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Abstract
In the production of steel strips, the ful�llment of required product properties is a key factor to improve the company’s
productivity and competitiveness. Product characteristics can be evaluated online throughout the length of the strip by means
of non–destructive tests such as the IMPOC whose output signal is related to mechanical properties and their uniformity. In
this work, a novel approach based on the use of deep–neural–networks and advanced analytics is used to develop a model for
the prediction of IMPOC signal from process parameters. The model provides plant managers with an insight into the
relationships among process conditions, product characteristics and mechanical properties in order to suitably set up process
parameters to meet product requirements. In this work, di�erent model architectures and data processing techniques are
evaluated leading an overall prediction error lower than 5% that puts the basis for their integration into the plant.
Keywords: neural networks; advanced analytics; steel–making; non–destructive test; variables selection

1. Introduction

In the last years the steel market has become highlycompetitive due to the continuously increasing numberof producers that share the marketplace. This situa-tion is becoming critical for the European steelmakers,which face the competition of companies outside EUthat often o�er cheaper products. At the same time,worldwide the steel sector is facing the challenge ofdigitalisation (Branca et al., 2020), which translates ina wide di�usion of sensing and monitoring devices cou-pled to ever increasing deployment of big data, machinelearning and other data-driven techniques, which arerequired to process the huge volume of collected hetero-

geneous information. In this scenario methodologies,tools and practices improving product quality whilereducing downgraded material can provide a funda-mental support to the European sector in preserving itscompetitiveness (Dai and Zuo, 2020; Windt, 2019; Bran-denburger et al., 2016). In e�ects, such tools allow pro-viding customers with more reliable products that ful�ltheir demands, by improving productivity as well asenergy and resource e�ciency through scrap reduction.These considerations are valid in particular for steelstrips for automotive applications, a paramount and�ercely contested market that is characterized by tightrequirements. In such context, strips quality is con-tinuously monitored throughout the whole production
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chain by means of non–destructive testing equipments,which provide a real–time measure of mechanical prop-erties and microstructural properties deviations. Byexploiting such information plant personnel can takesuitable counter measures to preserve product qualityand ensure uniformity of the main product propertiesover its length as well as over each production batch.This work is based on the measurements provided byone of these instruments, the Impulse Magnetic Process
Online Controller (IMPOC) (Scheppe, 2009; Herrmannand Irle, 2009), an online material properties mea-surement system allowing automatic non–destructivetesting of ferromagnetic steel strips, which is formedby two measuring subsystems with induction coils anda magnetic �eld sensing probe. The measuring headsare placed in front of the two sides of the steel strip thattransits in between at the distance of approximately50 mm each other. The IMPOC signal is derived fromelectromagnetical measurements of the strip residual�eld resulting by a magnetization impulse generatedby the IMPOC heads (Jolfaei et al., 2018; Matyuk et al.,2006). Since the steel strip continuously moves with aspeed value of about 3 m/s between the IMPOC heads,the measurement provided by the instrument is a sig-nal throughout the whole length of the coil. Numerousstudies highlight that such signal is strongly correlatedto the strip mechanical properties over its length andput the bases for further investigations aiming at mod-elling such relationship to use it for production processmonitoring and control purposes. These works exploitboth traditional and advanced data analytics as well asArti�cial Intelligence (AI) techniques (Bärwald et al.,2015; Mocci et al., 2018; Van Den Berg et al., 2021). In(Kebe et al., 2011) standard regression techniques areused to estimate strip tensile and yield strength fromthe IMPOC signal. The research pursued in (Nastasiet al., 2016) focuses on chill marks microstructural de-fects that are put into correlation with IMPOC signaldiscontinuities by means of advanced statistical analy-sis. Product uniformity issues are taken into account aswell: in the RFCS project PUC (Product Uniformity Con-trol) (Van Den Berg et al., 2017) main EU steel manufac-turers and research institutes face the problem underdi�erent points of view by analysing through standardand AI techniques the outcome of ultrasonic and elec-tromagnetic tests on actual products. Uniformity is putinto relation with process parameters in Mocci et al.(2018) by using a popular type of unsupervised neuralnetwork, the Self-Organizing-Map (SOM), that allowscontinuously monitoring uniformity trend according tothe varying plant conditions. In (Van Den Berg et al.,2021) the authors investigate the e�ect of the Hot DeepGalvanizing (HDG) line process parameters on the IM-POC signal by using two distinct IMPOCs: one at theentry (IMPOC–entry) and one at the exit (IMPOC–exit)of the HDG so as to monitor signal changes. The mainoutcomes of the work was the analysis of the relation

