grasping pose to pick the object, planning a collision-
free trajectory, and then grabbing the item.Therefore, vision holds an important role in the
grasping process.The recent trend is to employ deep neural networks (DNNs), especially in
the form of the popular Convolution Neural Networks, at least in one of the phases of the
vision pipeline (Zhao et al., 2019): object recognition, object detection, or grasping point
localization. Although DNNs are appealing since they can learn more complex features
without manual design with respect to traditional local feature descriptors and shallow
architectures, they need a large amount of training data to infer such features. Furthermore,
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FIGURE 1
First row: a camera capture of the real cluttered dataset used as base for the virtual dataset generation. Left: an example of a real full cluttered scene;
Right: an example of a photorealistic full cluttered scene. Second row: example of the information provided for each scene (from left to right): scene
seen by left, middle, and right camera under directional lighting condition; scene seen by middle camera RGB images with spotlighting, and with point
lighting also showing the objects bounding boxes; depth image; normal image; segmentation mask.

supervised learning requires additional time to label training and
testing data that usually consists of images for this kind of problem.

In the recent past, research on manipulation was mainly
performed on flat surfaces like tabletops with well-distinct
and separated objects (DAvella et al., 2022). Practical industrial
scenarios like warehouse automation require working in more
stringent conditions, facing the problems of tight space and clutter.
Picking objects from a bin, also known as bin picking, is an
evident use case and an important logistics application. Therefore,
developing an algorithm able to get accurate pose estimation is
fundamental for solving such kinds of tasks typical of flexible
warehouses and manufacturing facilities in which the poses of
the objects are unknown a priori. However, clutter complicates
the detection of the targets due to multiple occlusions. Nowadays,
scenes containing just the target item can be easily addressed
by most of the existing solutions. However, adding even a few
objects presenting similar colors or visual features can lead such
techniques to fail (Hodan et al., 2018). Increasing the amount
of clutter in the scene drastically changes the results that state-
of-the-art pose estimation algorithms can achieve. Therefore, an
important goal in this ongoing industrial revolution is to make
such algorithms robust to clutter to increase the flexibility of
the next-generation of robots. Estimating the pose of objects
is an active field with important practical implications, and in
the last years, some works (Song et al., 2020; Remus et al., 2023)
have been published showing a margin of improvement for
several aspects.

This work proposes a novel dataset whose peculiarity is the
huge amount of clutter in many of the scenes compared to existing
datasets regarding the same scope. It provides three different
views of the same scene seen under three lighting conditions and
seven High Dynamic Range Imaging (HDRI) maps for domain
randomization purposes. It is designed to be the companion dataset
of the recent benchmark called Cluttered Environment Picking
Benchmark (CEPB) (DAvella et al., 2023b), which presents a set
of objects selected from existing datasets with the purpose of
posing difficulties to the end-effector grasping capabilities and the

perception system. Therefore, the dataset is generated synthetically
using 3D CAD models of household and industrial objects coming
from affirmed benchmarks like YCB (Çalli et al., 2015), ACRV-APC
(Leitner et al., 2017; Correll et al., 2018), and TLESS (Hodan et al.,
2017) to not reinvent the wheel, and to employ existing objects
used in standard manipulation benchmarks. Only very few objects
have been introduced, substituting the ones of the original dataset
with others having the same characteristics to guarantee easy
availability worldwide to buy the physical objects and test real-
world scenarios. The scenes are photorealistic images of objects
inside a clear box generated through the Unity 3D engine with
the support of Flex, a position-based physical simulation library.
Thanks to this peculiar physical simulation, the clutters contain both
rigid, soft, and deformable objects, and the interaction among the
different objects is properly resolved. In addition, by assuming some
simplifications, even objects filled with liquid, thus having complex
internal dynamics, are considered, resulting in realistic rendering.
The level of clutter introduced by the proposed dataset makes it
hard to acquire accurate ground truth concerning detection or pose
estimation in real environments. Therefore, the choice of synthetic
data is justified to overcome such limitations. Figure 1 compares a
real bin-picking scene with all the objects of the dataset (on the left)
with an example of a photorealistic scene from the top-view central
camera (on the right).

