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Abstract
Transthyretin (TTR) is a tetrameric protein traditionally recognized for its role in transporting thyroxine and retinol. Recent 
research has highlighted the potential neuroprotective functions of TTR in the setting of Alzheimer’s disease (AD), which is 
the most common form of dementia and is caused by the deposition of amyloid beta (Aβ) and the resulting cytotoxic effects. 
This paper explores the mechanisms of TTR protective action, including its interaction with Aβ to prevent fibril formation 
and promote Aβ clearance from the brain. It also synthesizes experimental evidence suggesting that enhanced TTR stabil-
ity may mitigate neurodegeneration and cognitive decline in AD. Potential therapeutic strategies such as small molecule 
stabilizers of TTR are discussed, highlighting their role in enhancing TTR binding to Aβ and facilitating its clearance. By 
consolidating current knowledge and proposing directions for future research, this review aims to underscore the significance 
of TTR as a neuroprotective factor in AD and the potential implications for future research.
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Transthyretin (TTR) is a tetrameric protein secreted in the 
plasma and cerebrospinal fluid (CSF) acting as a carrier of 
thyroxine and retinol binding protein (RBP). Besides its role 
in the pathogenesis of TTR amyloidosis (ATTR), a growing 
body of evidence points to a role of TTR in the develop-
ment of another form of amyloidosis, namely Alzheimer’s 
disease (AD).

The prevalence of dementia has increased rapidly in 
recent years. In 2020, over 55 million people were affected 
by the syndrome, and this number is expected to double 
within 20 years, primarily due to increased life expectancy, 
though other risk factors also play a crucial role [2]. Alzhei-
mer’s disease (AD) is the most common form of dementia, 
accounting for approximately 70% of cases [1]. The diag-
nosis of AD in vivo is based on criteria established in 1984 
[4] and revised in 2011 [5]. Since neuropathological changes 
develop years before symptoms appear [6, 7], a diagnosis 
based on clinical criteria cannot capture the prodromal 
phase, making it difficult to prevent or slow disease progres-
sion. Additionally, AD symptoms are quite similar to those 
of other forms of dementia [8], and a reliable diagnostic 
method remains an unmet need. Some progress has been 
made, particularly with the introduction of biomarkers for 
cerebrospinal fluid (CSF) analysis [9] and Aβ PET molecular 
imaging [10].

Amyloid fibrils are formed because of incorrect fold-
ing of protein rich in β-sheets, and the nature of the aggre-
gating peptide determines the features of the specific 
disease. Kinetically unstable conformations of TTR have 
been linked to the pathogenesis of ATTR [11], while AD 
is believed to develop when amyloid beta protein (Aβ) 
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deposits in the extracellular matrix following proteolytic 
processing of a transmembrane protein, amyloid precursor 
protein (APP) [12].

Interestingly, TTR is a carrier and chaperone of cyto-
toxic Aβ peptides and therefore has anti-amyloidogenic 
and neuroprotective activities in the central nervous sys-
tem (CNS) [13]. In AD, the stability and functionality of 
TTR seems compromised, possibly leading to an accumu-
lation of Aβ fibrils and, subsequently, to neurodegenera-
tion and cognitive decline. TTR stabilization would then 
have beneficial effects also on AD progression [14]. In 
this review, we provide an overview of the experimental 
evidence supporting this hypothesis, and we suggest some 
possible perspectives for future research.

Transthyretin: Molecular Structure 
and Stability

TTR is a small protein (55 kDa) composed of 4 identical 
monomers [15] encoded by a gene on chromosome 18 [16]. 
It has a globular structure with two central hydrophobic 
channels, where two molecules of T4 can bind (Fig. 1). In 
physiological conditions, only one T4 is bound, because 
of the negative cooperativity between the two sites [17]. 
T4 binding stabilizes the TTR tetramer [18]. RBP binds 
in another site to the external surface of TTR. Each dimer 
has four possible binding sites for RBP, but only two mol-
ecules can bind because of steric hindrance [19] (Fig. 1). 
Retinol binding induces conformational changes in RBP that 
increase its affinity for TTR. Binding of either T4 or RBP 
inhibits TTR destabilization and amyloid formation [20].