among process conditions and IMPOC signal variationsby using polynomial models and simple Arti�cial Neu-ral Networks (ANNs). In (Colla et al., 2020) a machinelearning approach was applied to the data providedby the IMPOC to �nd process conditions which allowpreserving tensile properties uniformity along hot dipgalvanized steel strips for automotive applications.
In this work the main results achieved in (VanDen Berg et al., 2021) are exploited to set up a modelfor the coil–wise simulation of the IMPOC test at thePickling Line (PL) of a steelworks producing �at steelstrips in order to predict the resulting signal. Theproposed approach exploits product characteristics aswell as process parameters related to the Hot Strip Mill(HSM) and the PL. Due to task complexity, peculiarityof the industrial problem and highly non–linear rela-tionships among input and output variables, advancedpreprocessing techniques for data partition and vari-ables selection purposes are exploited together with aDeep Neural Networks (DNN)-based model to capturethe relationships among the signal and the product andprocess parameters. This work is notable with respectto similar ones as it combines data analytics techniquesfor the selection and preprocessing of the data to a DNNthat is able to simulate in real time the IMPOC measure-ments in order to allow plant manager to exploit thisinformation to improve plant productivity and productquality.
The paper is organized as follows: section 2 is de-voted to the description of the approach and of theavailable dataset used for model tuning and valida-tion. More in detail a short description of the plantand data is provided in section 2.1, while the testedapproaches are discussed in 2.2 together with the datapre-processing steps. The results achieved by testedmodels are presented, compared and discussed in sec-tion 3. Finally, some concluding remarks and hints forfuture developments are provided in section 4.

2. Material and methods

The work presented in this paper exploits the datagathered at the Tata Steel Europe steelworks located inIjmuiden, The Netherlands. A schematic representationof the whole line is provided in Figure 1, which repre-sents the production chain together with the installedIMPOC system, that is the object of this study.
The hot-strip mill is fed with slabs which have beencast at the steelmaking plant. These slabs, being about225 mm thick, are reduced in thickness by subsequentsteps of hot rolling. Also, by controlled cooling of thestrip, the microstructure is determined. During thisprocess, oxides are formed on the surface of the strip,which are removed by sulphuric acid treatments in thepickling line (PL). In the cold-mill, the thickness isfurther reduced to speci�ed product thickness. Finally,in the hot-dip galvanising line (HDG), the cold-rolled
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Figure 1. A schematic representation of the whole process pipeline highlighting the position of the IMPOC system employed in this work.

steel strip is annealed to give it the required formabilityproperties, and coated with zinc for anti-corrosionresistance needed for automotive applications. Duringthe process additional operations are pursued to ensurestrip �atness. Finally, the strip is coiled and shippedto customers.
2.1. Available data

