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Integration of rate and phase codes by
hippocampal cell-assemblies supports
flexible encoding of spatiotemporal context

EleonoraRusso 1,2,3 , NadineBecker4,6, AleksP. F. Domanski4, TimothyHowe4,
Kipp Freud5, Daniel Durstewitz 2,7 & Matthew W. Jones 4,7

Spatial information is encoded by location-dependent hippocampal place cell
firing rates and sub-second, rhythmic entrainment of spike times. These rate
and temporal codes have primarily been characterized in low-dimensional
environments under limited cognitive demands; but how is coding configured
in complex environments when individual place cells signal several locations,
individual locations contribute to multiple routes and functional demands
vary? Quantifying CA1 population dynamics of male rats during a decision-
making task, here we show that the phase of individual place cells’ spikes
relative to the local theta rhythm shifts to differentiate activity in different
placefields. Theta phase coding also disambiguates repeated visits to the same
location during different routes, particularly preceding spatial decisions.
Using unsupervised detection of cell assemblies alongside theoretical simu-
lation, we show that integrating rate and phase coding mechanisms dynami-
cally recruits units to different assemblies, generating spiking sequences that
disambiguate episodes of experience and multiplexing spatial information
with cognitive context.

Hippocampal coding multiplexes over broad temporal scales incor-
porating prior, current, and future contextual information1,2. Among
pyramidal cells of hippocampal CA1, transient firing rate increases
lasting from hundreds to thousands of milliseconds encode the posi-
tion of an animal within the environment (place cells3,4), routes
through pathswith overlapping segments (splitter cells5–7), signal goal-
locations8, mark time intervals9, respond to specific odors10, sounds11,
objects12 and, in humans, toother people’s identities13. The information
required to formthesemultimodal representations14, converges on the
hippocampus fromcortical and subcortical regions15, building context-
specific cognitive rate-maps16,17.

In conjunction with rate coding, hippocampal units also coordi-
nate at much faster timescales, entrained to the dominant state-
dependent oscillations of the local field potential (LFP): 5–10Hz theta
rhythms during active exploration and REM sleep, and sharp wave-
ripples (SWR) during immobility and non-REM sleep. Theta phase
precession18, theta sequences19, and SWR-associated replay20 produce
single- or multi-unit activity patterns with temporal precision on the
order of tens ofmilliseconds. During phase precession, the spike times
of a place cell with respect to the ongoing theta oscillation shift to
earlier phases in the cycle as the animal moves through that unit’s
spatial receptive field (place field). At the population level, the tem-
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porally ordered, sequential activation of place cells within a theta cycle
gives rise to characteristic theta sequences. Both processes provide a
temporal code for spatial information: during phase precession, the
position of the animal within a cell’s place field correlates with the
theta phase of that cell’s spikes18,21, while theta sequences reflect past
and imminent trajectories22,23. In addition to spatial information, recent
studies have uncovered theta sequences reflecting sequences of
events24, current goals25,26, and hypothetical future experiences27,
suggesting contributions of hippocampal temporal coding to planning
and speculation. There is also growing evidence that spikes fired
during different relative phases of local theta cycles may encode dif-
ferent aspects of past and future experiences28,29.

Despite their different timescales, the information content and
processes governing hippocampal rate and temporal coding are not
independent30. Firstly, the order in which units activate during theta
cycles and replays typically reflects the sequences inwhich place fields
are crossed by the animal during exploration (but see also ref. 31), or
sequences in which sensory cues are encountered24. Mechanistically,
the interplay between fast somatic inhibition and slow dendritic
depolarization as the animal crosses the respective neuron’s place
field has been proposed as a possible mechanism linking firing
rate with phase precession32–35 that may be tuned by local inhibitory
interneurons36. Whatever their mechanisms, despite prevailing evi-
dence for cross-temporal dependencies, the functional implications of
interactions between rate and phase coding for hippocampal infor-
mation processing remain equivocal.

Here, we investigate and quantify the extent to which flexible and
transient activation of place cell assemblies affects both firing rate and
phase/temporal coding modalities of individual place cells, enabling
thediscriminationof different visits to the same locations under varied
cognitive demands. We, therefore, used a method for unsupervised
detection of functional assemblies that is able to identify the compo-
sition of detected assemblies alongside their characteristic coordina-
tion timescales. In particular, we aimed to quantify how the
information encoded by rate-assemblies at 100ms – 1 sec timescales
can affect the <100ms temporal coding of their constituent units in
the CA1 region of rats performing a spatial memory and decision-
making task on a complex maze. Under these conditions, we found
that both the theta phase and the firing rate of place cells shift when
the cell activates within different assemblies recruited according to
task trial demands. Rate and temporal codes, therefore, interact,
allowingCA1populations toparse repeated visits to the same locations
into different cognitive contexts.

Results
Six adult male Long Evans rats were trained to perform a spatial
working memory decision-making task on an end-to-end T-maze37,38.
During each trial, rats learned to run from one side of the maze to the
opposite to collect 0.1mlof sucrose solution at reward locations. Trials
were subdivided into free choice and guided runs. During choice runs,
rats started from one of the two reward locations marked with G in
Fig. 1a andwere directed by amoveable door to turn right (fromG1) or
left (from G2) into the central arm of the maze. Having traversed the
central arm, rats had to choosewhether to turn right or left at the open
T-junction to continue towards the reward locations in C. A correct
choice required rats to leave the central arm by turning in the same
direction as they entered it (i.e., correct runs were from G1-C1 or G2-
C2). The reward was delivered only upon correct trials. Choice trials
were followedby guided trials that led the rats back to theG side of the
maze via a pair of predetermined turns guided bymotorizedmoveable
doors. All guided runs ended with a reward. Data presented here are
from rats that had learned task rules over between 16 and 23 days of
habituation and training, and were performing 40 trials per recording
session at between 71–90% correct. A total of 322 units was recorded
from the dorsal CA1 (Supplementary Fig. 1) during 24 recording

sessions from six rats. Among these, we isolated putative place cells by
selecting units with a mean, on-maze firing rate between 0.2 and 4Hz
and with spatial information above 0.5 bit/s39. The following analyses
focus exclusively on the 218 units identified as putative place cells
(with a median of 7, a minimum of 2, and a maximum of 20 putative
place cells per session).

Cell assemblies were identified with an unsupervised machine-
learning algorithm for cell assembly detection (CAD)40. CAD detects
and tests arbitrary multi-unit activity patterns that re-occur more fre-
quently than chance in parallel single-unit recordings. The algorithm
automatically corrects for non-stationarity in the units’ activities and
scans spike count time series at multiple temporal resolutions,
returning the characteristic timescales at which individual assembly
patterns coordinate (Supplementary Fig. 2). Thanks to a flexible
agglomeration algorithm, CAD can detect assemblies with any activity
pattern, avoiding a priori suppositions about the characteristics of the
detected motifs (see Methods). We use the term cell assemblies
without making any assumptions about the anatomical connectivity
between assembly-units, which are identified solely based on their co-
activation. Here, we thus refer to a functional cell assembly as any
group of units whose activation coordinates with temporal precision
between 5ms and 5 s, and arbitrary time lags between the unit acti-
vations, in a consistently reoccurring pattern.

The two predominant timescales of hippocampal assemblies
As expected based on extensive previous analyses of place cell phy-
siology, the temporal precision of hippocampal assemblies active
during the task ranged frommilliseconds to seconds and is bimodally
distributed (Hartigan’s dip test for unimodality, n. bootstrap
samples = 105, dip = 0.03, p =0) into two major groups. We found: (1)
137 sharp spike patterns involving on average about 17% units
per session per pattern (with a maximum of a 3-unit assembly in a 20-
unit set) and temporal precision in the range of 0.006 − 0.06 sec
centered around 0.028 sec (spike-assemblies) and (2) 204 broader
firing rate patterns with on average 28% units per session per pattern
(with a maximum of an 11-unit assembly in a 19-unit set) and temporal
precision between 0.07−5 sec (rate-assemblies) (Fig. 1b). This segre-
gation into different timescales did not, however, correspond to dif-
ferent hippocampal cell populations; rather, spike- and rate-
assemblies were composed of largely overlapping populations.
About 83% of all assembly-units participated in assemblies at both
timescales.Moreover, twounits takingpart in the same spike-assembly
were more likely to join the same rate-assembly than expected by
chance (average probability of 0.9 against a chance level of 0.6,p < 10−5

computed by bootstrap, seeMethods). Consistent with previous place
cell analyses, this indicates that the same sets of hippocampal units
coordinated at temporal precisions of both tens and hundreds of
milliseconds41,42.

