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Abstract

This paper is a critical review of the empirical litera-
ture resulting from recent years of debate and analysis
regarding technology and employment and the future
of work as threatened by technology, outlining both
lessons learned and challenges ahead. We distinguish
three waves of studies and relate their heterogeneous
findings to the choice of technological proxies, the level
of aggregation, the adopted research methodology and
to the relative focus on robots, automation and Al The
challenges ahead include the need for awareness of pos-
sible ex-ante biases associated with the adopted proxies
for innovation; the recognition of the trade-off between
microeconometric precision and a more holistic macroe-
conomic approach; the need for granular analysis of
the reallocation and transformation of occupations and
tasks brought about by different types of new technolo-
gies; the call for a closer focus on impacts on labor
quality, in terms of types of jobs and working conditions.
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1 | INTRODUCTION

What has been learnt from recent debate and analysis regarding the threat that new technological
transformation poses to the future of work? When Frey and Osborne predicted in 2013 (published
subsequently as Frey & Osborne, 2017) that almost 47% of jobs would be lost due to automa-
tion, concerns and fears regarding technological unemployment spread among academics and
policymakers. These authors’ results were also backed by a series of studies produced by con-
sultancy agencies, who anticipated a mass expulsion of workers (Balliester & Elsheikhi, 2018).
This occurred at a time when self-driving cars and artificial intelligence were materializing, while
advanced economies were still trying to recover from the 2008 crisis. Between 2012 and 2016 a
number of influential works, such as Ford (2015) and Brynjolfsson and McAfee (2012, 2014) were
published in the US, while European countries, and in particular Germany, were focusing on the
so-called Fourth Industrial Revolution.

At that time, debate in the US was quite polarized between techno-optimists (Bessen, 2015)
and techno-pessimists (Gordon, 2015). Despite expectations of a new disruptive paradigm, fore-
casts were anything but dire, and some studies started instead to put both the debate and fears
of technological unemployment into a historical perspective, as a theme recurrent throughout
the history of capitalism from Luddism onwards (Cetrulo & Nuvolari, 2019; Staccioli & Vir-
gillito, 2021). Empirical research has included identifying the extent to which the content of the
new technological paradigm is in fact revolutionary or not (Lee & Lee, 2021; Martinelli et al.,
2021; Santarelli et al., 2022). These studies emphasize patterns of continuity in the fourth indus-
trial revolution in terms of knowledge bases, rather than the emergence of a discontinuity. In
addition, other scholars have seen the current technological change as more of an implemen-
tation of strategic state-led plans to reinvigorate the manufacturing positioning of some leading
countries (Germany in particular) in the international production arena, rather than as a set of
disruptive technological solutions leading towards the total Digital Factory 4.0 (Krzywdzinski,
2021).

Needless to say, the technology-employment nexus is a very important channel of transfor-
mation in labor markets, but it is not the only one and, possibly, not the most important. For
example, the COVID-19 pandemic produced a massive drop in hours worked and deeply affected
employment, unemployment and participation rates, as well as inequality and reorganization of
working activity on a global scale (ILO, 2022). In the conclusions of this survey, in line with an
evolutionary approach to technology and employment, we suggest that employment growth and
income distribution are the combined results of structural change, changing demand and patterns
of consumption, and the organization of labor markets in terms of institutions.

The combined results of demand patterns and technological change lead different industries to
react to new technologies in heterogeneous ways, and this implies potential disruptive changes
for workers, as certain industries flourish while others decline. This possibly represents the major
policy problem posed by the emerging automation technology. This paper makes the case that
new productivity-improving technology will probably result in a substantial reallocation of labor,
regardless of the overall impact. For this reason, it is important to understand how technology
affects the organization of the productive process and the way work is executed. The new waves
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of technological change are transforming the nature of work and the tasks required within the
different types of occupations. The pace and scope of change in the intelligent automation process
may be faster than previous automation waves, and also extend to white-collar and professional
tasks. In tracing these effects, economists need accurate data to develop fine-grained proxies for
technology, able to capture the impact of distinct but interactive trajectories such as, for example,
automation, digitization, and more standard ICT processes.

