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Abstract—In this paper, adaptive beamforming techniques
are applied to photonics-based coherent multiple-input multiple-
output (MIMO) radars with widely separated antennas for
obtaining high target resolution and sidelobe suppression capa-
bilities in the MIMO ambiguity function (MIMO-AF). Among
the available MIMO beamforming techniques, data-independent
and data-dependent approaches do exist. In this paper, one esti-
mation technique per family is analyzed (i.e., data-independent,
data-dependent without array steering vector errors and data-
dependent with array steering vector errors). More specifically,
the least-squares estimator, the Capon and the robust Capon
beamformers are investigated.

Key performance indicators (KPIs) are identified for describ-
ing the resolution and sidelobe suppression capabilities of the
proposed techniques. Simulations are performed to evaluate the
KPIs from the MIMO-AF under non-ideal conditions, such as
amplitude mismatches among the radar channels and antenna
positions affected by random errors. The advantages and disad-
vantages of the proposed adaptive beamforming techniques are
illustrated.

Index Terms—Microwave Photonics, Photonics-based Radar,
MIMO Radar, Distributed Radar, Coherent MIMO Radar, Adap-
tive Beamforming, Least-Squares, Capon Beamformer, Robust
Capon Beamformer.

I. INTRODUCTION

Since one of the first studies appeared in the late 90′s
[1], multistatic radars have started attracting ever-growing
attention beyond traditional monostatic systems, thanks to the
possibility to observe a target from multiple viewpoints, and
to increased robustness against electronic countermeasures.
Later, the idea has been better articulated into a more network-
oriented approach [2], borrowing from the world of wireless
communications the concept of multiple-input multiple-output
(MIMO) system.

In MIMO radars, it is possible to distinguish between
systems with co-located antennas [3] and systems with widely

This work was partially funded within the project COSMOS by the FISR
funding scheme, Italian Ministry of University and Research.

Fig. 1. MIMO radar with widely separated antennas formed by one central
unit (CU), acting as the fusion centre, and M transmit (TX) and N receive
(RX) remote antennas.

separated antennas [4]. These latter systems employ multiple,
spatially distributed transmitters (TXs) and receivers (RXs)
driven by one central unit (CU), as depicted in Fig. 1.

Thus, by employing multiple angles of observation, MIMO
radars with widely separated antennas achieve improved target
detection performance thanks to radar cross section (RCS)
diversity [5], allow the detection of slow-moving targets by
exploiting Doppler estimates from multiple directions [6], and
can grant high-resolution target localization [7]. Unfortunately,
to fully take advantage of these features, high system complex-
ity, fine time and phase synchronization, and large capacity
communication links are required.

In this context, microwave photonics (MWP) has emerged
as a possible enabling technology for coherent MIMO radars
with widely separated antennas [8]–[11]. As a matter of
fact, two recent EU-funded projects, i.e., RANGER [12] and
ROBORDER [13], have investigated the potentialities of this
technology in the field of maritime border security and search-
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and-rescue (SaR) operations.

Starting from the analysis presented in [14] for co-located
systems, this paper investigates the possibility to apply adap-
tive beamforming techniques also to coherent MIMO radars
with widely separated antennas for obtaining high-resolution
target localization, under ideal and non-ideal conditions (e.g.,
unknown amplitude mismatch among the channels, antenna
positions knowledge affected by errors).

The available adaptive beamforming techniques can be cate-
gorized into data-independent and data-dependent approaches.
The least squares (LS) method belongs to the first category
[14]. A further categorization can be made of data-dependent
beamforming algorithms, whether there are, or not, array
steering vector errors [14]. In absence of array steering vector
errors, it is possible to mention the Capon [15], the amplitude
and phase estimation (APES) [16], the combined Capon and
APES (CAPES) [17], as well as the combined Capon and
approximate maximum likelihood (CAML) [18] algorithms.
In presence of array steering vector errors, the robust Capon
beamformer (RCB) [19], [20], and the doubly constrained
robust Capon beamformer (DCRCB) [21] can be applied.

In this paper, only one estimation technique per family will
be analyzed (i.e., data-independent, data-dependent without
array steering vector errors, and data-dependent with array
steering vector errors): the LS, the Capon and the RCB
estimators. Following the analysis presented in [22], relevant
key performance indicators (KPIs) are used for evaluating the
effectiveness of the proposed techniques.