In order to understand the origin of these two characteristic
timescales, we examined assembly activations in space and time.
Assemblies are considered active whenever all units composing the
assembly fire spikes matching the assembly activation pattern identi-
fied by the algorithm. The assembly is considered to have an activation
of n, when all units composing the assembly fire at least n spikes in the
bins matching the assembly-pattern. Figure 1 shows representative
examples of activity patterns (Fig. 1d, e) and activationmaps (Fig. 1f, g)
for both assembly groups. Rate-assemblies reflected the simultaneous
or sequential activation of the place fields of their constituent units in
specific maze locations and/or along task-relevant trajectories,
respectively (Supplementary Fig. 3). Their characteristic temporal
scale, ranging from hundreds of milliseconds to seconds, was indeed
compatible with the time needed by the animal to traverse the place
field of a unit. Spike-assemblies, whose timescale is compatible with
replay events or theta sequences19,20, had a more localized activation
(with average spatial information of 2.67 ± 0.09 bit/s in contrast to

Article https://doi.org/10.1038/s41467-024-52988-x

Nature Communications |         (2024) 15:8880 2

www.nature.com/naturecommunications


cb Temporal precision of CA1 assemblies

si
gn

. p
ai

rs
 / 

al
l p

ai
rs

 

bin width 

spike
assemblies

rate
assemblies

0

0.05

0.1

0.15

0.2

0.25

0.3

10-2 10-1 100

ed

U
ni

t

LFP

Time (sec)

Spike-assembly: units (3, 19, 4); 
lag (0, 0, 0); bin width 0.035 sec

1
2
3

Time (sec)
19400 1960 1980

LFP

U
ni

t
Rate-assembly: units (10, 3, 6, 17, 11, 4); 

lag (0, 1, 1, 1, 2, 2); bin width 1.6 sec

1

3

5

f g units (3, 6, 17, 8, 4); 
lag (0, 0, 0, 0, 1); 
bin width 1.0 sec

units (5, 2); 
lag (0, 1); 

bin width 0.014 sec

0

1

N
or

m
al

iz
ed

 a
ss

em
bl

y 
ac

tiv
ity

units (4, 11); 
lag (0, 2); 

bin width 0.014 sec

50
 c

m

C2 C1

G2 G1

G1C1

G2C250
 c

m

1 
3 
5 
7 
9 
11
13
15
17

U
ni

t #

Assembly #

Temporal precision  (sec)
0.01 0.1  1    

Ti
m

e 
la

g 
l (

# 
bi

ns
)

a Four possible guided trialsTwo correct choice trials

0 1 2 3 4

1 3 5 7 9 11 13 15 17 19

0

1

2

units (1, 3, 18, 8, 19);
lag (0, 0, 0, 0, 0); 
bin width 1.0 sec

Fig. 1 | The two timescales of hippocampal assemblies. a Maze and task sche-
matic. Task trials constitute choice and guided runs. In choice runs, the animal runs
in direction G→C, deciding between left or right turns at the T-junction marked in
gray. The correct choice is contingent upon the starting location. In guided trials,
the animal runs in direction C→G, following a predetermined path guided by
motorized moveable doors; b The distribution of the temporal precision of the
assemblies detectedduring the spatialworkingmemory task shows the presenceof
two predominant timescales: one peaked around 28ms and one on the second
scale. Bars show weighted mean and SE computed across six animals and four
sessions (sessions without assemblies were excluded, n. sessions = 22, n. assembly
pairs = 4914). The mean is weighted by the number of place cells recorded in each
session. See Supplementary Fig. 4 for the same analysis on assemblies detected
excluding spikes fired during SWR; c Assembly-assignment matrix for one
exemplary dataset. The grayscale indicates the temporal resolution at which

assemblies are detected; the color scale shows the lag between the activation of
each assembly unit with respect to the unit first active in the assembly. Units
marked in dark blue (lag of 0) are the first to activate within the assembly, and units
marked in dark red are the last (two bins after the activation of the first assembly
unit). Hippocampal place cell units were typically found taking part in multiple
assemblies; d, e Examples of spike- (d) and rate- (e) assembly activity patterns (red)
and raw LFP. Temporal resolution, composing units, and lag of activation of each
unit with respect to the activation of the first assembly unit are indicated in the
figure. Spike-assembly activations appear to be locked to the theta rhythm of the
LFP; f, g Example of spike- (f) and rate- (g) assembly activation maps (activity
normalized to 1, unit number indicated with respect to the relative session). See
also Supplementary Fig. 3 for place fields of the relative assembly composing units.
Source data are provided as a Source Data file.
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1.91 ± 0.07 bit/s for rate-assemblies, general linearmixed-effectsmodel
of the spatial information of assemblies according to the assembly
type, spike- vs rate-assembly, F(1, 419) = 70.55, p = 7.0 × 10−16) which
often appeared to be coordinated with the theta rhythm of the local
field potential (Fig. 1d). To understand whether the observed coordi-
nation at short timescales was related specifically to replay events, we
repeated the assembly detection but excluding epochs in correspon-
dence of SWRs. As shown in Supplementary Fig. 4, the temporal
resolution of the detected assemblies was conserved, showing that
SWRs were not the prevailing source of fast coordination under these
conditions.

Spike-assemblies fire spikes phase-locked to the local
theta rhythm
To quantify the relationships between assembly activations and the
theta rhythm, we isolated the spikes fired by a unit while participating
in assembly activations (assembly-spikes, in red in Fig. 2a) and com-
pared their theta phase preference with the overall firing phase pre-
ference of that unit (in black in Fig. 2a). We found that both spike- and
rate-assemblies were similarly phase modulated (Fig. 2b, generalized
linear mixed-effects model of the probability of a unit phase-locking
when firing within an assembly according to the assembly type, spike-
vs rate-assembly; with binary dependent variable for significant phase

locking and logit link function: F(1,1805) = 0.15, p = 0.70. The model
accounts for rat identity and recording sessions as covariates. See
Supplementary Fig. 5a for the same analysis excluding spikes fired
during SWR), with about 70% of assembly-units phase-locked when
active within an assembly configuration (all fractions presented here
are computed after Benjamini–Hochberg correction for multiple
comparisons, α =0:05, see Methods for Hodges–Ajne test on
phase locking). Yet, of these, the fraction of unitswith a stronger phase
modulation during assembly activity when compared to their overall
activity was significantly higher for spike-assemblies (75%) than for
rate-assemblies (30%) (Fig. 2c, d, generalized linear mixed-effects
model of the probability of a unit increasing phase modulation when
firing within an assembly according to the assembly type, spike- vs
rate-assembly; with binary dependent variable for significant increases
in phase modulation and logit link function: F(1,1310) = 134.15,
p = 1.3 × 10−29. The model accounts for rat identity and recording ses-
sions as covariates. See Supplementary Fig. 5b for the same analysis,
excluding spikes fired during SWR). Thus, while theta-modulated units
contribute to both spike- and rate-assemblies, rate-assembly activa-
tions did not specifically coincidewith temporal windows of high theta
modulation.On theother hand, thehigher temporal precision of spike-
assemblies was associated with enhanced phase-locking of their con-
tributing members when active within the assembly configuration.
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Fig. 2 | Spike-assemblies fire phase-locked spikes. a Raster plot of one typical
assembly and its composing units (spikes fired during assembly activationsmarked
in red). Below is a phase histogramof the spikes of one exemplary unit (highlighted
in gray) showing how assembly-spikes (red) have an enhanced phase modulation
with respect to either all (black) or non-assembly (blue) spikes. In the figure, p
values for the Hodges–Ajne two-sided nonparametric test for non-uniformity, no
multiple-comparison adjustments (see Methods); b Fraction of units with phase-
modulated assembly-spikes and c units with assembly-spikes with enhanced phase-
modulationwith respect to the totality of the unit spikes (i.e., red vs. black in (a)) in
at least one of the assemblies they take part in. Boxplotsmark themedian (red), the
mean weighted by the number of tested assemblies per session (cyan), min and
max point (whiskers), and the 25th and 75th percentiles (bottom and top edges of
the box) computed across animals after Benjamini–Hochberg correction for mul-
tiple comparisons (α =0:05), data points correspond to individual recording ses-
sions (four sessions of six rats, sessions where no units met the inclusion criteria

were excluded, n = 17 and 22 for the first and second bar, respectively, for both
(b, c). Generalized linear mixed-effects model with logit link function: in
b F(1,1805) = 0.15, p =0.70 and in c F(1,1310) = 134.15, p = 1.3 × 10−29). * marks sig-
nificance. d Temporal precision of spike- and rate- assemblies with phase-
modulated spikes (yellow) and assemblies with spikes with enhanced phase-
modulation with respect to their composing units (red). Assembly-pairs were
detected with CADopti separately in the 5–60ms (spike-assembly) and
0.07–5.0 sec (rate-assembly) resolution window. CADopti prunes redundant
assemblies and selects thosewith the lowestp value in each resolutionwindow (see
Methods). Bars show weighted mean and SE pooled from all sessions (mean
weighted by the number of units per session). While the activity of both spike- and
rate-assemblies is theta modulated, spike-assemblies, in particular, recruit spikes
that have a stronger phase-locking than the totality of spikes fired by the unit.
Source data are provided as a Source Data file.
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Individual units change phase preference when active in differ-
ent assemblies
As single units were often contributors to multiple assemblies (cf.
Fig. 1c) and assemblies activatedwith a characteristic phasepreference
(cf. Fig. 2b), we wondered whether the phase preference of hippo-
campal units is an assembly-specific property rather than a unit-
specific one. In other words, do hippocampal units change their phase
preference when active in different assemblies? We found that among
all units taking part in at least two phase-locked assemblies (n = 64 in
spike-assemblies and n = 169 in rate-assemblies) an average of 27%
(fraction computed after Benjamini–Hochberg correction for multiple
comparisons, α =0:05) changed their phase preference when active in
different assemblies of the same temporal resolution (Fig. 3a, b, see
Methods for nonparametric test on equality of median phase). This
relativephase-shiftwas foundboth in spike- and rate-assemblies, with a
higher proportion of units with significant phase-shift in spike-
assemblies (Fig. 3b, generalized linear mixed-effects model of the
probability of a unit to phase-shift when firing in different assemblies
according to the assembly type, spike- vs rate-assembly; with a binary
dependent variable for significant phase shift and logit link function:

F(1,231) = 12.54, p = 4.8 × 10−4. The model accounts for rat identity and
recording sessions as covariates. See Supplementary Fig. 5c for the
same analysis, excluding spikes fired during SWR).

Phase coding of hippocampal assemblies
To investigate whether such shifts in phase encoded spatial or con-
textual information, we focused the analysis on those units changing
phase when active in different contexts, comparing their activation
during task epochs corresponding to different locations and cognitive
demands on the end-to-end T-maze. Fig. 3c and Supplementary Fig. 6
show the activation along the maze of some typical units and the
assemblies they joined. While single units fired in multiple locations,
assembly activations were more selective (resulting in average spatial
information of 2.25 ± 0.06 bit/s when compared with 1.52 ± 0.05 bit/s
for single putative place cells), typically signaling one of the place
fields of their constituent units and/or only a particular run type or
direction.

This enhanced selectivity suggests that theta phase coding in
hippocampal units extends beyond phase precession: while phase
precession relative to the ongoing theta oscillation correlates with the
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Fig. 3 | Single units change phase preference when active in different assem-
blies. a Raster plot and phase preference of two example assemblies, assembly A
and assembly B, with a shared unit (unit 2). Unit 2 changes phase preference when
active in the two different assembly configurations, Kruskal–Wallis two-sided
nonparametric test for angular data, p value reported in figure with no multiple-
comparison adjustments (seeMethods);b Fraction of units that change their phase
preference when active in different assemblies. Boxplots mark the median (red),
themeanweighted by the number of tested assemblies per session (cyan),min and
max point (whiskers), and the 25th and 75th percentiles (bottom and top edges of
the box) computed across animals after Benjamini–Hochbergmultiple-comparison
correction (α =0:05), data points correspond to distinct recording sessions (four
sessions of six rats, sessions where no units met the inclusion criteria were exclu-
ded, n = 15 and 21 for first and second bar, respectively); generalized linear mixed-
effects model with logit link function: F(1,231) = 12.54, p = 4.8 × 10-4. * marks

significance; c Mean and SE (shaded area) activity along the maze of the two
assemblies displayed in (a) (top) and their composing units during different trial
types (bottom). The trial typologies displayed are: left (pink) and right (red) choice
trials, and left (blue) and right (black) guided trials. The assembly and unit activity
are plotted along the linearized path. Vertical dashed lines mark different task
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choice trial. Assembly temporal resolution, composing units, and lag of activation
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bly). When firing in the two assemblies, the unit fires preferentially at two different
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trials). See also Supplementary Fig. 6 for other examples of assembly-dependent
phase modulation of CA1 units. Source data are provided as a Source Data file.
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distance covered by the animal within a unit’s place field, here we
observed a phase preference disambiguating the activation of differ-
ent assemblies in disjoined locations. We therefore hypothesized that
theta phase coding of hippocampal units is not limited to the animal’s
position within a place field, but is also associated with different
locations or contexts in the environment.

The theta-firing phase of place cells can discriminate between
distinct place fields of the same unit
A possible confound for the presence of contextual phase-shift coding
in different assemblies comes from the fact that the spikes fired within
an assemblymight not uniformly sample the placefield of a unit. Thus,
if two assemblies systematically sampled the initial and final part of a
phase-precessing unit’s place field, respectively, this could result in an
assembly-specific change in phase preference. To rule out this possi-
bility, we analyzed the phase preference of single units, this time
separating their spikes according to their ownplacefields instead of by
assembly membership. In single units with multiple place fields, dif-
ferent rate-assemblies often activated in correspondence to different
place fields of the unit (e.g., cf. Fig. 3c and Supplementary Fig. 6). As
single units changed their phase preference when active in different
rate-assemblies (cf. Fig. 3b), separating unit spikes by place field could
reveal similar shifts in phase to those observed when separating them
by rate-assembly.

Accordingly, we selected all units with multiple place fields and
clustered their spikes according to their firing location (Fig. 4a, see
Methods). We included in the analysis all recorded putative place cells,
and not only those detected as participating in assemblies, as we
assume that all CA1 place cells do participate in some assembly, but
that sparse electrophysiological sampling of the CA1 population pre-
cludes thedetectionof all potential assemblies. Inour dataset, putative
place cells had more than one place field with a median of four fields
per unit. Such a high number of place fields per unit was due to the
relatively large size of the maze43 and, critically, to its compartmen-
talization in clearly identifiable segments. Comparing the phase pre-
ference with respect to place field location, we found that 43% of the
tested units changed firing phase when active in different place fields
(value obtained as mean across sessions weighted by the number of
units tested per session, 208 units among 24 sessions. Fraction com-
puted after Benjamini–Hochberg correction formultiple comparisons,
α =0:05, Figs. 4b, 5b). Note that for this test, we included all spikes
fired within a place field and compared them with all spikes fired in
another place field of the same unit. Thus, the observed phase shift
cannot be explained by a biased sampling of different subregions of
the place fields.

The firing phase of place cells can encode distinct task-related
information within the same place field
Beyond encoding spatial information, the hippocampus has
been shown to carry information about episodic memories44,45,
sequences46,47, and abstract relations48,49. Thus, hippocampal assem-
blies may encode task-relevant information beyond purely spatial
parameters. We can, therefore, expect the recruitment of different
assemblies when the animal has to remember, for example, a left turn
rather than a right turn, or has to perform a guided turn rather than a
choice turn. At the single-unit level, this should be reflected by a
change in a unit’s phase preference fordifferent trial types, evenwithin
the same location.

Separating unit spikes according to place field as in the previous
analysis, we further divided the spikes according to the type of trial in
which they occurred. Trials were divided into left and right choice
runs, when the animal had to choose between left and right turn; and
four different types of guided runs, in which the sequence of turns was
predetermined by the experimenter (Fig. 5a). We found that 36% of
units changed their phase preference when active in different trial

types above chance level, despite overlapping place-field locations
(value obtained as mean across sessions weighted by the number of
units tested per session, 160 units among 23 sessions. Fraction com-
puted after Benjamini–Hochberg correction formultiple comparisons,
α =0:05, Fig. 5b, see also Supplementary Fig. 8 for same analysis with
placefields identifiedwithdifferentmethods andSupplementary Fig. 9
for same analysis with spikes fired only in epochs of high theta-power
and no SWR). In fact, separating a unit’s spikes not just by place field
but according to the taskepochduringwhich theyoccurred resulted in
narrower and more coherent phase distributions of a unit’s spikes
(Fig. 5c). This observation was corroborated by training a support
vector machine (SVM) classifier on the phase of spikes fired in an
individual place field to distinguish between trial types. We found that
for 32% of units, at least two trial types could be distinguished above
chance level within at least one of the unit placefields (seeMethods for
details). This result could not be explained by covariates such as the
animal speed and the ongoing theta power. In fact, we found that
adding phase information to a classifier built on the animal speed and
on theta power increased its accuracy (Classifier 1: SVM on speed and
theta power; Classifier 2: SVM on speed, theta power, and theta phase.
General linear mixed-effects model of Classifier 1 and Classifier 2
accuracy, contrast tests between the twoclassifier types:F(1,530) = 8.9,
p =0.003. Test computed on the subset of place fields which could
distinguish above chance trial identity by Classifier 2, more powerful
and thus granting a larger sample size). The observed relation between
the phase of firing and trial type could also not be explained by the
sorting cluster quality of the units (generalized linear mixed-effects
model of a unit to phase-shift, either in different place fields or within
the same place field but in different trials, based on its L-ratio,
recording session and animal; with binary dependent variable for sig-
nificant phase change and logit link function: F(1,60) = 0.12, p =0.74).
Moreover,while it is known that splitter cells can differentiate between
trial types by rate modulation, we found that adding information
relative to the spike phase to the instantaneous firing rate further
improved the decoding performance of the SVM (generalized linear
mixed-effectsmodel of the accuracy of anSVMclassifier trainedon the
instantaneous firing rate of each spike or on instantaneous firing rate
and phase of each spike. Contrast tests between the two classifier
types: F(1,684) = 5.7, p =0.017. Test computed on the subset of place
fields which could distinguish above chance trial identity in the latter,
more powerful, classifier).