Promisingly, the proposed dataset can be helpful for training
and testing model-free neural-network-based vision systems for
object recognition, detection, pose estimation, or grasping point
localization, given the huge number of labeled images. Moreover, it
can be usable by model-based approaches since it makes available
the 3D CAD models of the objects. In particular, for each scene,
the dataset provides the RGB and depth image along with the 2D
and 3D object-oriented bounding box (OOBB), a. k.a. cuboid, of
the involved objects and the segmentation and normal images, as
depicted in Figure 1. Such information is provided in a YAML
file that also contains the transformation (translation and rotation)
between the camera and the ground truth pose of the objects
and the visibility percentage of the objects’ surfaces. Furthermore,
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nearly 10K separated object images are presented to perform
simple tests and compare them with more complex cluttered
scenarios tests.

To show the challenges proposed by the presented dataset that
should be addressed in the near future to foster an improvement
toward autonomous manipulation systems in line with the concept
of Industry 4.0, a baseline test has been conducted to evaluate
the performance of Deep Object Pose (DOPE) (Tremblay et al.,
2018a), which is a state-of-the-art approach based on a neural
network. The results show that the performance of the method
degrades drastically by introducing even a small amount of clutter
in the scene.

The proposed dataset will be distributed publicly, and it will be
available on an online repository1.

The remainder of the work is organized as follows: Section 2
briefly reviews the most used and recent datasets in the field of
vision for manipulation purposes, highlighting the novelty of the
proposed dataset; Section 3 introduces the related benchmark, the
low-level physical simulation engine, and the network used for
the experiments as a baseline to give the proper context for the
proposed dataset; Section 4 describes how the dataset is built and
its characteristics showing some statistics; Section 5 discusses the
results obtained by the DOPE neural network; Section 6 concludes
the work.

2 Related works

The interest in datasets for object detection, recognition,
pose estimation, and grasping pose localization for manipulation
purposes has rapidly grown in recent years, especially with the
new Industrial Revolution and the advent of deep-learning-based
approaches. Good research needs good resources, and deep-
learning-based approaches require a large amount of data for good
performance. Therefore, in these years, many works made available
large databases providing 2D images, point clouds, 3D databases
containing clutters and foreground occlusions, and RGB-D datasets
for 6D pose estimation or object segmentation (Liu et al., 2021;
Selvam Periyasamy et al., 2021).

Hinterstoisser et al. (Hinterstoisser et al., 2013) introduced a
dataset regarding object retrieval and pose estimation focusing
on 15 textureless objects. It provides about 1200 RGB-D test
sequences, including one instance of each object. It is widely
adopted but has many limitations, like constant lighting conditions
and easily distinguishable uncluttered objects located usually in
the center of the image. Later, Brachman et al. (Brachmann et al.,
2014) enriched it with annotated occluded objects. The T-LESS
(Hodan et al., 2017) dataset introduced 30 textureless industrial-
relevant objects with similarities and symmetries in scenes having
varying complexity. It provides 39K training and 10K testing
images coming from a structured light and a time-of-flight RGB-
D camera along with 3D CAD models. ITOOD (Drost et al., 2017)
added objects with reflective surface still concerning industrial
scenarios. It contains 28 objects organized in 800 scenes acquired
by three high-resolution grayscale cameras and two industrial

1 at http://cepbbenchmark.eu

3D sensors and labeled with 3500 rigid 3D transformations. The
BOP (Hodan et al., 2018) benchmark merged the aforementioned
dataset, introducing two additional datasets (TUD Light and
Toyota Light) concerning other interesting perception aspects,
unified their format, and standardized the evaluation procedure.
The Rutgers dataset (Rennie et al., 2015) consists of about 10K
RGB-D images of hand-annotated 6DOF poses concerning 24
mostly textured objects involved in the cluttered warehouse
environment of the Amazon Picking Challenge (APC) held in
2015 (Correll et al., 2018). The dataset also provides the 3D mesh
models of the objects. Similarly to the scope of the proposed
work, it is aimed to test the perception system during pick and
place tasks. However, the Rutgers dataset focuses on picking
objects from a shelf while the target of the proposed dataset
is bin picking with a higher level of clutter. Very recent works
like (Denninger et al., 2019; Morrical et al., 2021) released some
general frameworks to help generate photorealistic datasets virtually
annotated developed with different programming languages and
employing other engines with respect to the ones adopted by
the presented work. In addition, they do not provide all the
information proposed in this dataset for the purpose of bin
picking and do not allow the simulation of all the physical
interactions with soft, deformable, and objects containing liquids,
which are among the new challenges for robotic grasping and
manipulation.