The paper is organized as follows. In Section II, the adaptive
beamforming techniques for MIMO radar are described, start-
ing from the MIMO signal model. System non-idealities are
introduced in Section III, together with mitigation techniques.
In Section IV, the proposed beamforming algorithms are ana-
lyzed by means of computer simulations. Finally, conclusions
and perspectives are provided in Section V.

II. ADAPTIVE BEAMFORMING FOR MIMO RADAR

As described in [4], the standard techniques for MIMO
radars are based on non-coherent MIMO processing, where the
system works in search mode, and coherent MIMO processing,
where the system works in image mode, with the possibility of
obtaining resolution beyond the one granted by the waveform
bandwidth. In MIMO radars with co-located antennas, by
transmitting independent waveforms via different antennas,
the echoes due to targets at different locations result linearly
independent of each other. Even more so, in MIMO radars
with widely separated antennas, which also exploit geometric
diversity, this condition may allow, as in case of co-located
systems, the direct application of data-independent and data-
dependent adaptive beamforming techniques [14].

A. Signal Model

The received signal matrix can be written as [14]:

X = aRX (θ)β (θ) atTX (θ)S + Z, (1)

where:

• X ∈ CN×L: RX signal matrix;
• M/N : arbitrarily located TX/RX antennas;
• L: number of samples;
• aRX (θ) ∈ CN×1: RX antenna steering vector;
• aTX (θ) ∈ CM×1: TX antenna steering vector;
• S = [s1, . . . , sM ]

t: TX signal matrix;
• sm ∈ CL×1: generic TX signal at the m-th antenna

element, with m = 1, 2, . . . ,M ;
• β (θ) ∈ C1×1: complex amplitude of the reflected signal

from θ, proportional to the RCS of the focal point θ;
• Z ∈ CN×L: residual noise term (e.g., un-modeled noise,

interference from targets, jamming).
For conciseness, the dependency of aRX (θ) and aTX (θ)

from θ will be omitted.

B. Adaptive Beamforming Techniques

1) LS Estimator: A simple way to estimate β (θ) in eq. 1
consists of using the LS method [14]:

β̂LS (θ) =
aHRXXSHa∗

TX

L∥aRX∥2
[
atRXR̂SSa∗TX

] , (2)

with R̂SS = SSH/L and where (.)
H , (.)∗ and (.)

t denote the
conjugate transpose, the complex conjugate and the transpose,
respectively, ∥.∥ denotes the Euclidean norm, and R̂SS is the
correlation matrix of the waveforms. However, being a data-
independent beamforming-type method, the LS method suffers
from high sidelobes and low resolution.

2) Capon Estimator: The Capon estimator is a data-
dependent approach, consisting of two main steps. The first
is the Capon beamforming step [15]. The second is an LS
estimation step, which involves a matched filtering procedure.
The Capon estimate of β (θ) is given as follows:

β̂Capon (θ) =
aHRXR̂

−1
XSHa∗TX

L
[
aHRXR̂

−1
aRX

] [
atTXR̂SSa∗TX

] , (3)

where R̂ = XXH/L is the sample covariance of the observed
data samples.

3) RCB Estimator: The previous methods assume that the
transmitting and receiving arrays are perfectly calibrated, i.e.,
aTX and aRX are accurately known as functions of θ. The
RCB estimator can be successfully applied to a MIMO radar
system that suffers from calibration errors [19].

In fact, the RCB algorithm allows aRX to lie in an uncer-
tainty set. Without loss of generality, we assume that aRX
belongs to the uncertainty sphere ∥aRX − āRX∥2 ≤ ϵ, with
both āRX , i.e., the nominal receiving array steering vector, and
ϵ being given. It is worth noticing that the calibration errors in
aTX will also degrade the accuracy of the estimate of β (θ).
However, the LS approach of the Capon beamformer, see eq.
2, is quite robust against calibration errors in aTX . By using
the Lagrange multiplier methodology, as described in [19], it
is possible to write:

âRX (θ) = āRX (θ)−
[
I− λ (θ) R̂

]−1

āRX (θ) , (4)
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where I denotes the identity matrix. The Lagrange multiplier
λ (θ) is obtained as the solution to the constraint equation [19]:

∣∣∣
∣∣∣
[
I− λ (θ) R̂

]−1

āRX (θ)
∣∣∣
∣∣∣
2

= ϵ, (5)

Once the Lagrange multiplier λ (θ) has been determined,
âRX (θ) is obtained from eq. 4. To eliminate a scaling ambi-
guity discussed in [19], it is necessary to scale âRX (θ) such
that ∥âRX (θ) ∥2 = N . Replacing aRX in eq. 3 with âRX
yields the RCB estimate of β (θ).