Decreases in pH, ageing, metal cations (particularly cal-
cium ions), and oxidation may reduce TTR stability [21], but 

Fig. 1   Tridimensional structure of transthyretin (TTR). a Cartoon 
diagram of TTR dimer; b–c TTR tetramers seen in different projec-
tions; d contact surfaces of the 4 TTR monomers; e TTR complexed 
with a thyroxine (T4) molecule bound in the inner hydrophobic chan-
nel (yellow arrows); f cartoon diagram of TTR complexed with two 

retinol binding protein (RBP) molecules (yellow/red/green struc-
tures), carrying one retinol each (orange structures). Tridimensional 
protein structures taken from RCSB PDB database (protein IDs: 
2PAB, 3W3B, 1ICT, 1QAB), access date 2 April 2024
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the main causes of TTR destabilization, which leads to the 
reaggregation of monomers in cytotoxic quaternary struc-
tures, and, ultimately, to ATTR amyloidosis, are single point 
mutations in the TTR​ gene [22]. More than 140 mutations 
with autosomal dominant transmission have been reported, 
and just few of them do not cause TTR dissociation and fibril 
formation. Only three mutations are known to increase TTR 
stability [23].

Synthesis and Catabolism

TTR is a highly conserved protein mainly secreted by the 
liver in the blood flow and the choroid plexus (CP) in the 
cerebrospinal fluid (CSF) [24]. The liver secretes up to 
90% of TTR in humans [23]. TTR​ gene expression in the 
liver is modulated by hepatocyte nuclear factors (HNF) 

and is reduced by inflammation or malnutrition [25]. TTR 
concentration in the CSF is lower than in the blood, but 
TTR represents about 25% of the total protein content of 
the CSF and is synthesized much faster [26]. TTR​ expres-
sion in the choroid plexus is not modulated by HNF and 
is not affected by systemic inflammation [23]. TTR is also 
synthesized in small amounts in other tissues (Fig. 2).

TTR produced by the placenta [27] and yolk sac [28] 
is crucial to transport maternal T4, which is required for 
embryonal development. In the pancreas, TTR is mainly 
synthesized by α-cells [29], and promotes glucose-induced 
insulin release [30]. In the retina, TTR is produced by 
the retinal pigment epithelium together with RBP [31, 32] 
and transports retinol to photoreceptors [23]. Low TTR 
levels may be synthesized also by the skeletal muscle 
(where TTR promotes myoblast differentiation and muscle 

Fig. 2   Sites of transthyretin (TTR) production
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growth) [33, 34] and in other sites (heart, spleen, stom-
ach), where its functions are still unknown [24].

Importantly, TTR is also secreted in the peripheral nerv-
ous system (PNS) by the Schwann cells [35] and in the CNS 
by neurons and oligodendrocytes [36], especially in the hip-
pocampus [37], where it exerts neuroprotective functions 
and lowers the production of amyloid aggregates [38], char-
acteristic of AD.

Physiological Roles of TTR: Thyroxine 
and Retinol Carrier and Proteolytic Activity

TTR carries only 15% of protein-bound T4 in the plasma, 
the rest being transported by thyroxin-binding globulin and 
albumin, while TTR carries 80% of T4 in the CSF [39]. 
Plasma RBP is secreted by hepatocytes and represents the 
unique specific transporter for retinol in the bloodstream, 
95% circulating in complex with TTR, to avoid its renal 
filtration [40]. The relevance of plasma TTR for normal 
development and organ functioning is debated, also because 
selective deletion of plasma TTR cannot be achieved. Fur-
thermore, studies on TTR knock-out (KO) mice showed 
either normal organ development [41] or delayed bone 
growth, delayed development of intestine, and altered CNS 
development, which were attributed primarily to a deficiency 
of thyroid hormones within tissues [42].

TTR may also cleave the C-terminal of apolipoprotein A-I 
(ApoA-I). This cleavage reduces cholesterol efflux by ApoA-
I and increases its amyloidogenic potential [43]. Addition-
ally, two possible substrates of TTR have been identified in 
the central nervous system: neuropeptide Y [44], a molecule 
with anti-inflammatory and neuroprotective functions [45], 
and amyloid β peptide (Aβ), which plays a key role in AD 
pathogenesis. TTR is one of the main Aβ-binding proteins 
and is able to cleave both its soluble and aggregated forms, 
decreasing its toxicity [46].