Fig. 5c shows an example unit with phase-shift coding at the
choice junction of the maze, distinguishing left and right turns in
choice trials and right turns in different guided trial types. Interest-
ingly, in this example, the degree of differentiation of the unit phase is
maximalwhen the animalhas to actively remember its previous path to
inform its next turn, and is absent in the guided trials when no active
choice has to be made, and the path covered from the trial onset is
identical (with a difference of 2.8 rad between the average spiking
phase of the left and right choice trials, and of 0.2 rad between the two
guided trials types). When examining instances of phase-shift coding
among trial types, we found that the majority of phase-shifts dis-
tinguished between left vs. right choice trials and choice vs. guided
trials (Fig. 5d, generalized linearmixed-effectsmodel of the probability
of a unit to changefiring phasewithin the sameplacefield according to
the trial type, with a binary dependent variable for significant phase
change and logit link function: F(4,641) = 10.2, p = 4.9 10−8; contrast
tests between specific condition/bars (I vs II) F(1,641) = 0.2, p =0.6; (I vs
III) F(1,641) = 5.6, p = 1.8 × 10−2; (I vs IV) F(1,641) = 10.7, p = 1.2 × 10−3; (II
vs III) F(1,641) = 9.8, p = 1.8 × 10−3; (II vs IV) F(1,641) = 16.4, p = 5.8 × 10−5;
(III vs IV) F(1,641) = 1.9, p = 0.2. Themodel accounts for rat identity and
recording sessions as covariates). These results withstood using dif-
ferent methods to identify place fields (Supplementary Fig. 10) and
removing spikesfiredduring epochsof low theta-power or during SWR
(Supplementary Fig. 9). This further supports the link between phase-
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shift and information encoding. The type of trial was, in fact, the most
relevant information for performing the task correctly.

Phase shift leads to context-dependent fine temporal coordi-
nation among units
The firing phase of hippocampal CA1 principal cells can, therefore,
encode task-related information to differentiate distinct maze

locations or distinct mnemonic information within the same location.
Such phase coding goes beyond what would be expected by phase
precession. Nevertheless, phase-shifting and phase precession could
share common underlying mechanisms. We observed that the popu-
lation of units with phase-shift coding in at least one of their place
fields correlated with the population of units with phase precession in
at least one of their place fields (chi-square test for independence:
χ2 1,N =213ð Þ= 7:3, p=6:8 10�3, p value threshold for significance on
the test for phase precession and phase-shift of 0.05, see Methods).
Phase-shifting could occur between place fields with or without phase
precession (Fig. 6a–c). When place-field-dependent phase-shift and
phase precession co-occurred, the spike phases covered during the
precession spanned different phase ranges in the two different
fields (Fig. 6c).

Both experimental and theoretical studies have shown how a
change in excitation received by a hippocampal unit can modify its
phase of discharge32–36,50. This suggests a possible interpretation of
the phase-shift phenomena: spatial exploration or cognitive tasks
recruit specific and diverse cell (rate-)assemblies; each assembly is
characterized by a set of synaptic connections that provides the
assembly-units with a characteristic level of excitation whenever the
assembly is activated upon a specific task event; this assembly-
specific degree of depolarization, combined with an oscillatory
somatic inhibition, would thereby generate a phase preference, or
phase-range preference, typical and specific for the activity of the
unit within that assembly (Fig. 6d). In line with this hypothesis, we
found that differences in average phase preference between two sets
of spikes also co-occurred with differences in the average instanta-
neous firing rate (see Methods for methodological details). This was
true when comparing spikes from different place-field locations,
within the same location but from different trial types, or spikes
occurring as part of different spike- or rate-assemblies (chi-square
test of independence on pairs of spike-sets with p value > or <0.05
when testing phase and instantaneous firing rate differences -
for different place fields: χ2 1,N =2165ð Þ=28:9,p= 7:5 10�8; same
location different trial types: χ2 1,N = 1004ð Þ=20:5,p= 5:9 10�6;
spike-assemblies: χ2 1,N =318ð Þ=4:9,p=0:027; rate-assemblies:
χ2 1,N = 5078ð Þ=63:2,p=2:0 10�15).

Finally, as for phase precession, the fine coordination of neuron
firing with the theta oscillation will generate, at the network level, a
stereotypical sequence of unit activations19. In the case of phase-shift
codinghowever, the sequenceof active units during a theta cyclewill be
determined not only by the spatial proximity of their place fields, but
will alsobeaffectedby the identityof theassembly recruitedat the time.
This implies that the lag between the activation of two units within the
theta cycle, and consequently the sequence order and composition,
could vary according to the cognitive demand. We investigated this
hypothesis by testing if the lag of maximal cross-correlation between
two units within a theta cycle changed in different trial types (Fig. 6e).
Tomake sure that such a change was not due to occasional outliers but
was consistent across trials, we selected the lag of maximal cross-
correlation for each trial and compared the set of lags so obtained by
trial type. We performed the analysis for each place field of each unit
and found that changes in cross-correlation lags occurred with
higher probability in place fields where units displayed phase-shift
coding across trials (chi-square test of independence performed
on place fields according to DBSCAN+GMM, χ2 1,N = 11305ð Þ=95:8,
p=0; DBSCAN, χ2 1,N = 11305ð Þ=63:6,p= 1:6 10�15; RM+GMM,
χ2 1,N =8844ð Þ= 172:7,p=0; RM, χ2 1,N =9747ð Þ= 113:1,p=0; also con-
firmed when excluding spikes fired during SWR and low theta-power
epochs: DBSCAN+GMM, χ2 1,N = 11305ð Þ=62:9,p=2:2 10�15; DBSCAN,
χ2 1,N = 11305ð Þ=69:2,p= 1:1 10�16; RM+GMM, χ2 1,N =8844ð Þ=84:0,
p=0; RM, χ2 1,N =9747ð Þ=25:3,p=4:8 10�7).

To explore how the activation of different rate-assemblies can
produce different activation sequences along the theta cycle even
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within the same set of units, we simulated the phenomenon with an
adaptive exponential integrate-and-firemodel (ref. 51; seeMethods for
formal description of the model). As observed in the experimental
data, single units could participate in multiple assemblies (cf. Fig. 3)
and respond at different, but context-consistent, average firing rates
(cf. Fig. 5). We simulated three units taking part in two rate-assemblies.
During the assembly activation, each unit received an assembly-

specific degree of depolarization. Assembly retrieval was modeled by
the synchronous and transient depolarization of its constituent units,
while inhibition was, on average, constant over time, and identical for
all units and both assemblies. Similarly to soma-dendritic interference
models32,50, we captured the interplaybetween the oscillatory inputs to
units by sinusoidally modulating both excitatory and inhibitory con-
ductances with a relative offset of π rad (Fig. 6f top). As expected,
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Fig. 6 | Phase-shift leads to context-dependent fine temporal coordination
among units. a–c Spike-phase and spike-location (right) for three example units,
alongwith phasehistogramsof the spikesfiredwithin theplacefields highlighted in
blue and yellow (left). All three units show a change in the firing phase when active
in different locations. Phase shift can occur between place fields with (a, c) and
without (b) phase precession. Phase-shift test: two-tailed Kruskal–Wallis nonpara-
metric test for angular data; phase precession test: two-sided test for circular-linear
correlation97 (see Methods), p values reported without multiple-comparison
adjustments. d Schematic of assembly-specific phase coding: Task performance
requires the recall of past information and future goals. Different contextual con-
ditions trigger the retrieval of distinct assemblies, even within the same location.
The retrieval of each assembly provides different degrees of depolarization to their
member units, thereby setting assembly-specific firing phases and phase-coding
contextual information; e Cross-correlation between the spikes of two units,w and
m, during choice- and guided-right trials. Unit w changes firing phase between
choice and guided trials (two-tailed Kruskal–Wallis nonparametric test for angular

data, p =0.03, phase histograms ofw’s spikes in the two trial types shown as inset),
thereby changing its relative lag of activation with unit m within the theta cycles
(two-tailed Wilcoxon rank-sum test, p =0.01). Phase-shift coding can, therefore,
produce context-dependent theta sequences. f Simulation of the recruitment of
three neurons by two rate-assemblies, A and B. (Top) Excitatory (gexc) and inhibi-
tory (g inh) conductances of three neurons (blue, red, and green) modeled with an
adaptive exponential integrate-and-fire model. Rate-assembly activation is mod-
eled with a transient assembly- and unit-specific increase in excitatory con-
ductances. (Bottom)Membrane potentialV of the simulated units during assembly
retrieval. (Right) Phase histogram of spikes of units 1 (blue) and 3 (green) when
active in assemblies A (magenta) and B (red). Spike’s phases are computed with
respect to the oscillatory modulation of gexc. The assembly-specific depolarization
alters the preferred firing phase of the simulated units (right, two-sided
Kruskal–Wallis nonparametric test for angular data, p values reported with no
multiple-comparison adjustments), resulting in a population-level shift in the order
of unit activation along the theta cycle (inset).

