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Abstract
Mass-rearing procedures of insect species, often used in biological control and Sterile Insect Technique, can reduce the
insects competitiveness in foraging, dispersal, and mating. The evocation of certain behaviours responsible to induce specific
neuroendocrine products may restore or improve the competitiveness of mass-reared individuals. Herein, we used a mass-
reared strain of Ceratitis capitata as model organism. C. capitata is a polyphagous pest exhibiting territorial displays that are
closely related to its reproductive performance. We tested if the behaviour of C. capitata males could be altered by hybrid
aggressive interactionswith a conspecific-mimicking robotic fly, leading tomore competitive individuals in subsequentmating
events. Aggressive interactions with the robotic fly had a notable effect on subsequent courtship and mating sequences of
males that performed longer courtship displays compared to naïve individuals. Furthermore, previous interactions with the
robotic fly produced a higher mating success of males. Reproductive performances of C. capitata males may be improved
by specific octopaminergic neurones activated during previous aggressive interactions with the robotic fly. This study adds
fundamental knowledge on the potential role of specific neuro-behavioural processes in the ecology of tephritid species and
paves the way to innovative biotechnological control methods based on robotics and bionics.

Keywords Animal–robot interaction · Bionics · Ethorobotics · Mass-rearing · Mediterranean fruit fly · Reproductive
behaviour

1 Introduction

The growing attention for health and sustainability is launch-
ing new challenges to guarantee food security and envi-
ronmental conservation (van der Goot et al. 2016; Garcia-
Herrero et al 2018). The increased demand for more efficient
and sustainable food processes, and the increased limitation
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of the use of chemicals require alternative methods for man-
aging pests organisms (Radcliffe et al. 2009; Sørensen et al.
2012).

In recent times, the development of sustainable pest con-
trol strategies has become a major issue to reduce the impact
of species of medical and/or economic importance. Sustain-
ability of pest management programs can be pursued by
several approaches, including biological control and Ster-
ile Insect Technique (SIT), that contribute to reduce the
inputs coming from non-renewable energy sources, as well
as to minimize the adverse consequences to the ecosystem
(Quimby et al. 2002; Hajek et al. 2018; Anguelov et al. 2020;
Vreysen et al. 2006). Biological control relies on the use of
natural enemies to reduce the population of a species con-
sidered as a pest (Eilenberg 2001; Cock et al. 2010). With
particular reference to the augmentative biological control,
natural enemies are mass-reared to be released in large num-
bers for breaking down the pest population (van Lenteren
et al. 2018). SIT is a species-specific controlmethod based on
themass-rearing, sterilization and release of large numbers of
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male insects (Alphey 2002) which when mating with native
females produces a decrease in their reproductive potential.
The massive release of these males over a sufficient period of
time may lead to the local eradication of the pest population.

Thus, mass-rearing is a crucial component of both these
pest management strategies. However, rearing conditions
(and also sterilization procedures for SIT) often affect insect
performance in terms of competitiveness, resulting in ani-
mals with less effective foraging, dispersal, and mating
behaviours (Sørensen et al. 2012; Reger et al. 2021). To mit-
igate mass-reared insect poor performance, different strate-
gies have been explored, mainly relying on thermal biology,
phenotypic plasticity, and artificial selection (Sørensen et al.
2012).

Learning and experience as an adaptive response to field
conditions can have a crucial role to increase quality and
performance of mass-reared insects, changing paradigms for
animal management. Indeed, more and more studies report
that insects exhibit sophisticated behavioural repertoires, in
spite of their miniature nervous systems (Sarin and Dukas
2009; Giurfa 2013; Perry 2017). Insect neural circuits allow
them to learn and memorize various stimuli, exploiting this
information in the form of experience in subsequent contexts
in the short- and long-term range (Keene and Waddell 2007;
Guerrieri and d’Ettorre 2010).