TTR as a Neuroprotective Factor

TTR was first found in the PNS, and specifically in the 
endoneurial fluid, either coming from the CSF after cross-
ing the blood-nerve barrier, or synthesized by the glial 
cells of the dorsal root ganglia (DRG) and by the Schwann 
cells [35]. Neuroprotective effects of TTR in the PNS were 
postulated based on observations on TTR KO mice, which 
showed sensorimotor impairment and decreased ability to 
regenerate sciatic nerve after crush [48]. TTR may promote 
nerve regeneration and neurite outgrowth following inter-
nalization in DRG neurons through the receptor megalin 
and activation of an intracellular pathway or by stimulat-
ing axonal transport (which is impaired in TTR KO mice) 

[49]. The neuritogenic TTR activity seems to be independent 
of its carrier function, since a TTR variant with decreased 
transport ability maintain its neuritogenic role [49], and not 
essential for neuronal survival, as the lack of TTR does not 
associate with increased neuronal loss [48].

In the CNS, TTR is mostly secreted by the epithelial cells 
of the choroid plexus, despite it can also be expressed by 
neurons and oligodendrocytes [36]. It exerts neuritogenic 
activity in hippocampal neurons, as well as neuroprotec-
tion in case of cerebral ischemia [50] or AD [38]. In vitro 
evidence demonstrated that TTR reduces the formation of 
harmful Aβ aggregates by proteolysis in cultured hippocam-
pal neurons, protecting them from neurotoxicity [38]. Stud-
ies on TTR​ KO mice showed the lack of TTR leads to an 
accelerated memory deficit with age [51], and, conversely, 
TTR expression is decreased in rats with age-related mem-
ory impairment [52]. These findings confirm the hypoth-
esis that TTR play a key role in disorders characterized by 
memory loss, such as AD and other dementia, possibly also 
through mechanisms other than its binding to Aβ [53]. For 
example, TTR KO mice show also an impaired neuronal 
differentiation in the subventricular region with a shift from 
neurodifferentiation towards oligodendrogenesis, which 
results in a hypermyelination of the brain [54]. Proliferation, 
survival and differentiation of oligodendrocytes is mediated 
by the phosphatidylinositol 3-kinase (PI3K)/Akt and extra-
cellular signal-regulated protein kinases 1 and 2 (ERK1/2) 
pathways [55]. TTR KO mice exhibit increased Akt phos-
phorylation in oligodendroglial lineage cells, suggesting a 
possible mechanism of action of TTR [53]. Conversely, TTR 
binds and activates the insulin-like growth factor-1 recep-
tor/Akt signaling pathway in hippocampal neurons [56], 
pointing to distinct roles of TTR in different cells and brain 
regions.

Central Nervous System Involvement 
in ATTR Amyloidosis and Alzheimer’s 
Disease

Amyloidosis comprises several pathologies characterized by 
the accumulation of cytotoxic, insoluble fibrils in different 
tissues. Growing evidence in recent years has pointed out an 
involvement of TTR in the development of two amyloidotic 
disorders—transthyretin amyloidosis (ATTR) and AD—
along with its neuroprotective functions. Amyloid deposi-
tion in ATTR amyloidosis occurs first in leptomeningeal 
vessels, arachnoid and pia, followed by perforating corti-
cal vessels and the subpial region. Afterwards, subepend-
ymal deposition and involvement in basal ganglia vessels 
close to the ependymal lining develops. The two structures 
affected earlier by cerebral amyloid angiopathy (CAA) are 
the brainstem and the spinal cord [57]. Symptoms of CNS 
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involvement develop at least 14 years after the onset of 
symptomatic systemic disease, as a frequent complication 
especially in patients with hereditary ATTR amyloidosis 
and the Val30Met mutation [58]. Its manifestations include 
transient focal neurological episodes and, less commonly, 
intracerebral hemorrhages, ischemic stroke, and cognitive 
deterioration [59–61]. The Hisayama study reported ATTR 
amyloidosis in 23% and CAA in 36% of autopsies of elderly 
adults. The prevalence of both ATTR amyloidosis and CAA 
increased in patients with dementia and those with a greater 
extent of pathological lesions (Aβ plaques and neurofibril-
lary tangles [NFTs]) [62]. However, the exact prevalence 
of AD in cardiac amyloidosis and vice versa is currently 
unknown. There is only preliminary evidence in a small 
single-center cohort that AD patients more frequently show 
hallmark features of an infiltrative cardiomyopathy (i.e., 
lower electrocardiographic QRS voltages and voltage/mass 
ratios) as compared to cognitively normal participants [63]. 
Moreover, it is unclear whether this may represent a sys-
temic deposition of Aβ [64] or an association between AD 
and cardiac amyloidosis caused by different precursors.