Fig. 5 | The firing phase of place cells can encode distinct task-related infor-
mation within the same place field. a Trial categories: choice left (magenta),
choice right (red), forced left (blue), forced right (black), forced switch right-left
(light-yellow) forced switch left-right (dark-yellow); b fraction of units changing
phase for different locations irrespective of the trial type, different trial types but
same location, different trial type and/or location. See also Supplementary Figs. 8,
9; c joint rate-phase distribution andmarginal distributions for spikesfired by a unit
in one of its place fields (left) and the same spikes divided by trial type (right, color-
coding as (a)). Gray dots are spikes firedout of the two testedplacefields;d fraction
of units changing phase in left vs. right choice trials; choice vs. forced trials; forced
trials with different origin arms; forced trials with same origin arms but different
forced turn. Generalized linear mixed-effects model with logit link function:
F(4,641) = 10.2, p = 4.9 × 10−8; contrasts (I vs II) F(1,641) = 0.2, p =0.6; (I vs III)
F(1,641) = 5.6, p = 1.8 × 10−2; (I vs IV) F(1,641) = 10.7, p = 1.2 × 10−3; (II vs III)

F(1,641) = 9.8, p = 1.8 × 10−3; (II vs IV) F(1,641) = 16.4, p = 5.8 × 10−5; (III vs IV)
F(1,641) = 1.9, p =0.2. * marks significance. See also Supplementary Figs. 10, 11.
Displayed also example units changing phase preference for the same place field
during different trial types (two-tailed Kruskal–Wallis nonparametric test for
angular data, p values reported with no multiple-comparison adjustments). In
(b,d), boxplotsmark themedian (red), themeanweighted by the number of tested
units per session (cyan), min and max point (whiskers), outliers (red crosses), and
the 25th and 75th percentiles (box edges) computed across animals after
Benjamini–Hochberg correction for multiple comparisons (α =0:05). Data points
correspond to distinct recording sessions (four sessions of six rats, sessions where
no units met the inclusion criteria were excluded. Sample n = 24, 23, 24 for the first
to the third bar of (b); n = 15, 21, 21, 21 for the first to the fourth bar of (d)). Source
data are provided as Source Data file.
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assembly activations produced a broad increase in unit firing rate
punctuated by faster temporal coordination with the theta oscillation
(Fig. 6f bottom). This coordination was assembly-dependent and the
simulated units changed their phase preference of firing, here com-
puted with respect to the timecourse of the excitatory depolarization,
when active in the two assemblies (Fig. 6f right). To formally detect
multi-unit activity patterns generated by the assembly activations, we
simulated multiple retrievals of the two assemblies and analyzed the
obtained spike trains with the CADopti assembly detection algorithm,
as previously done with our experimental dataset (see Methods and
Supplementary Table 1 for simulation details and CADopti para-
meters). The activation of both assemblies produced, at a fine tem-
poral scale, sequential activity patterns with a mean lag of
0.06 ±0.005 sec and 0.07 ±0.005 sec of the second and the third unit
from the first active. Despite the similarity in pattern structure, the two
assemblies triggered a different activation order of their constituent
units. In 98% of the simulations (n = 100 simulations performed with
different noise realizations), the detected activation sequence reflec-
ted the assembly-specific degree of depolarization provided to each
unit (Fig. 6f inset). More generally, units that received the highest
depolarization activatedfirstwithin the theta cycle, while, importantly,
units receiving just a light depolarization terminated the activation
sequence.

Overall, these results highlight how systematic shifts in theta
phase preference not only broaden the range of information encoded
by the hippocampal temporal coding but also contribute to the gen-
eration of context-specific theta sequences.

Discussion
This study extends analyses of phase coding by CA1 place cell assem-
blies to a spatial working memory and decision-making task on a
complex maze. We detected place cell assemblies using an unsu-
pervised algorithm able to extract coordinated activity from the data
without pre-defining timescales of interest. This corroborated exten-
sive evidence that hippocampal coding is characterized by two pre-
dominant timescales: a rate scale (rate-assemblies) reflecting place
field firing rate modulation, and a sub-second temporal scale (spike-
assemblies) compatible with the entrainment of spikes by theta
rhythms and during SWR-associated replay events. The relatively
broad timescale characteristic of rate-assemblies suggests that their
coordination is not solely imposed by the shared modulation of
their composing units by the local theta rhythm, in agreement with
their robustness to degradation of cholinergic signaling52. Never-
theless, spikes firedwithin either spike- or rate-assemblies coordinated
with the theta rhythm, in line with previous literature reporting
theta phase-locking of CA1 neurons when active in an assembly
configuration53–55. We show that such theta locking is most pro-
nounced for spike-assemblies, but present in rate-assemblies aswell. A
possible explanation for this enhanced phase locking is that isolating
spikes fired within an assembly configuration effectively separates a
specificmode from theotherwisemultimodalphase distribution of the
unit firing. In fact, the enhanced phase modulation of hippocampal
units during assembly activations also revealed that units taking part in
multiple assemblies changed their preferred spiking phase according
to the assembly active at the time. This shift often coincided with a
change in the location of the place field of activation of the unit when
active in one or the other assembly. The observed higher specificity of
information coding by assemblies with respect to that of the partici-
pating units, therefore, agreed with the higher specificity in phase
preference exhibited by single units when active as part of the
assembly. This was true both for rate- and, more frequently, spike-
assemblies, and was not induced by SWR-associated replay events.

The enhanced phase modulation of hippocampal units during
assembly activations also revealed that units taking part in multiple
assemblies changed their preferred spiking phase according to the

assembly activity at the time. This modulation, not attributable to
replay events, was validated at the single-unit level by grouping spikes
by the placefields inwhich they occurred, rather thanby assemblies. In
the dorsal CA1’s deep sublayers, place cells can exhibit dual theta-
phase firing preferences as the animal crosses the cell’s place
field28,56,57. Here, we show that changes in the preferred firing phase can
distinguish between distinct place fields or between different visits to
overlapping locations on alternative routes, particularly under condi-
tions that require active use of spatial memory and/or decision-
making. These changes were fast and reversible, in line with the
hypothesis that they were generated by the transient activation of
different cell assemblies.

Our findings may reflect mechanisms related to those driving
theta phase precession in CA1 place cells. Although unanimous
agreement about those mechanisms is yet to be reached, models fall
into three broad categories: interference between oscillations of the
somatic membrane potential and of dendritic potentials at a slightly
higher frequency18,58; progressive dendritic depolarization coupled
with somatic oscillatory inhibition discharge32–35,50; and patterns of
synaptic transmission delays59. To test these various hypotheses,
numerous experimental efforts have been made to elucidate the
relationship between cell depolarization and the spiking phase. Spa-
tially uniform inhibitory conductance has been shown to enhance the
range of phase precession36. It has been observed thatwhile the animal
moves toward the center of a cell’s place field, the rate and phase of
spiking strongly correlate32,35. This correlation is, however, lost as the
rate peak is passed and the animal leaves the cell’s place field60,61. In
vivo whole-cell recordings have shown that, during phase precession,
the baselinemembrane potential of CA1 pyramidal neurons undergoes
a ramp-like depolarization62. In vitro, whole-cell patch-clamp record-
ings from dendrites and somata showed that an increase in dendritic
excitation, coupled with phasic somatic inhibition, causes an increase
in the neuron’s firing and the advancement of the spiking phase with
respect to the somatic modulation34,50. Similar results were observed
when progressively depolarizing the membrane potential of hippo-
campal cells in anesthetized animals33.