For the modelling purpose of this work, a set of datacoming from the IT system of the plant depicted in�gure 1 was suitably selected. The dataset is formedby about 35000 observations sampled every 2 metersalong the strip length and are related to 140 coils, allbelonging to similar steel grades. The dataset includes259 variables concerning both product characteristicsand plant parameters related to the di�erent stages ofthe process and can be grouped as belonging to productcharacteristics (steel type, strip dimensions) or HSMand PL process parameters, including temperaturesacquired during the process and tension levelers pa-rameters.
Basic data cleansing was performed on the datasetby removing the instances including missing or nonnumerical values. In addition, outliers removal wasachieved by removing the observations selected accord-ing to a set of support indicators provided directly bythe plant IT system, which assesses the reliability ofthe collected data.
Despite the uniformity of the so–formed datasetwith respect to steel grade, the variety of IMPOC sig-nal trends is remarkable and includes numerous be-haviours, by highlighting the e�ect of the di�erentconsidered process parameters on such measurement.Figure 2 shows some examples of IMPOC signals, whichare included in the dataset.

2.2. Models development

In this section the main steps and design choices thatled to the implementation of the model for the IM-POC signal prediction are described and discussed. Thepeculiar characteristics of the problem required the ap-plication of special algorithms for data preprocessingto maximize the e�ectiveness of the model. The de-sign phase of the predictor - schematized in �gure 3- includes three subsequent steps devoted to: (i) de-

Figure 2. Sample IMPOC pro�les that put into evidence the variabilityin terms of shape and absolute value of the target signal to be pre-dicted. Actual IMPOC values on the Y axis have been pixelated forcon�dentiality reason
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Figure 3. A �owchart representing the main steps of the design and assessment of the model for the IMPOC signal prediction. The componentsincluded into model hyperparameters tuning are highlighted in blue.

termination of homogeneous training and validationdatasets, which is described in section 2.2.2; (ii) selec-tion of a suitable set of input variables to the modelthat is discussed in section 2.2.2; (iii) model tuningincluding optimization of hyper–parameters, which ispresented in section 2.2.3.
2.2.1. Data partition
As depicted in Figure 2, there is a variety of di�er-ent types of pro�les for the IMPOC signal despite arelatively low number of coils that can be used for ei-ther training or validation of the model. In these casesa purely random partition of the whole dataset intothese two subsets could lead to situations, where somearbitrary types of pro�le are well represented in oneof the two sets and neglected in the other one. Suchpartition would be detrimental for the performanceof any data–driven model, since it should have to re-construct pro�les that belong to unknown types, i.e.that are not present or not adequately represented inthe training dataset. More in general, the predictivecapabilities of a data–driven model bene�t from thediversity of the training dataset and the homogeneityof the training, validation and test sets. In the lightof this consideration, a data partition strategy to form
balanced training and test datasets was put into prac-tice. The method proposed in this work is based onthe use of a Self Organizing Map (SOM), a particularkind of neural network that is suitable to unsupervisedlearning tasks such as data clustering and dimension-ality reduction (Ahmad and Starkey, 2018; Licen et al.,2018; Vannucci and Colla, 2018). The SOM maps thesamples from an original domain RN into a lower di-
mension space RM where M < N (typically N = 2). Thismapping has some interesting properties, which makeit suitable to this partitioning task. In particular, it is

able to preserve the topology and distribution of theinput samples in the original domain. In this context,it means that more clusters are devoted to the mappingof the original domain regions, where pro�les are morerepresented (distribution preservation), and that twocoils with similar IMPOC pro�les are mapped into thesame cluster (or, at least, in neighbour ones).
In this work the IMPOC pro�les - once resampledinto 100 points time series in order to uniform theirlength - are clustered by a SOM holding 25 neurons,which maps the pro�les into 25 clusters. At the endof the clustering, each cluster collects a set of pro�leswith similar shape - and associate coils -, mappingwith more detail (more clusters) the most represented