In this study, we propose a biorobotic-based approach for
altering the behaviour of mass-reared insects via the interac-
tion with biomimetic robotic agents, leading to experienced
individuals with more competitive behaviours. Creating bio-
hybrid colonies of animals and robots interacting each other
represents an emergent context of bionics encompassing ani-
mal behavioural ecology and robotics (Romano et al. 2019).
This relatively novel field of science and technology pro-
vides advanced engineered systems for studying assumptions
on cognitive and ecological mechanisms in animals that can
be generalized to humans, as well as to control intraspecific
and interspecific interactions for applied purposes (Polverino
et al. 2019; Jolles et al. 2020; Romano and Stefanini 2021;
Worm et al. 2021). A growing number of studies are using
biomimetic robots to interact with many animal species,
ranging from invertebrates to vertebrates. Just to cite some
examples, robotic agents have been used to interact with
mammals (Kubinyi et al. 2004; Takanishi et al. 1998; Shi
et al. 2015; Gianelli et al. 2018), birds (Patricelli et al. 2006;
Butler and Fernández-Juricic 2014; Gribovskiy et al. 2018),
reptiles (Brian Smith and Martins 2006; Partan et al. 2011),
amphibians (Taylor et al. 2008), fish (Landgraf et al. 2016;
Bierbach et al. 2018; Bonnet et al. 2018; Romano and Ste-
fanini 2022; Polverino et al. 2022), insects (Halloy et al.
2007; Landgraf et al. 2011; Kawabata et al. 2014; Romano
et al. 2021; Ilgun and Schmickl 2022), crustaceans (Rashid
et al. 2012; Kawai and Gunji 2022; Romano et al. 2022), and
arachnids (Benelli et al. 2018). Ethorobotics studies have

explored several behaviour processes in animals, such as
courtship behaviour (Romano et al. 2020), social affiliation
(Langraf et al. 2016;Bonnet et al. 2018;Bierbach et al. 2020),
social learning (Romano et al. 2021), agonistic interaction
(Romano et al. 2017a), predator–prey interaction (Polverino
et al. 2019), among others.

Herein, a mass-reared strain of the Mediterranean fruit
fly (medfly),Ceratitis capitataWiedemann (Diptera: Tephri-
tidae) was used as elective model to investigate the effect
of aggressive interaction of males with a conspecific-like
artificial agent (hereafter robotic fly), on the subsequent
mating success with females. The medfly is a polyphagous
pest of major economic importance, attacking over 200 fruit
species worldwide (Rasolofoarivao et al. 2021). This species
is often mass-reared to release sterile males in SIT programs
(Nikolouli et al. 2020), or to provide hosts for endoparasitoid
species that are important for biological control (Benelli
et al. 2013). So, the reproductive performance ofmass-reared
strain of this Tephritidae is relevant to both biological control
and SIT techniques. C. capitata exhibits a highly ritual-
ized aggressive display that is closely related to this species
reproductive behaviour (Briceño et al. 1999). Males form
leks, fight for territories used for courtship (e.g. on host and
non-host plants), and attract females by releasing long-range
pheromones (Papadopoulos et al. 2009; Benelli et al. 2014a,
b, 2015). Generally, changes in agonistic and courtship
behaviours are governed by changes within the central ner-
vous system and depend on neuro-hormonal mechanisms.
Territorial and reproductive behaviours may be linked thanks
to the activation of specific neural circuits that modulate the
level of neuroendocrine products following fighting interac-
tions and physical exertion (Adamo et al. 1995). Females
choose and copulate with those males that by performing
courtship behaviour express their good quality (Whittier et al.
1994; Benelli and Romano 2018).

We used robotic flies to induce territorial behaviour in C.
capitata males, and subsequently, we tested their courtship
performance and mating success. We assessed whether male
reproductive behaviour was affected by the previous ani-
mal–robot aggressive interaction experience, outperforming
naïve males. We predicted that this biohybrid agonistic
interaction may cause the activation of dedicated neuro-
modulators crucially affecting insect motivation and learning
performances. Our bioengineered approach outlines the pos-
sibility to increase mating competitiveness of males, subject
to mass-rearing procedures, by manipulating territorial skills
via biomimetic robots during the pre-release phase.
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2 Materials andmethods

2.1 Ethical note

The present research adheres to the guidelines for the
treatment of animals in behavioural research and teaching
(ASAB/ABS 2014), the Italian laws (D.M. 116,192), and the
regulations of the European Union (European Commission
2007). All the experiments consisted in behavioural obser-
vations. For tests involvingC. capitata, no particular permits
were needed by the Italian government.