In line with this evidence that changes in depolarization lead to
changes in the discharge phase, we found in our data that the changes
in phase preference of individual units also co-occurred with changes
in the instantaneous firing rate. While a recent study has shown that
anatomically distinct place cell subpopulations in superficial and deep
sublayers of dorsal CA1 pyramidal cell layer are biased towards rate
and phase coding of spatial information, respectively, as the richness
of sensory cues in the local environment is experimentally
manipulated63, our results suggest an integration of rate and phase
codingwithin a population to support coding of complex information.
This was also replicated through a model of adaptive exponential
integrate-and-fire units similar in spirit to the soma-dendritic inter-
ferencemodels (refs. 32,50; c.f. Fig. 1e). The model confirmed that the
activation of an assembly imposed an assembly-specific rate and phase
preference on each assembly unit, thus producing, at the population
level, assembly-specific theta sequences. Thus, while correlation
between rate and phase changes has been observed during rate
remapping64, our findings demonstrate that phase-shift coding
extends beyond rate remapping and occurs also between distinct
place fields or assemblies, frequently coinciding with changes in
instantaneous firing rate, similar to those observed for splitter cells5–7.
The model predictions are also in line with recent work showing that
individual place cells quickly switch between the encoding of alter-
native future locations or heading directions on alternate theta cycles,
with lower firing rates for non-preferred directions occurring in later
theta phases27. The mechanism highlighted by our analysis and model
is not the sole modulator of the firing of CA1 cells, as the timing of
specific inputs from Schaffer collaterals and the perforant path also
plays a role in their phaseof discharge56,65. Nevertheless, it captures the
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role played by various depolarization settings in inducing a modula-
tion and discretization of phase preference of hippocampal CA1 place
cells. We, therefore, propose that phase-shift coding may be a con-
sequence of the different levels of depolarization generated by the
specific constellations of synaptic input resulting from the activation
of different assemblies as the animal encounters different cognitive or
environmental contexts (cf. Fig. 6d).

The fine temporal coordination of unit activities imposed by
phase precession and theta sequences is commensurate with the
induction of plasticity mechanisms for binding episodic information
that, otherwise, would be separated by seconds66. For this reason, the
processes have been proposed as a network mechanism for episodic
sequence learning1,19,35,67–70. In support of this hypothesis, degradation
of the temporal coordination of hippocampal units with the theta
rhythm, e.g., by the administration of the cannabinoid receptor
agonist71 or by muscimol injection into the medial septum72, led to
reduced performance in memory tasks despite leaving place-field
representations intact. Degraded phase precession caused by the
passive transportation of rats during spatial exploration also drasti-
cally reduced replay during subsequent sleep73, potentially reflecting
impairedmemory consolidation74–76. The changes in assembly-specific
phase preference of hippocampal units reported here allow rapid
reconfiguration of different theta sequences within the same neural
population, differentiating distinct maze locations or distinct mne-
monic information. This could contribute to the formation of context-
dependent theta sequences77, supporting the formation of episodic
memories and planning27.

Goal-dependent theta sequences have been observed during
decision-making tasks, where the theta sequences terminated with the
activation of cells encoding distant goal locations26. The process by
which goal-related theta sequences form is still unclear, as is the
causal relation between phase precession and theta sequences (see
ref. 78 for review). One hypothesis is that during the early stages
of learning, inter-regional assemblies (e.g. prefrontal-hippocampal
assemblies77,79–83 or medial-septum-hippocampal assemblies84),
recruited at each theta cycle85, modulate the depolarization of hip-
pocampal units thereby dynamically producing goal-dependent
cycling activity. In particular, as suggested by our theoretical model
(cf. Fig. 6f), a low-level generalizeddepolarization of the cells encoding
the current goal location could explain their spiking at the end of theta
sequences, even when the animal is far from that location26. Similarly,
the cognitive segmentation of a task induced by the presence of
landmarks and corners within amaze, could induce a shared enhanced
depolarization to all the cells involved in the same cognitive segment,
also in those with place fields far from the animal but within the tra-
veled maze segment. This could give rise to the observed space
chucking of hippocampal theta sequences22,26. Finally, similar
mechanisms as observed here for assembly-dependent phase pre-
ference of CA1 units may also play roles in organizing phase pre-
ferences of neurons across other brain regions, consistent with
evidence for phase precession in the dentate gyrus86, CA386,87,
entorhinal cortex86,88, subiculum89, ventral striatum90 and in themedial
prefrontal cortex38. Such distributed processing would, therefore,
support the integration of spatial and temporal information into
cognitive contexts at a timescale commensurate with rapid adaptive
behaviors, dynamically aligning different hippocampal assemblies
with different subsets of neocortical and subcortical neurons.

Methods
Animals and husbandry
All procedures were conducted in accordance with the UK Animals
(Scientific Procedures) Act 1986 and approved by the University of
Bristol Animal Welfare and Ethical Review Board. Six adult male Long
Evans rats (9–16 weeks, 300–500g, Harlan, UK) were used in this
study. Prior to surgery, rats were group-housed on a 12/12 h light/dark

cycle (lights on from07:00–19:00) with free access to food and water.
At least 1 weekwas allowed for animals to habituate to the new holding
facility before surgery was performed. Post-surgery, animals were
singly housed with additional bedding and cardboard tubes in high-
roofed cages that allowed unconstrained head movement with cranial
implants.

Implantation of recording array
Custom-built adjustable tetrode (twisted 12.7-μm nichrome wire,
Kanthal, gold-plated to 250–300 kΩ at 1 kHz) microdrives were
implanted under isoflurane anesthesia using an aseptic technique and
perioperative analgesia (Buprenorphine, 0.02mg/kg s.c.). Cranio-
tomies of diameter 1–1.5mm were made over dorsal CA1 (AP -4.2mm,
ML 3.0mm from Bregma). Implants were fixed to the skull using
stainless steel screws (M1.4 × 2mm, Newstar Fastenings) and Genta-
micin bone cement (DePuy). Tetrode positions were adjusted over the
course of 2–3 weeks after surgery.

Tetrode signals were amplified by headstages (HS-36, Neuralynx,
MT, USA) and relayed via fine-wire tethers to a Digital Lynx system
(Neuralynx), which sampled thresholded extracellular action poten-
tials at 32 kHz (filtered at 600–6000Hz) and continuous local field
potentials (LFP) at 2 kHz (filtered at 0.1–475Hz) using the Cheetah
software package (Neuralynx) running on a desktop PC.

Training
Once post-surgery body weight had stabilized, rats were placed on a
regulated feeding regimen to maintain body weight at 85–90% of free-
feeding levels. The ratswere trained to performa spatialmemory-based
decision-making task on an end-to-end T-maze, as described in ref. 37
and illustrated in Fig. 1a. Maze dimensions were 170× 130 cm. Training
occurred during the light phase at a similar time each day. Habituation:
Rats were placed in the maze for 20–30min without any boundaries in
place. Rewards were provided at every visit to a reward zone. After
2 days, the rats advanced to the next stage. Guided trials: Rats ran a
series of guided trials. Each trial consisted of a run from a reward point
at one side of themaze, via the long central arm to a reward point at the
opposite side. At the starting end of the maze, the opposite arm was
blocked off with a barrier, guiding the rat onto the central arm. At the
distal end of the central arm, a barrier blocking one of the arms
(pseudorandomly selected) guided the rat to the end of the unob-
structed arm, where a reward (0.1ml of 20% sucrose solution in water)
was delivered remotely through tubing connecting reward wells to
syringe pumps located in the adjacent room, where the experimenter
sat. Only one running trajectorywas possible in each guided trial. In one
training session, a rat was allowed to perform up to 40 trials. After a
minimum of 2 days of at least 20 trials, rats advanced to the next
training stage. Full Task: Rats performed a series of guided trials,
interleavedwith choice trials. Choice trials differed fromguided trials in
that there was no barrier in place at the far end of the central arm,
requiring the rat to choose a turn direction. The correct turn direction
was the same direction that the rat had initially turned when entering
the central arm. If the rat chose correctly, a reward was delivered at the
endof the arm. If the rat chose incorrectly, itwasplacedback at the start
and allowed to undertake the trial again, until the correct choice was
made. All guided trials began at the C end of themaze and ended at the
G end, while the interleaved choice trials ran in the opposite direction.
Rats were allowed to perform up to 40/40 guided/choice trials. Learn-
ing of the task rule was assessed by the percentage of correct choices
made (>70% correct trials over at least 3 consecutive days). In this
manuscript, we analyzed recordings from four days (for a total of
24 sessions) after the performance criterion was reached.

Histology
At the end of each experiment, the rat was deeply anesthetized with
intraperitoneal sodium pentobarbital, and a small electrolytic lesion
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was made at the tip of each tetrode (positive current of 0.3mA for
10 s). After lesions had been made on each tetrode, the rat was per-
fused transcardially with 0.9% saline and then 4% paraformaldehyde/
0.9% saline solution. The brain was post-fixed, transferred to a cold
30% sucrose solution for cryoprotection, and cut into 50 µm coronal
sections on a freezing microtome. Lesion locations were compared
against the corresponding sections in the Rat Brain Atlas91 in order to
determine the tetrode recording sites.