shape types. Once clustering is complete, the trainingand test datasets are formed by picking coils from eachcluster: in practice 70% of the coils associated to eacharbitrary cluster Ci,j form the training dataset, whilethe remaining 30% are added to the test dataset. Thisprocedure grants the balance of the various types ofIMPOC signal pro�les within the two datasets. Thisbalancing can be observed from the distribution of theIMPOC exit signal values for the training and test set,which is depicted in Figure 4 through their compar-ative histograms. The mutual correspondence of thetwo distributions highlights the similarity of the targetIMPOC measures in the two groups.
2.2.2. Variables selection strategies
As reported in section 2.1 the available dataset includea high number of potential input variables for the pre-dictive model. Not all of these features in�uence theIMPOC signal thus their use for modelling purposes isnot bene�cial. Variables selection is required to �lterout these negligible features, to limit the number ofinput variables fed to the subsequent models. This op-
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Figure 4. Histogram representing the distribution of the IMPOC exitsignal value for the training and test sets. Actual IMPOC values on theX axis have been pixelated for con�dentiality reasons.

eration was demonstrated to improve the performanceof data–driven models, as it limits the sources of po-tential noise and the number of free parameters, bymaking the training process faster and more stable(Cateni and Colla, 2016b,a). In this work two di�erentvariables selection approaches are tested:

• correlation based selection uses the Pearson’s cor-relation index (Pearson, 1895) to detect the inputvariables that are most related to the target (IMPOCvalue). This method, belonging to the �lter variablesselection approaches, is very fast but has the lim-itation of not considering the interactions amongvariables (Mehmood et al., 2012; Cateni et al., 2017).In this work the variables with an absolute value ofthe correlation coe�cient higher than 0.7 are se-lected. The resulting set is formed by 13 featuresincluding process parameters and product charac-teristics;• genetic algorithms variables selection (GaVarSel) belongsto the wrappers family of variables selection meth-ods. By exploiting the optimization capabilities ofGenetic algorithms (GA) it evolves the set of se-lected variables by mixing existing and e�cient so-lutions according to their so–called �tness, an indexthat measures the performance of candidate inputvariables sets. This method bene�ts from the ef-�cient search strategy of GA in order to �nd opti-mal solution requiring a limited computation bur-den. GaVarSel takes into account the contributionof individual variables and their interactions and isproven to be very e�cient, specially when copingwith industrial tasks, which are characterized by thepresence of a high number of input variables thatare often redundant and poorly correlated to the tar-get (Cateni et al., 2010; Matino et al., 2019). Moredetail on this method can be found in (Cateni et al.,2009). The use of GaVarSel led to the selection of