2.2 Ceratitis capitatamass-rearing and general
observations

The C. capitata strain used in this study was mass-reared at
the University of Pisa since 1994, staring from about 4000
wild medflies collected in fruit orchards (Sicily, Italy). The
strain was constantly renewed adding wild flies in 1997,
2003, 2007, 2012, and 2016 (about 2000 flies per renewal,
sex ratio 1:1). Cylindrical PVC cages were used as rearing
production units. Each cage contained about 2000 flies (sex
ratio 1:1). Adults diet consisted in a dry mixture of yeast
extract and sucrose at a ratio of 1:10 (w:w). A cotton wick
provided separately water. Eggs collection occurred every
2 days. Plastic bowls (50× 15 cm and 2 cm high), each con-
taining 500 g of artificial larval food medium, were used to
place eggs. Before adult emergence, pupae were maintained
under controlled conditions (21 ± 1 °C, 55 ± 5% relative
humidity, 16:8 h L:D).

Experiments were conducted at the BioRobotics Institute
of Scuola Superiore Sant’Anna (Pisa), at 21 ± 1 °C, and 55
± 5% relative humidity. Fluorescent daylight tubes (16:8 h
light:dark, lights on at 0600) were used for illumination.
A LI-1800 spectroradiometer (LI-COR Inc., Lincoln, NE,
U.S.A.), equipped with a remote cosine receptor, measured
light intensity around the test arena that was ca. 1000 lx, esti-
mated over the 300–1100-nm waveband. Diffuse laboratory
lighting was used to limit reflection and directional light cues
causing phototaxis.

Emerged C. capitata adults were sexed and individ-
ually placed in clean Plexiglas cups (diameter: 40 mm;
length: 7 mm). C. capitata is a sexual dimorphic species.
In particular, adult males present sexually dimorphic fronto-
orbital bristles including a spatula-shaped terminal end.
Adult females have a well visible ovipositor at the distal
part of the abdomen (Diesner et al. 2022). Food and water
were supplied similarly to the mass-rearing phase. In all
experiments, virgin mature medflies (age 12–18 days old)
were used, considering that gonad maturation is completed
at 4–6 days from emergence in C. capitata (Shelly 2000).
For each replicate, new medflies of the same age were used.

Fig. 1 Robotic fly and a Ceratitis capitata adult male (a). The experi-
mental apparatus (b)

2.3 Robotic fly and experimental apparatus

The robotic fly was inspired by the morphology, size, and
colours of C. capitata adults, and included the head (with
two compound eyes and two antennae), the thorax (whit three
pairs of legs and one pair of wings), and the abdomen. The
distance between the distal end of the head and the abdomen
was 5mm, and the distance between the tips of the twowings
was 9 mm.

The robotic fly was designed by using a 3D Computer-
Aided Design (CAD) software (SolidWorks, Dassault Sys-
temes, Vélizy Villacoublay, France) and fabricated in a
biocompatible resin (VisiJet® M3 Crystal, 3D Systems) by
additive manufacturing. To reproduce as much as possible
the colours of C. capitata, nontoxic pigments were used to
paint the robotic fly (Fig. 1a). A preliminary experiment to
identify biomimetic traits improving the robotic fly effec-
tiveness during interaction with C. capitata is reported in
the Online Resource document. Iron filings (medium parti-
cle size approximately 0.420 mm) were glued in a small hole
in the ventral part of the robotic fly thorax allowing magnetic
actuation.
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The robotic fly moved in the experimental workspace by
magnetic coupling with an external robotic trajectory system
located below the test arena. The robotic trajectory system
was composed of two sliding axis (i.e. x and y axes) actuated
by two stepper motors (i.e. Sanyo Denki 103-H7123-5040),
and aArduinoNano control board (Fig. 1b). Its operation area
was of around 400 × 200 mm and with a path plotting pre-
cision of 0.01 mm. The trajectory was plotted and converted
in G-Code (i.e. RS-274) before to be sent to the controlling
board. An external computer (i.e. Dell XPS Intel® Core™
i7), connected to the control board, was used to manage the
plotting and code conversion processes.