Spike sorting and cell selection
Spikes were sorted semi-automatically on the basis of waveform
characteristics (waveform energy and first principal component) using
KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.net/), followed
by manual refinement of cluster boundaries with the MClust package
forMatlab (A.D. Redish, http://redishlab.neuroscience.umn.edu). After
clustering, only units with a mean spike peak amplitude of >50 µV,
isolation distances of ≥1592, and <1% of interspike intervals (ISIs) below
2ms were retained for further analysis. Our analysis focused on puta-
tive place cells. To select putative place cells we restrict to units with
firing rate between 0.2 and 4Hz and with spatial information above
0.5 bit/s on the maze39. Because of the dependence introduced in the
data bypoolingunits frommultiple sessions of the same animals,when
appropriate we perform statistical tests by generalized linear mixed-
effects models, where we explicitly account for session and rat
identity.

Cell assembly detection
Cell assemblies were identified with the unsupervised machine-
learning algorithm for cell assembly detection (CAD)40 (algorithm
available at https://github.com/DurstewitzLab/Cell-Assembly-
Detection). CAD detects recurrent activity patterns of arbitrary struc-
ture and temporal precision in multivariate time series. The algorithm
is based on a recursive agglomeration scheme, at each step of which it
detects and tests assemblies of progressively larger size. As the first
step of the algorithm, CAD scans the activity of all possible pairs of
units in the recorded set to select the most common shared (poten-
tially lagged) activation pattern, and test if this reoccurs more fre-
quently than expected by chance. If the test is significant, a new time
series is created to reflect the activation of the detected assembly-
pattern. In the second step of the algorithm, the new assembly acti-
vation time series are tested in turn including the remaining recorded
units. If the test is significant, the unit becomes part of the assembly,
and a new assembly activation time series is generated. The algorithm
stops when no more units can be added to the assemblies detected in
the previous agglomeration step (see ref. 40 for a more detailed
description of the algorithm). It follows that the hypothetical inclusion
of supplementary units beyond those actually recorded would affect
the number and size of the detected assemblies, but it would not alter
the coordination patterns already detected in the existing set. In this
manuscript, the detection of paired assemblies was performed, stop-
ping the agglomeration at the initial pairwise step, while full-size
assemblies were detected letting the algorithm agglomerate until
completion.

To uncover the temporal scales most represented in the hippo-
campal spike trains, we ran CAD on a broad spectrum of temporal
resolutions sampled with a logarithmic scale in the interval
[0.005–5.0] sec. CAD tests multiple temporal resolutions, and if the
same sets of units coordinate atmultiple timescales, the algorithmwill
return all of them. This analysis revealed the presence of two distinct
timescales: one between 0.005 and 0.06 sec (spike-assemblies) and a
second between 0.07 and 5.0 sec (rate-assemblies). To compare the
extent of phase-locking and phase shift-coding within the two assem-
bly groups, we repeated the assembly detection separately for the two
timewindows using CADopti93,94 (algorithm available at https://github.
com/DurstewitzLab/CADopti). After testing multiple temporal

resolutions, CADopti selects and returns the timescale at which each
assembly has been detected with the lowest p value. Thus, each
assembly was unique within each window but could be detected in
both time windows. This pruning procedure allowed a fair comparison
between the two timescales, without the distortion given by con-
sidering as independent assemblies the same set of units detected at
neighboring temporal resolutions. Finally, we want to note that the
detected assemblies cannot result from the detection of spike sorting
mistakes. In such a case, in fact, assemblies would have been detected
at the highest temporal precision (binning of 0.0058 sec), which is not
the case, as shown in Fig. 1b.

For all the analysis of this manuscript the reference lag was set at
2. Tested bin sizes: [0.0058, 0.007, 0.009, 0.011, 0.014, 0.018, 0.022,
0.028, 0.035, 0.044, 0.055, 0.07, 0.09, 0.11, 0.14, 0.17, 0.21, 0.27, 0.33,
0.42, 0.52, 0.65, 0.82, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0, 5.0] sec and
respectivemaximal lag: [4, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Values for tested bin sizes were selected based on
previous experience in assembly analysis40,93,94. The lower limit was
chosen because in CA1 we found practically no assemblies at coordi-
nation precision higher than 5ms40. The upper limit was chosen to
cover in about one bin the time needed by the rat to cross a place field.

Computation of chance level for the probability of spike-
assemblies being detected as rate-assemblies as well
Spike-assembly-pairs had a probability ofp =0.9 to be also detected as
rate-assembly-pairs.We tested if the obtained value is above chance by
bootstrap. To this aim,we considered all possible pairs of units present
in the recorded sessions and randomly selected an amount equal to
the number of the detected rate-assembly. We then computed the
probability of the detected spike-assembly-pairs to be part of this
subset pi

boot. We repeated the random sampling 105 times and aver-
aged the result to obtain the chance level pboot

� �
=0:6. The p value

corresponds to the fraction of bootstrap sampling with p<pi
boot,

which, in the specific bootstrap set, never occurred.

Instantaneous firing rate
Instantaneous firing rates were computed by convolving unit spikes
with a Gaussian kernel with a kernel size of half of the unit’s mean
interspike-interval.

Phase extraction and theta power
As the first step, we made sure that the spectrogram of all recorded
LFPs peaked in the theta frequency band. Then, to obtain the phase of
spikes, we bandpass filtered the LFP between 4 and 10Hz (LFPθ) and
computed the angle of theHilbert transformationof LFPθ at the timeof
each spike.

Since recent studies have shown that phase coding can also occur
in the presence of a lower power or irregular amplitude of the theta
oscillation95,96, the analyses reported in the main figures of the manu-
script are performed with maximal sample size, including all spikes
without restriction on theta power. However, to make sure that the
reported results were not affected by this choice, we reproduced the
most important including only spikes fired in epochs of high theta
power (Supplementary Figs. 9, 11). High theta power epochs were
defined as periods in which the envelope of the LFPθ amplitude sur-
passed one σ(LFPθ). High amplitude, saturating movement artifacts
were removed from LFP by excluding periods with LFPθ>2*σ(LFPθ).
This was done before computing the threshold of σ(LFPθ) used to
define high power periods.

Detection of SWR
SWR detection was based on the Sleepwalker Matlab toolbox (https://
gitlab.com/ubartsch/sleepwalker). In brief, LFPs were down-sampled
to 1000 and 50Hznotchfilteredprior to bandpassfiltering (using least
squares filters) between 120–220Hz. Candidate ripple events were
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identified based on threshold crossings in the z-scored 120–220Hz
power, using a threshold of 3.5 x SD of the signal. The start and finish
times of the ripple were calculated based on 2 x SD of 120–220Hz
power. Representative samples of individual and averaged eventswere
then visually inspected. Ripples were rejected if they were shorter than
50ms or longer than 500ms; if gaps of less than 50ms occurred
between events, they were treated as a single ripple. Ripple start/end
timestamps were used to exclude SWR-associated spiking for some
analyses (Supplementary Figs. 4, 5, 9, 11).

Phase-locking test
Phase modulation of spike sets was tested with the Hodges–Ajne test
for non-uniformity97,98 that, unlike the more common Rayleigh test,
does not assume unimodality in deviation from uniformity. The test
was performed on sets bigger than 50 samples, limit imposed by the
approximations performed in the test. Significance was established
with an alpha value of 0.05 and Benjamini–Hochberg correction for
multiple comparisons on all tests performed.

Phase-locking of assembly-spikes vs. unit-spikes
This test compares the strength of phase-locking of two sets of phase
values. In particular, we tested via bootstrap if assembly activations
elicited spikeswith higher phase-locking than thoseoverallfired by the
unit. For each unit, we collected the phase of the n spikes fired in
correspondence with all activations of one assembly and produced
1000 replica sets composedof thephase ofn spikes randomly selected
among all spikes of the same unit. For each set, we computed the
length R of the mean resultant vector. P values were established by
counting the fraction of replica sets with Rrep: >Rorig:. Significance was
established with an alpha value of 0.05 and Benjamini–Hochberg
correction for multiple comparisons on all tests performed.

Change in phase preference for spikes fired in different
assemblies
This test assesses if two sets of phase values have the same median
phase. For each unit taking part inmultiple assemblies,wedivided into
separate sets the spikes fired in different assembly-pairs. Sets not
phase-locked to the ongoing theta oscillation or with less than
50 spikes (a limitation imposed to perform the phase-locking test)
were discarded. To test the null hypothesis that for the same unit, each
phase-set had an equal median, we performed a multi-sample non-
parametric test, circular analog to the Kruskal–Wallis test97,99. Sig-
nificance was established with an alpha value of 0.05 and
Benjamini–Hochberg correction for multiple comparisons on all tests
performed. Finally, we tested whether the number of units recorded in
each session correlated with the fraction of units per session changing
phase when firing in different assemblies. We found no significant
correlation (Spearman’s correlation rs 34ð Þ=0:25,p� value =0:14).

Trial categories
We divided trials into 6 categories according to the specific task
required by each trial. Trials were first divided into choice trials, when
the animal had to choose if to turn left or right on the basis of its
position at the beginning of the trial, and guided trials, when turns
were forced by the set-up. Both categories were then further divided
according to the two turns performed entering and leaving the central
arm of the maze: left-left/left-right/right-left/right-right.