48 input variables associated to both product andprocess characteristics.
2.2.3. Models tuning
The available data, splitted into a training and test setaccording to the method described in Section 2.2.1, areused to develop and validate a Arti�cial Neural Network(ANN)-based model for the prediction of the single coilsIMPOC signal from the variables, which have been se-lected according to the correlation and GaVarSel criteriadescribed in Section 2.2.2. ANNs were selected for thismodelling task to exploit their well known capabilitiesof being a universal approximator, their generalizationability and robustness, which make them particularlysuitable to industrial applications where a target valueneed to be inferred from a large number of features. Inparticular, a DNN model is developed and evaluated byusing the popular Keras package within the Python pro-gramming language. Keras is actually one of the mostpopular and powerful frameworks for the developmentand deployment of deep–learning models (Bloice andHolzinger, 2016; Lee and Song, 2019). More in detail,the models are multi–layer perceptron feed–forwardneural networks (MLP–FFNN). In order to �nd the op-timal con�guration of the model a grid–search throughthe combinations of its main hyper–parameters andthe previously mentioned methods for variables selec-tion was performed. The following hyper–parameterswere taken into consideration together with their testedvalues:
network architecture expressed as the number of neu-rons in each hidden layer of the network. Anarbitrary con�guration is expressed as a list ofinteger values [H1,H2, ..,Hn] where Hi representsthe number of neurons in the i–th layer of thenet. The following architectures are evaluated:[20,10],[40,20],[50,25],[20,10,5]. In this contextthe number of input variables is determined by thevariables selection process while one single out-put neuron is envisaged for the prediction of thetarget;
optimizer de�nes the algorithm used to change theinternal parameters of the ANN during its train-ing, solving the optimization problems framedby the loss function minimization. In this worktwo di�erent methods are investigated: adam,an approach based on stochastic gradient descent(Kingma and Ba, 2015; Reddi et al., 2018), and sgdthat implements the gradient descent with mo-mentum;
variable selection identi�es the employed variable se-lection strategy among correlation and GaVarSel
scaling refers to the method employed to scale inputvariables values to mitigate the e�ect of di�erentorders of magnitude that could a�ect the networktraining. Three methods are evaluated: MinMaxscaler transforms features by scaling each one to
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Table 1. Results achieved by top–20 model con�gurations
Net. architecture Optimizer Var. Sel. Scaler Batch size MAPE Tr Std. Tr MAPE Ts Std. Ts
40-20 adam GaVarSel minmax 64 4.026 0.153 4.191 0.219
50-25 adam GaVarSel minmax 64 3.474 0.120 4.238 0.550
50-25 adam correlation standard 64 4.033 0.077 4.255 0.237
40-20 adam correlation standard 64 3.501 0.250 4.283 0.200
20-10 adam GaVarSel minmax 64 3.643 0.180 4.477 0.115
20-10 adam correlation robust 64 4.405 0.074 4.502 0.105
50-25 adam correlation robust 256 4.267 0.161 4.507 0.101
20-10 adam correlation standard 64 4.366 0.068 4.530 0.226
20-10-5 sgd correlation minmax 64 3.921 0.300 4.535 0.267
20-10 sgd correlation minmax 64 4.165 0.221 4.537 0.480
50-25 sgd correlation minmax 64 4.000 0.091 4.537 0.152
50-25 adam GaVarSel minmax 256 3.798 0.420 4.546 0.404
40-20 sgd correlation minmax 64 4.000 0.350 4.568 0.369
40-20 adam correlation robust 256 4.268 0.173 4.575 0.084
20-10-5 adam correlation standard 64 4.390 0.102 4.582 0.170
20-10-5 adam GaVarSel minmax 64 3.685 0.055 4.600 0.021
50-25 adam correlation robust 64 4.305 0.150 4.617 0.085
40-20 adam correlation robust 64 4.275 0.134 4.623 0.047
20-10-5 adam correlation robust 64 4.465 0.052 4.669 0.133
20-10-5 sgd correlation robust 64 4.863 2.135 4.745 2.367

the [0;1] range; Standard scaler standardizes thefeatures by removing their mean (that is set to 0)and scaling to unit their variance; Robust scalertakes into account noise and outliers in the data;
batch size sets the number of data samples that is usedduring training to estimate the network error gra-dient and subsequently update the weights. Thisparameter controls the dynamics of the networktraining. The tested values are 64 and 256.
In this context, for each of the resulting 96 combi-nations of hyper–parameters 10 tests are performed: ineach test, a model is trained according to the selectedset of hyper–parameters using the training dataset andits performance are evaluated on the tests dataset.

3. Results and discussion
The results have been assessed in terms of averageMean Absolute Percentage Error (MAPE) through thecoils belonging to the test set. MAPE for an arbitrarycoil is calculated according to the following equation:

MAPE = 100p
p∑
i=1

∣∣∣∣ ŷi – yiyi

∣∣∣∣ (1)

where p is the number of points forming the IMPOC exitpro�le of the coil, yi is the actual value of the target atpoint ith and ŷi its predicted value. The results obtainedduring the test campaign are reported in Table 1 for thetraining and validation set. The standard deviation ofthe adopted error measure through the 10 performedtests is depicted as well, to evaluate the stability ofthe model con�guration. For the sake of brevity onlythe top–20 best performing results are reported in the