2.4 Phase 1: insect–robot interaction

The experimental workspace consisted of an opaque cubic
cage in Plexiglas (300× 300× 300 mm), with a transparent
and removable top plane surface allowing inspection/access
inside. The experimental workspace contained 5 discs (diam-
eter 15 mm) obtained by citrus leaves (an host plant of C.
capitata, Martínez-Ferrer et al. 2006) that were located in
circle on a virtual circumference with diameter 150 mm.

Medfly adult males are quite territorial and tend to occupy
a leaf or a fruit to start courting females and chasing
away intruder males (Benelli et al. 2014b). So, C. capitata
males were individually transferred into the experimental
workspace and left 20 min before starting the experiment
to allow the flies to establish a territory on one of the discs
(Benelli et al. 2015). Then, the robotic flywas introduced into
the experimental workspace, in the centre of the virtual cir-
cumference, and linearly directed towards the disc retained
by a C. capitata. Here the robotic fly staged a conspecific
intruder invading the territory of a male triggering territo-
rial aggressive behaviours in C. capitata individuals (Fig. 2).
Ritualized aggressive displays in C. capitata males include
wing waving, head rocking, head pushing, wing strike, dive,
boxing (see Benelli et al. 2015 for a detailed description of
these aggressive traits).

The robotic fly stationed close to the disc for 30 s and then
returned to its initial position for 60 s. This procedure was
repeated over a period of 15 min, after which the robotic fly
was removed from the experimental workspace, waiting for
the subsequent experimental phase. If a fly moved to a new
disc, an updated trajectory was assigned by an observer to
direct the robotic fly towards the new position. Flies that not
established a territory or did not engage in aggressive encoun-
ters with the robotic fly were not involved in the subsequent
mating interaction phase.

2.5 Phase 2: courtship andmating interaction

Herein, we compared the courtship performance and mat-
ing success of C. capitata males previously involved in

animal–robot aggressive interactions, with naïve males (e.g.
males not involved in previous animal–robot aggressive inter-
actions). The observation started after a mature C. capitata
female was released into the experimental workspace con-
taining an experienced or a naïve conspecificmale, and lasted
60 min, or until the end of the sexual interaction. The main
sequences of the courtship and mating behaviour of C. cap-
itata are depicted in the ethogram of Fig. 3.

For each pair of flies, we recorded the following courtship
and mating behaviours exhibited by C. capitata (Benelli and
Romano 2018): (i) the wing vibration duration, (ii) the pre-
copula behaviour duration (i.e. from wing vibration until the
male approached the female), (iii) the male mating success
(i.e. copulation preceded by the successful intromission of
the aedeagus), (iv) the copula duration (i.e. from the intro-
mission of the aedeagus to genital disentanglement occurring
after copulation), and (v) the whole courtship and mating
sequence duration. A total of 120 experienced males and
120 naïve males were analysed.

2.6 Statistical analyses

Data on the impact of the previous interaction with the
robotic fly on the subsequent C. capitata males courtship
and mating behaviour were neither normally distributed
(Shapiro–Wilk test, p < 0.05) nor homoscedastic (Levene’s
test, p < 0.05). So, we relied on nonparametric statistics to
analyse data. The effects of the previous interaction with
the robotic fly on the wing vibration duration, precopula
behaviour duration, the copula duration, as well as the whole
courtship and mating sequence duration were analysed using
the Wilcoxon test (P = 0.05).

The impact of experience due to previous aggressive inter-
actions with the robotic fly on males mating success was
analysedbyusing a generalized linearmodel (glm)with bino-
mial distribution: y = Xβ + ε, where y is the vector of the
observations (i.e. successful or not successful mating), X is
the incidence matrix, β is the vector of fixed effect (i.e. expe-
rience), and ε is the vector of the random residual effect. For
the significance of differences between values, a probability
level of P < 0.05 was used.

3 Results

The effect of the robotic fly involved in previous biohybrid
aggressive interactions resulted to be effective in amplifying
subsequent courtship and mating behaviours in C. capitata
males that also showed an increased mating success.