III. SYSTEM NON-IDEALITIES

The parameter which describes the amplitude mismatch
among the radar channels is the standard deviation of the
normalized amplitude error (KA). The parameter which de-
scribes the not-perfect knowledge of the sensor positions is
the standard deviation of the normalized displacement error
(KD). Both parameters can be calculated as:

KA =
σA
A
,KD =

σD
λRF

, (6)

where A is the signal amplitude and σA is the amplitude
variance, and where λRF is the signal wavelength and σD
is the sensor displacement standard deviation.

IV. ALGORITHM ANALYSIS

To understand the effectiveness of the proposed techniques,
an extensive analysis of all the estimators is performed under
different operational conditions, often diverging from the ideal
conditions, aimed at estimating the target locations and the
reflected signal amplitudes β (θ). The analysis is conducted
comparing the LS, Capon and RCB algorithms through both
non-coherent and coherent MIMO processing approaches.

A. Simulations in absence of system non-idealities

In case of no amplitude and no antenna displacement
errors, the in-door experimental scenario described in [23] is
replicated, with the following system setup parameters:

• M = 2 TXs and N = 4 RXs over a 3 m baseline;
• Target distance from the baseline center equal to 4 m;
• Frequency fRF = 10 GHz, bandwidth B = 1 GHz;
• Phase noise due to signal distribution over optical fiber

links modelled according to [24].
Results relative to the ambiguity functions are depicted in

Fig. 2 for all the proposed estimators. Here, it is possible to
highlight the strong similarities between the coherent MIMO
processing, see Fig. 2 (b), and the LS, see Fig. 2 (c), processing
outputs. As remarked in [4], [14], they both derive from
mathematical formulations of the matched filter. Under ideal
operative conditions, the Capon and RCB estimators, see Fig. 2
(d,e), show very similar results. Here, in fact, the amount and
intensity of sidelobes has significantly diminished, together
with a remarkable improvement of the cross-range resolution.
The reason behind these improvements should be found in the
data-dependent nature of the two algorithms [14], [19].

B. Simulations in presence of system non-idealities
In this analysis, the effects of amplitude and antenna dis-

placement errors are investigated, see Section III. For the
simulations, the same system parameters described in Section
IV-A are considered, with the exception of the target distance
which is now 30 m from the baseline center. Both KA and KD

parameters vary in the set {1/10000, 1/1000, 1/100, 1/10, 1}.
For each coefficient value, 100 Monte Carlo simulations are
run, in which the errors are randomly generated.

The effects of the two types of error are quantitatively
evaluated in a separate manner considering the following KPIs:
range (∆R) and cross-range (∆XR) resolution, root mean
square error (RMSE) of the estimated target position, peak-to-
maximum sidelobe ratio (PMSR) and peak-to-average sidelobe
ratio (PASR), see [22].

According to the analysis presented in [24], the effect of
phase noise due to signal distribution over optical fiber links
can be neglected for fiber spans shorter than 20 km.

1) Analysis of range and cross-range resolutions: Results
of the analysis on ∆R and ∆XR are plotted in Fig. 3
and Fig. 4, respectively. As depicted in Fig. 3, in the ideal
case, ∆R is approximately 0.18 m, i.e., very close to the
theoretical value of 0.15 m given a signal bandwidth of 1 GHz.
All the proposed techniques achieve very similar results, see
Fig. 3(a-d). Interestingly, with increasing error, ∆R apparently
diminishes. This unexpected result requires further analysis.

In the ideal case, ∆XR is approximately 0.18 m at 30 m
range (i.e., angular resolution of 0.35◦) for the coherent MIMO
and LS estimator outputs, see Fig. 4(a,b). When the Capon and
RCB estimators are used, see Fig. 4(c,d), ∆XR diminishes to
0.06 m at 30 m (i.e., 0.12◦).

Against signal amplitude errors, ∆R and ∆XR worsen
for KA > 1/10. These effects are more evident on cross-
range resolution when the Capon and RCB estimators are
employed, see red curves in Fig. 4(c,d). Against antenna
position errors, ∆XR is more affected than ∆R, especially
when data-dependent beamformers are used, meaning that
these techniques are very sensitive to both types of error.