table.
According to the results depicted in Table 1, the per-formance achieved by the tested models is satisfac-tory. The best performing con�gurations achieve anaverage percent error of about 4.2% with respect toactual IMPOC measurements. More in general, percenterror is lower than 5% for all of the 96 tested con-�gurations. The goodness of the prediction can alsobe assessed from Figure 5, which shows the predictedversus measured IMPOC values for all the coils withinthe test dataset as obtained by using the best perform-ing con�guration of the model. The scatter plot putsinto evidence a substantial agreement between the twoquantities throughout the whole IMPOC values.
The model stability - in terms of performance - issatisfactory as well, since the standard deviation of theMAPE through the 10 performed tests for each con�g-uration is always acceptable (in the range 0.1%-0.6%with respect to IMPOC value in the test set). High sta-bility in the performance assesses the reliability of theproduced models. The performance of the best modelcan also be evaluated from a qualitative point of viewfrom Figure 6, which shows the actual and predictedIMPOC pro�le of some sample coils in the test dataset.The plots show that the predicted pro�le follows thetrend of the measured signal with su�cient precisionand does not seem sensitive to small �uctuations ob-served in the original signal. Table 1 give some impor-tant direction on the choice of the most suitable modelhyper–parameters and pre–processing techniques tobe adopted that can be summarized as follows:

• medium–size network are preferable, as they areable to achieve a lower prediction error with respectto the other ones. Smaller networks are a�ected byhigher MAPE, probabily due to the limited number
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Figure 5. Measured vs. predicted IMPOC value for coils within the testdataset achieved by the best performing model according to Table 1.Actual IMPOC values on the axis have been pixelated for con�dentialityreasons.

of parameters that do not fully relate input variablesand target. On the other hand, bigger networksgenerally achieve better results on the training setbut worse on the test coils, by putting into evidencesome over�tting issues;• GaVarSel variable selection approach is the oneadopted by the best performing models, although thecorrelation based method obtain similar results. Theslight improvement of the former approach is likelydue to the higher number of employed variables andrelated interactions that are taken into account;• the adam training algorithm - being the one em-ployed by the majority of the top 10 models - pro-vides better performance than sgd in this application;• among the scaling methods, minmax is the one thatobtains better results: the other approaches, whichshould be more reliable when coping with noiseand outliers, perform worse than this basic scalingmethod.

4. Conclusions and future work

In this paper the design and development of a modelfor the prediction of the IMPOC pro�le on steel stripduring manufacturing was presented. The IMPOC isa non–destructive test that can be used for the moni-toring of steel strips mechanical properties - to whomit is strictly related - and its analysis is of utmost im-portance in order to grant the ful�lment of productproperties among which uniformity. The simulationof IMPOC measurement as achieved by the proposedmodel aims at linking the semi–manufactured product

properties and the process conditions to the IMPOC sig-nal for a twofold scope: the �rst goal is the achievementof a preliminary estimation of the pro�le in the initialphases of the process, to allow plant managers operat-ing suitable counter–measures in case some problemarises; secondarily, the model can improve the under-standing of the product and process characteristics thatmostly a�ect the IMPOC outcome. The described workincludes the investigation of the preprocessing method-ologies for data partitioning, scaling and variables se-lection that lead to the best predictive performance ofthe associate models.
The achieved results are satisfactory, as the averageMAPE through the test coil is durably lower than thethreshold value of 5% and around 4% for the best per-forming models. Furthermore, from a qualitative pointof view, the predicted pro�les trace the actual pro�lesand are able to reproduce the trend of the IMPOC sig-nal throughout the whole strip length. The results areindeed encouraging, but the research activity is just be-ginning. Actually the model is fed with coils belongingto a limited number of steel grades and product types;for this reason, in future work, in order to improve itsgeneralization capabilities and consolidate the results,further steel grades and product types (i.e. di�erentstrip widths) will be included in the training and testdataset of the model. Moreover, the possibility of usingthe model for a preliminary and automatic tuning ofprocess parameters will be investigated: in this casethe IMPOC pro�le predictor will be exploited by an op-timization engine whose aim is the determination ofthe process conditions that lead to an arbitrary desiredpro�le, or features of the pro�le.
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