The proposed dataset consists of 50K annotated scenes with at
most forty objects per scene providing RGB, depth, normal, and
segmentation images with 2D and 3D bounding boxes, translation,
and quaternion as ground truth for each of the involved objects, and
the objects’ surfaces visibility percentage. The physical simulation
reproduces realistic scenarios containing rigid, soft, deformable
objects, and objects containing liquids. Furthermore, intense light
variation and the use of multiple HDRI maps allow for domain
randomization. Table 1 reports the main differences with other
existing datasets.

3 Background

This section provides some background information to give
a proper context for the proposed dataset, introducing the
Cluttered Environment Picking Benchmark (CEPB) (DAvella et al.,
2023b) that explains some of the design choices behind
the dataset generation and structure, the Flex simulation
engine used as low-level during the generation process,
and the key properties of the DOPE algorithm used as
baseline.

3.1 CEPB benchmark

The CEPB Benchmark involves the use of 40 objects selected
from existing datasets. The characteristics of the items were taken
into account during the selection process, evaluating the difficulty
that different gripper typologies and vision systems may have in
grabbing and perceiving them in cluttered situations, respectively.
The protocol guarantees repeatability and comparability but leaves
some degree of randomness to emulate the unpredictability of
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TABLE 1 Comparison with existing datasets.

Dataset # Objs # Frames Segmentation Normals % Visibility 3D poses Full
rotation

Bbox
coords

Occlusion Scene
variation

Light
variation

Soft and
fluid

Real

Linemod
(Hinterstoisser
 et al., 2013)

15 18k ✗ ✗ ✗ ✓ ✓ ✗ no no no ✗

Rutgers APC
(Rennie
 et al., 2015)

24 10k ✗ ✗ ✗ ✓ ✗ ✗ medium no no ✗

T-Less
(Hodan
 et al., 2017)

30 10k ✗ ✗ ✗ ✓ ✓ ✗ medium low no ✗

ITODD
(Drost
 et al., 2017)

28 800 ✓ ✗ ✗ ✗ ✓ ✗ low no no ✗

HomebrewedDB
(Kaskman
 et al., 2019)

33 17k ✗ ✗ ✗ ✓ ✓ ✗ high small small ✗

YCB-Video
(Xiang
 et al., 2017)

21 134k ✗ ✗ ✗ ✓ ✓ ✓ low medium low ✗

TUD Light
(Hodan
 et al., 2018)

3 11k ✓ ✗ ✗ ✓ ✓ ✗ no high high ✗

Synthetic

HOPE
(Tyree
 et al., 2022)

28 32k ✓ ✗ ✓ ✓ ✓ ✓ high medium medium ✗

FAT
(Tremblay
 et al., 2018b)

21 60k ✓ ✗ ✓ ✓ ✓ ✓ small high medium ✗

CEPB (ours) 40 50k ✓ ✓ ✓ ✓ ✓ ✓ extreme high extreme ✓

industrial environments thanks to the evaluation metric that
considers the difficulty of the clutter. Therefore, forty objects
(see Figure 2) belonging to the YCB dataset, the ACRV picking
benchmark from the Amazon Picking Challenge, and the T-LESS
dataset have been chosen. They can vary in size, shape, and weight
and have diverse surface materials and texture properties. There
are objects with reflective, perforated, or symmetric surfaces that
are challenging for the vision; others have deformable surfaces
or strong orientation constraints and shift their center of mass
when manipulated. All these problems are accentuated in the
clutter because accurate segmentation and stable grasp are more
difficult.

The objects are divided into four subsets of ten items
each, with an increasing level of difficulty from Subset 1
to Subset 4. It is worth noticing that the difficulty of each
subset is the same for every gripper typology in order to not
privilege a gripper over the other depending on the nature
of the objects. The difficulties have been assigned through a
consensus protocol disseminating questionnaires among several
colleagues.