2) Localization accuracy: Results of the analysis on lo-
calization root-mean squared error (RMSE) are plotted in
Fig. 5. In the case of coherent MIMO and LS estimators,
signal amplitude errors have almost no effect on the KPI,
see red curves in Fig. 5(a,b), whereas antenna position errors
start having effect on it when KD > 1/10, see yellow curves
in Fig. 5(a,b). Instead, for the Capon and RCB estimators,
RMSE worsens for KA > 1/10 and KD > 1/100, see red
and yellow curves in Fig. 5(c,d), respectively.

3) Sidelobe suppression capability: Results of the analysis
on PMSR and PASR are plotted in Fig. 6 and Fig. 7,
respectively. The values of PMSR is around 2 dB for the
coherent MIMO and LS estimators, see Fig. 6(a,b). The
effect of signal amplitude and antenna displacement errors
is ≤ 1 dB. Again, Capon and RCB beamformers, which
under ideal conditions grant PMSR ≈ 13 dB, are very
intolerant to both amplitude and antenna displacement errors,
see Fig. 6(c,d). In fact, when KA or KD are large, the two
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Fig. 2. Analysis of the adaptive beamforming algorithms in the absence of system non-idealities and one target at 4 m distance from the baseline: (a)
non-coherent MIMO output, (b) coherent MIMO output, (c) LS estimator, (d) Capon estimator, (e) RCB estimator.

Fig. 3. Analysis of range resolution (∆R) at the varying of KA/KD

parameters: (a) Coherent MIMO, (b) LS estimate, (c) Capon beamformer,
(d) RCB estimate.

Fig. 4. Analysis of cross-range resolution (∆XR) at the varying of KA/KD

parameters: (a) Coherent MIMO, (b) LS estimate, (c) Capon beamformer, (d)
RCB estimate.

Fig. 5. Analysis of root mean square error (RMSE) at the varying of
KA/KD parameters: (a) Coherent MIMO, (b) LS estimate, (c) Capon
beamformer, (d) RCB estimate.

data-dependent estimators almost reach the performance of the
coherent MIMO and LS estimators.

Fig. 6. Analysis of peak-to-maximum sidelobe ratio (PMSR) at the varying
of KA/KD parameters: (a) Coherent MIMO, (b) LS estimate, (c) Capon
beamformer, (d) RCB estimate.

Similar comments can be made out of the analysis of
PASR in Fig. 7. The coherent MIMO and LS estimators grant
almost 20 dB (18 dB of the LS), even in the presence of signal
amplitude and antenna displacement errors, see Fig. 7(a,b).
The Capon and RCB beamformers achieve around 34 dB in
the case of ideal conditions, see Fig. 7(c,d). However, their
performance worsen when KA or KD are greater than 1/100,
leading to PASR values similar to those achieved by coherent
MIMO and LS estimators.

Fig. 7. Analysis of peak-to-average sidelobe ratio (PASR) at the varying
of KA/KD parameters: (a) Coherent MIMO, (b) LS estimate, (c) Capon
beamformer, (d) RCB estimate.

V. CONCLUSION

In this paper, adaptive beamforming techniques have been
applied to photonics-based coherent MIMO radars with widely
separated antennas. Non-ideal operative conditions have been
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considered, such as amplitude mismatch among the radar
channels, antenna positions knowledge affected by errors.

Both data-independent and data-dependent MIMO beam-
forming techniques have been considered. More specifically,
the LS, the Capon and the RCB estimators have been presented
and analyzed. Simulations have been performed to analyze
the effectiveness of the proposed methods in close-to-reality
operative conditions.

Among all the analyzed algorithms, Capon and RCB clearly
perform better than LS and coherent MIMO outputs, in terms
of cross-range resolution, which has improved by a factor of
3, and in terms of PMSR and PASR, which have improved by
more than 10 dB each. Conversely, the data-dependent nature
of Capon and RCB estimators is also the reason why they are
much more sensitive to non-idealities than coherent MIMO
and LS estimators, leading to even worse performance under
certain particularly detrimental conditions.

For this reason, it is necessary to implement post-processing
techniques for mitigating, not only array calibration errors,
but also antenna positioning errors, as well as synchronization
errors among the radar channels if the fiber span lengths are
in the order of tens of kilometers. These issues are currently
under further investigation.
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