Males that previously experienced aggressive interaction
with the robotic fly performed the wing vibration for a sig-
nificantly longer time compared to naïve males (χ2 = 74.61;
d.f.= 1; P < 0.0001) (Fig. 4a). The duration of the precopula
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Fig. 2 Schematic representation of the insect-robot interaction phase

Fig. 3 Ethogram depicting the courtship and mating behaviour of Ceratitis capitata

behaviour was significantly longer in experiencedmales than
in naïve males (χ2 = 86.15; d.f. = 1; P < 0.0001) (Fig. 4b).
The copula lasted more in experienced males that in naïve
males (χ2 = 63.5; d.f.= 1; P < 0.0001) (Fig. 4c). The whole

courtship and mating sequence duration was significantly
longer in experienced males compared to naïve males (χ2

= 66.17; d.f. = 1; P < 0.0001) (Fig. 4d).
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Fig. 4 Duration of the wing vibration (a), pre-copula (b), copula (c),
and the whole duration of the courtship and mating (d) in Ceratitis
capitatamales that experienced or not previous interaction with robotic
flies (Wilcoxon testP= 0.05). In the box plots, the red lines indicate the

median and their dispersion range (lower and upper quartiles, as well
as outliers). The green lines are the mean, and the blue T-bars show
standard error value. Data distribution is shown on histograms on the
right of each box plot

The previous aggressive interaction experience with the
robotic fly had a significant impact on male mating success
(χ2 = 8.82; d.f. = 1; P = 0.0029), leading to a higher mat-
ing success in experienced males compared to naïve males
(Fig. 5).

4 Discussion

Biological control and SIT (Radcliffe et al. 2009; Sørensen
et al. 2012; Garcia-Herrero et al 2018) are sustainable pest
management paradigms based on domestication, handling,
and mass-rearing of insect species that are then released in
large numbers in the environment to predate/parasitize pest
organisms (biological control), or to compete formatingwith
wild pest individuals (SIT). However, mass-rearing proce-
dures reduce the fitness and performance of insects causing
behavioural and physiological alterations that undermine the
effectiveness and costs of suchmethods (Sørensen et al. 2012;
Deutscher et al. 2019). In this scenario, C. capitata is a good
model as it is a major polyphagous pest, often mass-reared
for SIT purposes (Nikolouli et al. 2020), or as host for the
production of endoparasitoid species exploited in biological
control (e.g., Benelli et al. 2013).

Herein, robotics and bionics have been proposed as a
new bioengineering paradigm to increase the reproductive

performance of mass-reared strain of this insect species
and thus boost its ecological performance. Some of the key
advantages of using robotic replicas insteadof non-focal indi-
viduals include the possibility to provide visual and physical
3D biomimetic stimuli whose chronotype coordinates can
be accurately controlled (Romano et al. 2019; Bierbach et al.
2020; Worm et al. 2021; Brown et al. 2021). In addition,
robotics can avoid injuries and undesired visual feedbacks to
focal animals, contributing to improve reliability and stan-
dardization of experiments, as well as to ensure ethics in
animal experimentation.

Since the territorial behaviour of C. capitata males is
closely related to their reproductive performance (Briceño
et al. 1999), the robotic fly developed here was used to
interact and trigger aggressive interaction in C. capitata
males, beforematingwith females, producingmore competi-
tive experienced individuals. Our findings reported a notable
effect of aggressive interactions, occurring during territorial
behaviour against the robotic fly, on the subsequent courtship
and mating sequences. C. capitata males that fought with
the robotic fly performed courtship displays for a longer
period compared to naïve individuals. Furthermore, males
involved in biohybrid aggressive encounters with the robotic
fly also resulted to have a highermating successwith females.
From a neuroendocrine point of view, these improved
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Fig. 5 Mating success in
Ceratitis capitata males that
experienced or not previous
interaction with robotic flies.
Asterisk indicates significant
differences among experienced
and naïve individuals
(generalized linear model,
binomial distribution, P = 0.05)