The brain of patients with AD is characterized by a mas-
sive presence of extracellular amyloid plaques and intra-
cellular NFTs. The transmembrane protein APP is cleaved 
producing Aβ40 and Aβ42, which may form insoluble 
aggregates [65]. NFTs are made of hyperphosphorylated 
tau, a microtubule-associate protein that can form insoluble 
helical filaments; these are thought to cause neuronal death 
through processes of synaptic disturbance, oxidative stress, 
and mitochondrial dysfunction. Co-presence of β-amyloid 
peptide and NFTs in AD [66], and evidence that NTFs for-
mation follows Aβ accumulation [67, 68], led to the amyloid 
hypothesis, which is still the primary model of AD patho-
genesis [69].

Anti‑amyloidogenic Activity of Transthyretin 
in Alzheimer’s Disease

AD is believed to develop when there is an imbalance 
between the production and clearance of soluble Aβ (sAβ). 
The removal of Aβ from the brain requires mostly 3 sys-
tems: externalization across the blood-cerebrospinal fluid 
barrier and blood–brain barrier (BBB), cellular internali-
zation, or enzymatic cleavage [70]. Demonstration that 
human CSF inhibited Aβ40 aggregation [71] suggested 
that some molecules can sequester sAβ circulate in the 
fluid. The main sequestering protein was found to be TTR, 
followed by ApoE [72]. Once the TTR/Aβ complexes are 
formed, several pathways can lead to Aβ clearance. First 
and foremost, TTR acts as a transporter, carrying the pep-
tide outside the CNS through the BBB. TTR may also 
directly cross the barrier, but only in the brain-to-blood 

direction, hence promoting a decrease in Aβ levels in the 
brain. However, in most cases, the passage is mediated 
by the low-density lipoprotein receptor-related protein 1 
(LRP1), the main Aβ efflux receptor [73]. Not only TTR 
presents the peptide to its receptor on the brain side, but it 
is also capable of regulating BBB permeability to Aβ by 
modulating LRP1 externalization in cerebral endothelial 
cells [74].

Native TTR has a similar affinity for different Aβ configu-
rations: monomers, oligomers, and fibrils [75]. When bound 
to non-toxic sAβ monomers, it prevents their aggregation 
and promotes their removal from the CSF [75]. Nonetheless, 
tetrameric TTR was found also in Aβ oligomers and plaques, 
possibly following a failed attempt to prevent such structures 
because of an impaired TTR/Aβ ratio [60].

In vitro experiments demonstrated that even a kinetically 
stable monomeric variant of TTR (M-TTR) can bind Aβ 
aggregates, but not Aβ monomers [76]. M-TTR prevents 
oligomerization and fibrillation by stabilizing the amyloid 
peptide in non-cytotoxic and non-fibrillar, yet insoluble, 
deposits: Aggregating the oligomers in larger and more sta-
ble compounds is far more efficient than keeping isolated 
peptides separated [77]. However, since the tetramer is one 
thousand times more concentrated than the monomer [78], 
the main AD inhibitor likely remains tetrameric TTR.

The molecular structure of the TTR/Aβ complex has been 
firstly explored through computational models [72] and then 
with protein engineering [79]. The binding sites for Aβ have 
been identified as intra-monomeric superficial domains (near 
A and G β-strands), as well as the inter-monomeric hydro-
phobic channel for T4 [80].