The benchmark has a modular design and is organized in
Stages that can have intermediate phases. In principle, Stages

are meant to represent an industrial-relevant task, which is
identified by the final phase test, while the intermediate phases of
each Stage aim at evaluating a specific sub-problem (perception,
planning, control) of the manipulation task before getting to the
final phase test, which puts all the intermediate skills together
for different objectives. For example, Stage1 concerns pick and
place of non-sequential objects in a cluttered environment
which have been addressed by the work in (DAvella et al.,
2023c) as the baseline for the benchmark; Stage2 deals with
pick and place of non-sequential unknown objects in a cluttered
environment to evaluate the generalization capabilities of
the manipulation system; Stage3 regards pick and place of
sequential objects in a cluttered environment mimicking a
possible application of the manipulation system in an industrial
environment in which the robot interacts with other devices
like PLCs, receiving information on which target to pick at
each time.

The user can apply for each Stage independently and even
for a specific intermediate phase using one of the subsets
or the full dataset. Therefore, the website has a leaderboard
for every component of the Stages, separating the results
per subset.
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FIGURE 2
The set of forty objects used in the virtual dataset to generate the cluttered scenes. The objects are separated into four different subsets represented by
orange, green, blue, and magenta borders. The original dataset from which the object has been selected is reported as a letter in the right bottom
corner with this meaning: A) ACRV, Y) YCB, T) T-LESS, C) CEPB.

3.2 Flex physical simulation

Flex (Miles et al., 2014) implements a unified particle
representation for all types of objects, including gas, solids, liquids,
deformable objects, and clothes, based on a real-time position-
based dynamics method (PBD) (Müller et al., 2007). The basic
building blocks for all the objects’ types of Flex are particles,
which allow reducing the number of collision types to process
and avoiding complex algorithms for generating contacts between
mesh-based representations. Furthermore, in such a way, the
simpler interaction among the particles can be resolved in parallel
using the GPUs. The position-based dynamics solves a system
of non-linear equality and inequality constraints to find the
minimum change in the kinetic energy satisfying the constraints,
consistently with the principle of least constraint of Gauss. PBD
finds the minimum resolving a sequential quadratic programming
problem: i.e., it linearizes the constraints and solves a sequence
of locally constrained quadratic minimizations. With respect
to traditional force-based dynamics methods that accumulate
internal and external forces at the beginning of each time step
and relate the forces to the accelerations throughout Newton’s
second law, the position-based approach has direct control over
the positions of objects or the vertices of the meshes without
the need of integrations, avoiding overshooting and energy gain
problems. Therefore, PBD gains stability, robustness, and speed,
keeping the visual results plausible, with the only limitation
being that the input mesh should be a manifold. For a detailed
overview of Flex and PBD, the authors kindly advise checking the
reference papers.

3.3 Deep Object Pose

Deep Object Pose (DOPE) (Tremblay et al., 2018a) is a model-
based approach that only uses an RGB image as input. First,
it estimates the belief maps of 2D keypoints of all the objects
in the image coordinate system and then the 6D pose of each
object instancewith a standard perspective-n-point (PnP) algorithm
on the peaks extracted from these belief maps. The final step
uses the detected projected vertices of the bounding box, the
camera intrinsic parameters, and the object dimensions to recover
the final translation and rotation of the object with respect to
the camera. All detected projected vertices are used as long as
at least four vertices of the cuboid are detected. The network
can be trained on synthetic and photo-realistic data without the
need for handcrafted labels on real data and provides satisfactory
results on real objects thanks to the domain randomization
technique.