Isolation of place fields
Place fields were established only for units with spatial information
above 0.5 bit/s (place cells) and with phase-modulated spikes. Spikes
of each unit were divided into different clusters (place fields) on the
basis of their place of firing. Place fields are often identified as a region
of connected bins in a unit’s rate map that surpasses a fixed threshold
in firing rate. For example, for a maze comparable to the one used in

this manuscript, ref. 100 uses a threshold of a standard deviation over
themean firing rate of the unit. In units withmultiple place fields, such
a high threshold leads to a selection among thefields, at the expenseof
those with lower rates which remain undetected (c.f. Supplementary
Fig. 7).While this is typically not an issue, this study aims to investigate
the changes in phase and rate a unit exhibits across different place
fields and trial types. Therefore, it is here important to capture a larger
variety of fields.We thus explored different techniques to detect place
fields and tested the robustness of the analyses in Fig. 5b, d.

The compared techniques were:

Rate map Wirtshafter and Wilson (RM WW). In ref. 100 place fields
are detected by: (1) computing a rate map of firing per occupancy
binnedwith a 2 cmgrid and smoothedwith a 10 cm standard deviation
Gaussian kernel. Only epochs inwhich the ratmoved faster than 12 cm/
s were included; (2) thresholding the ratemap at θ1RMWW =μ f rð Þ+ σ f rð Þ,
withμ f rð Þ and σ f rð Þ ratemean and standard deviation, respectively; (3)
only fieldswith at least one binwith rate above θ2

RMWW =μ f rð Þ+2 � σ f rð Þ
were selected; (4) fields of length less than 15 cm were discarded.

Rate map (RM). To detect also place fields with lower firing rates we
repeated the procedure described in RM WW but using a θ1RM =0:7 �
μ f rð Þ and omitting point 3.

We also included methods that aimed to group spikes according
to the density of their spatial clustering:

Rate map +GMM (RM+GMM). We modeled the place fields of a unit
with a Gaussian Mixture model. In the first step, we proceeded as
described in RM but with a harsher threshold of θ1

RMGMM =μ f rð Þ. This
allowed us to establish the overall number of place fields and obtain a
first estimation of cluster memberships. In the second step, this first
clustering was then used as an initial condition for the estimation of a
Gaussian mixture model (function fitgmdist, Matlab). To train the
model, we only used the spikes identified as placefieldmembers in the
first step. Once obtained the model, we used it to cluster (function
cluster, Matlab) all spikes fired by the unit. Spikes with a low prob-
ability of being part of any of the identified clusters (i.e., with a loga-
rithm of the estimated probability density function smaller than
logpdf<� 20) were discarded as not assigned to any of the modeled
Gaussians (place fields).

DBSCAN. Spikes were clusteredwith a density-based spatial clustering
algorithm (DBSCAN101, Matlab function dbscan with parameters
ε=0:05 andMinPts = 15). Spikes identified as outliers by the algorithm
were discarded.

DBSCAN+GMM. We proceeded as in RM+GMM but used the output
of DBSCAN as the initial place field estimate.

Common to all tested place field detection methods, only spikes
fired when the rat moved faster than 12 cm/s were included.

Supplementary Fig. 7 shows a comparison between the outputs of
the different place field detection methods. Key analyses were repe-
ated on unit’s activity parsed by place field computed with different
detection methods (Supplementary Figs. 8, 9, 10, 11, and text).

Classifier
For each place field, we trained a support vector machine (SVM) clas-
sifier with linear kernel (slack variables minimized with L1 norm and
box constraint = 1) to divide trials according to their trial type (the trial
types categories here considered were: correct choices left, correct
choice right, forced left, forced right, forced switch right-left, forced
switch left-right). For every two types of trials, we build three SVM
models: one based on the spike’s phase, one on the spike’s instanta-
neous firing rate, and one on both phase and instantaneous firing rate.
Spikephases are a circular quantity and cannot beuseddirectly to train
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the SVM. Thus, phase information was passed to the classifier as
½cos θt

� �
, sinðθtÞ�, where θt is the phase relative to the theta band of the

LFP of the spike fired at time t. The classifier accuracy was computed
with a 50-fold cross-validation, to avoid overfitting. Significance was
established via bootstrap. Bootstrapped samples were created by
shuffling the trial labels. Since this step removes not only the spike-
label association but also any autocorrelation in the label time series
(which might affect the accuracy when performing block cross-vali-
dation), for a fair comparison, we jointly shuffled the order of the
spike-label elements when training the SVM classifier on the original
set. The bootstrap procedure was repeated 500 times, and p values
were assigned by counting the fraction of bootstrap sets with an
accuracy higher or equal to the original set.

Phase precession units
We tested phase precession for each place field of each unit. Preces-
sion was assessed separately for each trial type by computing the
circular-linear correlation97,98 between the unit phase and the position
of the animal along the linearized trials-specific path when the spike
was fired.

Changes in the lag of activation betweenunits along theta cycles
To assess if pairs of units significantly changed their relative lag of
activation during different trial types, we first computed the maximal
cross-correlation lag of the two units in each trial. Cross-correlation
was computed with a 0.02 sec binning and, to remain within a theta
cycle, within the [−3, 3] bin window (in Fig. 6e, we chose a larger
window exclusively for visualization purposes). Once obtained the
maximal correlation lag per trial, we divided the trials according to
their trial type and tested for a change in lagwith a two-sidedWilcoxon
signed-rank test. Since single units had different phase preferences in
different place fields, testing was performed separately for each unit
place field.

AdEx model and assembly recruitment
Neuronal activity was simulated by an Adaptive Exponential Integrate-
and-Fire model51. In AdEx models, the evolution of the neuron mem-
brane potential V and adaptation current w is defined by the equa-
tions:

C
dV
dt

= � gL V � EL

� �
+ gLΔT exp

V � VT

ΔT

� �
� ge V � Ee

� �� gi V � Ei

� ��w+ ε
ð1Þ

τw
dw
dt

=a V � EL

� ��w ð2Þ

With membrane capacitance C, leak conductance gL, threshold slope
factorΔT , resting potential EL, threshold potentialVT , adaptation time
constant τw, and subthreshold adaptation a. Noise in the evolution of
the membrane potential was introduced through the parameter
ε � Nð0,1:6 10�19Þ. Synaptic currents were modulated through the
time-dependent excitatory and inhibitory conductances geðtÞ and
gi tð Þ, and the excitatory and inhibitory current reversals Ee and Ei,
respectively. At every time�t themembrane potential reached 0mV, an
action potential was fired and V �t

� �
was set to Vs. Afterward, both the

membrane potential and the adaptation current were reset to
V �t + 1
� �

=Vr and w �t + 1
� �

=w �t
� �

+ b, respectively.
To reflect the presence of theta oscillations, we modulated both

excitatory and inhibitory conductances at θ= 7Hz with a relative offset
of π rad. The excitatory conductance was then further modulated by a
Gaussian-shaped depolarization tomimic transient assembly activation

gi tð Þ= ki ðsin 2πθt � πð Þ+ 1Þ ð3Þ

ge tð Þ= ke ðsin 2πθtð Þ+4Þ exp �ðt � cÞ2
2 σ2

 !
: ð4Þ

with c =2:5 s and σ =0:4 s center and standard deviation of the Gaus-
sian, respectively. The activation of an assembly provided to its com-
posing unit n an assembly-specific degree of depolarization kn

e . We
simulated 2 assemblies composed of 3 units. In the first assembly
k1
e =2:7nS, k2

e = 1:7nS and k1
e =0:7nS. In the second assembly

k1
e = 1:0nS, k2

e = 2:0nS and k1
e =3:0 nS. Average inhibitory conductance

was set at ki = 17nS for all units and all assemblies.
To formally evaluate the fine temporal coordination of network

units induced by the recruitment of different context-specific cell
assemblies, we concatenated 400 retrievals of each of the two mod-
eled assemblies and ran CADopti on the spike time series so obtained.
We performed and analyzed 100 simulations generated with different
noise realizations. CADopti parameters: reference lag = 2; bin sizes:
[0.0058, 0.007, 0.009, 0.011, 0.014, 0.018, 0.022, 0.028, 0.035, 0.044,
0.055] sec; maximal lag: [18, 21, 22, 22, 22, 20, 18, 17, 15, 13, 11].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The hippocampal data generated in this study have been deposited in
the OSF database under the identifier DOI 10.17605/OSF.IO/PESKV
accessible at https://osf.io/peskv/102. Source data are provided with
this paper.

Code availability
Analyses were performed with Matlab2018a. Code for cell assembly
detection at multiple timescales CAD and CADopti are available at
https://github.com/DurstewitzLab/Cell-Assembly-Detection and
https://github.com/DurstewitzLab/CADopti, respectively.
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