Interestingly, TTR has also been characterized as a met-
alloprotease, whose main substrates are ApoA-I and, in the 
brain, neuropeptide Y and Aβ [38, 45, 46]. In vitro, TTR is 
able to cleave Aβ aggregates and decrease their amyloido-
genic potential [81]; evidence in vivo is still lacking. Finally, 
the C99-terminal residue of APP, known as CTFβ, can bind 
to the TTR hydrophobic pocket instead of T4. In this con-
formation, γ-secretase is unable to reach APP and operate 
the cut that would release Aβ in the CSF [82].

All these mechanisms, summarized in Fig. 3, may con-
tribute to Aβ removal from the CNS and explain the neuro-
protective roles of TTR in AD. However, further in vitro and 
in vivo studies are needed to better understand how endog-
enous factors affect Aβ levels and deposition and to develop 
new strategies for stabilizing TTR tetramers.

Tetrameric TTR binds Aβ monomers in its hydropho-
bic channel for T4, inhibiting their oligomerization. TTR 
monomers are unstable species with very low concentrations 
in vivo. As demonstrated in vitro through a kinetically stable 
TTR monomer, the monomeric form can bind Aβ oligom-
ers, inhibiting their polymerization in toxic fibrils. TTR/Aβ 
complexes are subsequently degraded by TTR through its 



	 Molecular Neurobiology

proteolytic activity, or excreted in the blood flow through 
LPR1 receptors, whose expression is enhanced by TTR 
itself.

Therapeutic Potential of Transthyretin 
in Alzheimer’s Disease

As explained above, TTR can physiologically bind to Aβ 
and decrease the concentration of toxic amyloidotic aggre-
gates. M-TTR has proven to be a more powerful anti-oli-
gomerization factor [77]; however, TTR mostly circulates 
as a tetramer in vivo, and the presence of kinetically stable 
monomers is quite uncommon. Their affinity to Aβ (and then 
their anti-AD potential) needs to be specifically evaluated to 
understand the connection between the two pathologies. In 
2004, Schwarzman et al. investigated the affinity to T4 and 
binding to Aβ of 47 TTR variants. They found an inverse 
correlation between the amyloidogenic potential of each 
variant and its ability to sequester Aβ peptides, which sug-
gests that the stability of tetrameric TTR is a fundamental 
factor in TTR/Aβ interaction. For example, the strongest 

amyloidogenic variants, P55 and G42, proved totally unable 
to prevent Aβ polymerization [83]. Therefore, stable TTR 
tetramers protect not only from ATTR amyloidosis, but from 
AD as well.

It has been observed that the blood brain barrier (BBB) 
crossing capability of TTR is only unidirectional, and it can-
not traverse BBB from periphery blood to brain [84]. Moreo-
ver, the concentration of endogenous TTR in brain seems 
to be too low to inhibit and transport excessive Aβ during 
AD progression [85]. For this reason, Wang and colleagues 
designed a recombinant TTR fused with a cell-penetrating 
peptide (Pen) to create TP, which significantly enhanced 
BBB penetration and Aβ inhibition. TP exhibited superior 
Aβ aggregation inhibition, reduced Aβ-induced toxicity, and 
extended the lifespan of AD model organisms at low concen-
trations. Due to its high BBB permeability, TP effectively 
transports Aβ out of the brain, showing great potential for 
AD treatment [86].

Different strategies for TTR stabilization have been 
proposed, starting from TTR stabilizers like tafamidis, 
dinitrophenol, resveratrol, or iododiflunisal. Tafamidis is 
a small molecule binding the T4 site and stabilizing the 

Fig. 3   Proposed mechanisms of protection from Aβ fibril depositions by transthyretin (TTR)
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TTR tetramer. Tafamidis treatment has been associated 
with decreased presence of amyloid plaques and increased 
Aβ efflux from the brain [87]. Unlike T4, tafamidis does 
not block Aβ from binding in the central channel, due to 
its minor dimensions; therefore, Aβ clearance by TTR is 
preserved. Both dinitrophenol and resveratrol may enhance 
TTR binding to Aβ, but only resveratrol may increase the 
proteolytic activity of TTR [88]. In AβPPswe/PS1A246E 
transgenic mice carrying one copy of the TTR​ gene (AD/
TTR ±), iododiflunisal bound TTR in plasma and stabilized 
the protein, and was able to enter the brain, as revealed by 
mass spectrometry analysis of CSF. Iododiflunisal admin-
istration resulted not only in decreased brain Aβ levels and 
deposition, but also in improved cognitive function associ-
ated with the AD-like neuropathology. Additionally, in AD/
TTR ± mice, Aβ levels decreased in plasma, indicating that 
TTR facilitated Aβ clearance from both the brain and the 
periphery [89].