Fig. 6 A diagram illustrating the possible feedbacks between neuronal circuits and different behaviours in C. capitata males post-exposure to the
robotic fly

reproductive performances could be neuromodulated by
octopamine (the invertebrate analogue amine of nora-
drenaline, acting as a neurohormone, neuromodulator, and
neurotransmitter) that is surged in the haemolymph by spe-
cific octopaminergic neurones during physical exertion and
fight (Adamo et al. 1995; Stevenson and Schildberger 2013).
In particular, octopamine seems to be released from neu-
rohaemal organs and the corpora cardiaca (Woodring et al.
1989; Spörhase-Eichmann et al. 1992) and can raise lipids
and sugars levels in the insect haemolymph. It has been sug-
gested that its release observed in conjunction with physical
exertion may occur to mobilize energy reserves. Octopamine
has also been reported to support vigorous activities in insects
(Corbet 1991), whose release is directly related to the mag-
nitude of the stimulus. Adamo et al. (1995) observed that
the release of octopamine may prepare insects for prolonged

activities, or to improve their recovering process after energy
demanding actions. Interestingly, conspecific physical palpa-
tions, such as antennal contact, also promote the release of
octopamine, appearing to be a crucial sensory cue in this
mechanism. Octopamine seems to promote both aggressive
and courtship motivation and learning in insects (Dyakonova
and Krushinsky 2008; Stevenson and Schildberger 2013). It
has been reported that, for associative learning, the sucrose
reward can be substituted by the activity of single octopamin-
ergic neurones in honey bees (Hammer 1993). In addition,
different subsets of these neurons have been found to be
functionally involved in the expression of aggression and
courtship in Drosophilidae (Zhou et al. 2008; Certel et al.
2010; Stevenson and Schildberger 2013). So, the improved
reproductive performances of the experienced C. capitata
males may be due to the “robotic-induced” activation of
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dedicated sets of octopaminergic neurones during biohybrid
aggressive interaction. The robotic fly, perceived as a con-
specific intruder, may alter the decision-making ofmales that
start displaying territorial traits. The presence of the robotic
fly (e.g. evoking agonistic behaviours in C. capitata males
that imply physical exertion)would act as a positive feedback
for neurons expressing biogenic amines. Such condition can
have beneficial effects in courtshipmotivation during follow-
ing interaction with mature females (Fig. 6), as observed in
other insects (Dyakonova and Krushinsky 2008). This study
sheds light on how previous agonistic interactions with con-
specificsmay enhance following reproductive performances,
and this may result from the increase in octopamine levels
in the insect haemolymph. Further research will focus on the
physiological bases of these behaviours by identifying and
measuring the levels of octopamine andother neurohormones
(e.g. through high performance liquid chromatography—H-
PLC) released during these interactions.

Recently, relevant works have reported robotics as a
promising approach to modulate the behavioural response
of several invasive/pest animal species, triggering in these
organisms cost–benefit decision processes (Folkertsma et al.
2017; Polverino et al. 2019; Romano et al. 2017b, 2020). This
study strongly contributes to the current state of the art of
both IPM and bioengineering, suggesting behavioural mech-
anisms that can optimize insects mass-rearing procedures, as
well as paving the way to the inclusion of robotics and bion-
ics among sustainable biotechnological control techniques.
To achieve real-world applications, further research should
focus on the development of the robotic apparatus presented
in this research in a battery configuration of smaller arenas.
These multi-layer battery arenas, also including high level of
automatic control,would serve as equipment in bio-farmcon-
texts tomass-produce competitive insect males that would be
simultaneously exposed in large number to biomimetic stim-
uli. This approach could optimize time and space use, as well
as can ensure scalability of the system to fit with industrial
production requirements.

5 Conclusions

This research aims at establishing robotics and bioengineer-
ing as allied for the development of innovative sustainable
pest management strategies via the emergent animal–robot
interaction and ethorobotics paradigms.

We showed how hybrid aggressive interactions with a
conspecific-mimicking robotic fly altered the behaviour of
mass-reared males of the Mediterranean fruit fly C. capitata,
boosting subsequent courtship and mating performances.
Indeed, males that experienced animal–robot interactions
later performed courtship displays for a longer period com-
pared to naïve individuals, as well as had a higher mating

success. Specific neuromodulators with a proven involve-
ment in insects motivation and learning abilities may have
been activated by the biohybrid aggressive interaction estab-
lished in this study. In particular, the agonistic displays
against the robotic fly would trigger neurons expressing bio-
genic amines with beneficial effects during following mating
interactions with mature females. The proposed technology
could be exploited to optimize insects mass-rearing proce-
dures by modulating behavioural mechanisms.

Overall, our research shows that biomimetic robotics and
ethorobotics may have a crucial role in future environmental
and agriculturalmanagement approaches aimed at increasing
sustainability.
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