4 CEPB dataset

The dataset uses the objects’ model to render virtual synthetic
scenes in Unity 3D, employing the Nvidia Flex engine for physics
simulation for each subset of the CEPB Benchmark. Whenever
the model of the object was not available or quite noisy in
its original dataset, a custom 3D model was generated. The
objects were modeled and textured in Blender, and for simple
geometric shapes, the combination of CADmodeling and texturing
gives results resembling the quality of more involved techniques
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FIGURE 3
Left: setup of the virtual scene. The middle RGB-D camera is pointing down from a 1.25 m height. The visible workspace is contained in an 80 × 60 ×
35 cm volume that is rendered on a 2048 × 1536 pixels image. The other two cameras are shifted on the sides of the middle camera by 3 cm each to
obtain a stereo pair with a binocular distance similar to the human eyes. The Left and Right cameras are also shifted on the back and slightly tilted to
obtain a visual that is not perpendicular to the working table, still looking at the center of the bin. Right: pipeline of the dataset creation. A clear box is
generated over a table. Objects are randomly spawned over the box and left to fall inside it. Physical simulation is performed with the Flex engine to
simulate the interaction and collisions within the objects. For each of the cameras, a set of images is generated with varying lighting and mapping.

FIGURE 4
Distribution of each object in Subset two showing the x− y centroid coordinates.

(Narayan et al., 2015). Furthermore, when not aligned, translations
and rotations were applied to center the coordinate frame at the
object’s centroid and to align the coordinate axis with those of
the objects.

For each subset, 300K images (RGB, depth, normal, and
segmentation) are generated, for a total of 1500K set of images,
including 300K scenes containing the overall dataset of 40 objects.
Each scene, seen by three cameras, is subject to three lighting

conditions (directional light, a point light, and a spotlight) and seven
different HDRI maps used for domain randomization purposes.
A second randomization step is performed on half the dataset
concerning the color, intensity, and direction variation of the scene
lights and the bin color. For the four subsets, the workspace consists
of a 292mm× 429mm× 149mm clear box (the one used by the YCB
dataset), while for the overall set of objects, the clear box is of
390mm× 560mm× 280mm size (standard IKEA box). In both cases,
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FIGURE 5
Visibility of the forty objects in each subset and in the full dataset over 10K frame each. Light color bars indicate highly visible objects (occlusion less
than 25% of the item’s volume), while solid color bars represent highly occluded objects (occlusion more than 75% of the item’s volume).

one virtual camera has been placed at a 1.25m height above the
workspace level, looking downward at the workspace containing
the cluster of objects, and the other two are rotated with +15° and
−15° respect to the middle one, looking at the center of the bin
(see Figure 3). A schematic of the elements in the dataset generation
pipeline is reported in Figure 3. In each run, every 2 s, one item

at a time in the specific set falls in the clear box starting at the
height of 25 cm from the bin with a random position that allows
the object to always fall inside the clear box. The random spawn
and the generation rate avoid the intersection of the objects at the
starting time. Then, they can collide with each other, thanks to the
Flex physics engine. Therefore, the generation time is about 30 s
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FIGURE 6
Left: interaction between a glove and a Cheez-it cracker box. When the glove falls over the box its shape is deformed. The last two images on the right
show the particle representation of the cracker box and the deformed glove state. Right: liquid dynamic simulation. The first image is the
representation of the sloshing dynamics. The second and last one is the results of the sloshing dynamic with the developed shader.

TABLE 2 DOPE results: the values reported in the table are an average among all the 5K frames for each object.

Object n detected n depth
error

n low
visibility

AR_vsd AR_mssd AR_mspd

Cracker 4,954 206 549 0.70 0.78 0.83

Tuna 593 239 2036 0.06 0.02 0.09

Mustard 4,035 576 1698 0.41 0.52 0.71

Tomato
Soup

5363 1245 1056 0.25 0.40 0.66

Banana 1984 961 2,319 0.15 0.10 0.22

Scissors 1366 464 2,470 0.10 0.08 0.24

Clamp 1902 553 2,257 0.17 0.07 0.15

Mug 286 156 565 0.08 0.01 0.03

Foam 829 568 1514 0.03 0.01 0.06

Meat Can 4,101 997 1367 0.29 0.37 0.71

per scene for each subset (about 3 s per object) using an NVIDIA
GeForce RTX 3090 graphic card. For every scenario, the following
information is provided for each object:

• 3D object-oriented bounding box in world-space and screen-
space coordinates as a list of eight points enclosing the objects
in the scene;
• world (camera) coordinates as a translation vector (3D
centroid) and a quaternion;
• 2D centroid in screen-space coordinates;
• visibility percentage, computed as the number of visible pixels
over the whole object projected space in its pose. This value
is obtained during the rendering stage taking advantage of a
custom compute shader that can access fragment data.