Conclusions

TTR has a tetrameric structure with an intrinsic propensity to 
disaggregate in monomers; these subsequently re-aggregate 
in toxic amyloid fibers, accumulating in the heart, kidney, 
and both peripheral and central nervous system. In the latter, 
they cause cognitive and functional impairment, similarly to 
what happens in AD patients. There is growing evidence that 
Aβ amyloid accumulation in the brain is closely related to a 
higher risk of AD. Clearance of Aβ is seen as a critical stage 
to avoid its accumulation into the brain. TTR was described 
as the major binding site for Aβ in the CNS, and a protec-
tive role for it against neurodegenerative diseases and AD 
was postulated. The tetrameric form of TTR binds Aβ inside 
its hydrophobic central channel and inhibits the formation 
of toxic amyloid fibers. Moreover, TTR can increase their 
degradation directly, through its intrinsic proteolytic action, 
and indirectly, by restoring the expression of LRP1 and thus 
facilitating their elimination into the blood flux through the 
BBB. When a ligand (which can be either T4 or its com-
petitors) is bound to the central hydrophobic channel, the 
TTR tetramer is less likely to dissociate. Furthermore, if the 
ligand is a small molecule, it can occupy the T4 binding sites 
without affecting its capability to bind Aβ, thus enhancing 
the TTR/Aβ interaction. Interestingly, by binding Aβ pep-
tides, TTR reduces not only their amyloidogenic potential, 
but also its own. Small T4 competitors have also the abil-
ity to cross the BBB and deserve consideration as possible 
strategies to slow down cognitive decline in AD. Although 
patients with TTR-FAP who received tafamidis showed a 
52% reduction in neurological decline compared to those 
who received the placebo over an 18-month period [90], no 
data are currently available on cognitive function of patients 

on tafamidis over the long term. We may also consider that 
a massive presence of T4 competitors in the CNS, probably 
required in cases of severe amyloid deposition, could limit 
the availability of T4 for neurons.

While the protective effects of tetrameric TTR in AD 
seem rather well established, significant gaps remain in our 
understanding that warrant further investigation. Evidence 
has emerged about the beneficial effects of TTR stabili-
zation in the pathogenesis of AD. However, retrospective 
clinical studies, reviewed in (14), have been conducted to 
collect data on a possible correlation between mutated TTR 
concentration and the prevalence of AD in the sample. The 
results are controversial, leading the authors to conclude 
that it is not yet possible to establish a direct correlation 
between mutated TTR and the onset of AD. Therefore, the 
cause-effect relationship between TTR instability and AD 
development remains to be confirmed through mechanis-
tic studies, such as experiments involving mice with TTR 
mutations or those receiving injections of unstable TTR 
isoforms. To better establish the protective role of TTR in 
AD, future research should focus on developing TTR stabi-
lizers, optimizing recombinant TTR proteins for enhanced 
BBB penetration and Aβ inhibition, and conducting detailed 
mechanistic studies on TTR/Aβ interactions. Future studies 
should aim to elucidate molecular mechanisms of action of 
endogenous factors on Aβ levels and deposition. Preclini-
cal and clinical trials, along with biomarker development 
and genetic studies, are essential to evaluate the efficacy and 
safety of these approaches. Additionally, longitudinal stud-
ies evaluating patients taking new drugs, such as tafamidis, 
whose administration has been recently extended in cardiac 
ATTR, are essential to establish causality and inform clinical 
practice. Furthermore, exploring the potential therapeutic 
implications of other molecules described above through 
randomized controlled trials holds promise for improving 
patient outcomes. Continued research efforts in these direc-
tions will be instrumental in advancing our understanding of 
the impact of TTR in different sites of the body and translat-
ing findings into clinical benefits.
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