The RGB and depth images are provided in 2K resolution along
with the intrinsic camera parameters. Figure 1 shows an example
of a subset scene seen by the three different points of view and
under the three different lighting conditions and the normals and
segmentation images.

In each subset, the statistical distribution of the pose covered
by every object follows an almost uniform distribution profile
over the total amount of generated frames. Figure 4 depicts the
distribution of Subset two considering the x− y centroids of each

object. The objects’ distribution mainly differs due to their relative
shape and size, and the interaction constraints with the enclosing
box. The four subsets put the objects in the smaller clear box,
while the full dataset uses the larger one to cope with the different
amounts of clutter volume. Figure 5 gives an insight into the
different levels of difficulty needed to identify each object in
the various scenarios due to the diverse clutter percentage. In
particular, the solid color bars represent the number of frames
in which the specific object is visible for less than 25% of its
volume (highly occluded), while lighter color bars show the number
of occurrences in which the object is visible for more than 75%
(highly visible).The visibility of each object has been computed by a
custom fragment shader pass during the rendering phase of dataset
generation.

Thanks to the flexibility of the method, the dataset presents
cluttered scenarios that mix rigid, soft (like “Kong Toy”), and
deformable (like “Glove” or “t-shirt”) objects. Figure 6 (left) shows
the visual and physical representations of two objects during a
collision interaction. From a technical point of view, the simulation
of a stable interaction within multiple objects is not straightforward,
and considering the coexistence of rigid, soft, deformable objects,
and fluids, the proposed dataset is unique. Even in a PBD physical
simulation, when a large number of objects share the same
environment in a cluttered scenario, there is the need to simplify
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TABLE 3 Progressive Clutter Study: DOPE performance on progressive scenes containing from 1 to 10 objects.

# Object 1 2 3 4 5 6 7 8 9 10

AR_vsd 0.82 0.74 0.42 0.37 0.31 0.27 0.25 0.24 0.23 0.22

objects’ shapes and limit the number of collision particles to properly
solve the physical iteration steps. In particular, in the development
of the dataset, all the object meshes have been optimized to
improve the physical computation capability. In some cases, a
novel geometrical shape has been designed to reduce the physical
interaction efforts.

In order to simulate objects filled with liquid, thus presenting
complex internal dynamics, like the plastic bottles involved
in the dataset, a single, damped pendulum (Jan et al., 2019;
Gattringer et al., 2022) with length l, mass m, damping constant
d, and translational acceleration p̈ has been implemented directly
during object rendering with a custom shader. Such a solution
can simplify the computational complexity of Flex in handling
confined liquids and provide a more satisfying visual rendering.
In particular, a fragment shader is responsible for the visual
representation of the liquid inside the bottle according to the
object’s motion, and a shadow caster pass generates corresponding
shadows and depth maps.The result can be appreciated on the right
of Figure 6.

5 Experiments and discussion

TheDOPEneural network has been used to assess the difficulties
of the proposed dataset. In particular, the experiments have been
performed against subset 1, using the point of view of the central
camera under the directional lighting condition.

Table 2 reports the results of the DOPE neural network on the
same subset concerning the following metrics:

• n_detected is the number of objects detected in the various
frames. It can be larger than 5000 (the number of frames) since
the baseline may look for false positive detection, recognizing
twice the same object.

• n_depth error is the number of times the baseline wrongly
estimated the depth of the object, going beyond the depth of
the box.
• low visibility is when the visible surface percentage of the items
is less than 10% of the total surface, making the pose estimation
very difficult. Therefore, depending on the dimension of each
object and the object’s arrangement, such a value can be very
different. Roughly speaking, it is more likely that small objects
may have higher low visibility metrics.
• Visible Surface Discrepancy (vsd) gives the average of pixels
belonging to the estimated and ground-truth visibility masks
of the distance maps obtained by rendering the object model
in the estimated and ground-truth pose that are under a given
threshold. It is worth noticing that VSD treats indistinguishable
poses as equivalent by considering only the visible object
part. It can be seen as an extension of the Complement over
Union (cou), which is the cost function related to the popular
Intersection over Union score used for measuring the accuracy
of detection and segmentation methods in the 2D domain. The
fraction of annotated object instances, for which a correct pose
is estimated, is referred to as recall, and for the experiments,
AR_vsd is the average of recall rates obtained ranging the
misalignment tolerance from 5% to 50% of the object diameter
with a step of 5% and the threshold of correctness ranging from
0.05 to 0.5 with a step of 0.05.
• Maximum Symmetry-Aware Surface Distance (mssd) provides
the maximum distance between the model vertices taking
into account the set of global symmetry transformations.
Such a metric is relevant for robotic manipulation, where
the maximum surface deviation strongly indicates the
chance of a successful grasp. For the experiments, AR_
mssd is the recall of maximum symmetry-aware surface
distance error.
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• Maximum Symmetry-Aware Projection Distance (mspd) is
the 2D equivalent of the previous metric using the 2D
projection function. Compared to the 2D projection (proj),
such a metric considers global object symmetries and adopts
the maximum distance in favor of the average in order
to increase its robustness against the sampling of mesh
vertices. For this reason, the alignment along the optical
(Z) axis is not considered, and the metric measures only
the perceivable discrepancy. It is relevant for augmented
reality applications and suitable for evaluating RGB-only
methods, for which estimating the alignment along the
optical axis is more challenging. For the experiments, AR_
mspd is the recall of maximum symmetry-aware projection
distance error.

The Cheez-it cracker box obtained the best performance on all
the metrics and was not detected only in 64 scenes even though the
object had low visibility, i.e., less than 10%, in 549 scenes. However,
the estimations of the network were out of the feasible depth limit
in 206 scenes. Similarly, the mustard bottle got good performance
compared to all the other items. The results can be explained by the
fact that the Cheez-it cracker box and the mustard bottle are the
biggest objects in the scenes with a good texture to be recognized
even in case of medium occlusions. For all the other objects, the
number of detections decreased significantly, and for the detected
scenes, the svd metrics are greater than 0.5 with a high percentage
of out-of-feasible depth range estimations compared to the low
visibility conditions. It is worth noticing that even if the meat-can
has a good detection rate, the vsd metric is poor, along with a great
depth range error. In addition, the tomato soup has been detected
more times than required contributing to lowering its performance,
as the number of detections is greater than the total number
of scenes.

5.1 Progressive clutter study

To better understand the obtained results, a study collecting the
AR_vsd metric for progressive scenes presenting one to ten objects
is conducted. In particular, 100 images for each number of objects in
the scene are used, and the metric is then averaged. Table 3 depicts
the degradation of performance, showing that DOPE can handle a
small amount of clutter, working quite well up to three objects, and
then starts failing or becoming unprecise due to increasing clutter.

6 Conclusion

This paper presents the companion dataset of the CEPB
benchmark for bin-picking in heavily cluttered scenes. The aim of
the dataset is to provide massive and rich data for training object
detection, pose estimation, or grasping neural networks for the
future challenges required by the industrial 4.0 and 5.0 paradigms.
In particular, it provides about 1500K of virtually generated photo-
realistic images of 50K annotated cluttered scenes mixing rigid,
soft, and deformable objects of varying sizes under three different
points of view and three light conditions and seven HDRI maps for
domain randomization purposes.The objective of the dataset was to

provide a substantial but manageable size of multiple modalities of
photorealistic and fully annotated frames presenting different levels
of clutter difficulties, and that would be future-proof, i.e., that will be
solved in the next future but not solved by the present state-of-the-
art techniques.Therefore, a baseline with the DOPE neural network
has been provided using the objects belonging to subset 1, showing
the degradation of the performance of this state-of-the-art method
passing from a single object scenario to a clutter with 10 objects.

Since the experiments showed a degradation of the performance
of a current state-of-the-art network related to the amount of clutter
proposed by the CEPB dataset, it would be interesting in future work
to train such a network with the proposed dataset to let the network
understand during training how to handle such complex scenarios.
Then, the next step would be to conduct a more in-depth analysis of
the performance of theDOPEnetwork andother 6Dpose estimation
networks exploiting different principles at different levels of clutter
before and after the training on the CEPB dataset to measure the
boost in performance the proposed dataset may enable for future
robotic grasping applications.
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