While our understanding of the employment-technology nexus has improved greatly, chal-
lenges still remain ahead. More in-depth microeconomic studies, based on carefully chosen
samples (in terms of regions or technologies) are needed to analyse how changes in technology
affect jobs, tasks, and the quality of employment. However, the level of analysis should be inte-
grated, starting from the micro business unit, and moving to cover sectors and the macro level.
Such efforts are required to provide more conclusive evidence at the aggregate level, where other
variables, such as institutional and structural changes, influence the dynamics of the labor market.

This paper advances along these lines, presenting a critical review of the empirical literature
and outlining both lessons learned and challenges ahead. Far from being fully exhaustive, the
review intends to highlight the common findings and main differences across studies. Method-
ologically, we survey past and recent literature, mainly covering Europe and the US, drawing
upon previous surveys and including new contributions such as those derived from initiatives
on the future of work (e.g., Technology & Policy Research Initiative; MIT Work of the Future,
UN STI Forum). In addition, we put in critical perspective and parallel analysis seminal contribu-
tions which have received academic attention, as testified by number of citations, and from which
sub-streams of research have originated.

Lessons learned include the relevance of the role played by the nature of the technology under
observation, whether embodied or disembodied, and the level of aggregation of the analysis,
whether firm, sectoral, macroeconomic. These drivers help in explaining the substantial differ-
ences across studies in terms of scenarios on the future of work, when studying employment
creation/destruction. More recently, the literature has been moving progressively from investigat-
ing the effects of technology on the quantity of work towards the quality of work. Shifting from
quantity to quality implies new perspectives of analysis to fully embrace effects on the reorganiza-
tion of the work process due to technological change. Given that the study of the transformation
rather than the substitution of human work is the new realm of investigation, this requires fine
grained explorations on (i) specific technological artefacts, that is, “what new technologies do
and how they affect human functions,” (ii) firm-level techno-organizational capabilities, that is,
“how firms decide on their adopted technological mix and how they deploy the latter vis-a-vis the
workforce,” (iii) the role of the institutions in place, at the firm, sectoral, and country levels, in
facilitating or impeding new technological adoption, that is, “how trade unions and work councils,
whenever present, favor or obstruct the introduction and implementation of new technologies.”
These are the challenges ahead facing the future of work.

The remainder of the paper is organized as follows. First, Section 2 presents lessons learned
from different levels of analysis and the nature of technological change in process versus prod-
uct innovation, which we refer to as the “first wave” of innovation-employment nexus studies.
These studies tend to rely on more traditional notions of technological measures, including stan-
dard R&D expenses, investments in physical capital, and number of patents, and tend to look
at overall employment changes in terms of outcome variables. In Section 3, we delve into a par-
ticular type of innovation, namely automation and robotics adoption, referred to as the “second
wave” of innovation-employment nexus studies. In Section 4 we present two lines of research:
the first group analyses the employment impact of artificial intelligence and the second exploits
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FIGURE 1 Venn diagrams conceptualizing the structure and findings of the survey: the three waves of the
technology-employment nexus studies on the left; the technology-occupations nexus on the right. [Colour figure
can be viewed at wileyonlinelibrary.com]

patent texts to analyse the proximity between specific innovation functions and occupations and
tasks in the labor market. We call these two groups of studies the “third wave” of technological-
employment nexus studies. In Section 5 we go deeper into effects on workforce recomposition
in terms of tasks, skills and occupations, also covering inequality and employment outcomes. In
Section 6 we discuss our key findings and the challenges ahead, while Section 7 briefly concludes.

Figure 1 is a graphical representation of the organization of the contents of the survey and the
main lessons learned so far, looking at employment (left) and occupations (right).

2 | THE “FIRST WAVE” OF TECHNOLOGY-EMPLOYMENT STUDIES:
THE ROLE OF PRODUCT VS. PROCESS INNOVATION ALONG
DIFFERENT LEVELS OF AGGREGATION

If we include the labor market effects of previous innovation waves, such as the ICT revolution,
extant empirical literature on the link between technology and employment is vast (for recent
surveys, see Autor, 2022; Calvino & Virgillito, 2018; Hotte, Somers et al., 2022; Mondolo, 2022;
Ugur et al., 2018; Vivarelli, 2014). Overall, the lesson learned from previous empirical studies is
that findings vary widely depending on the level of analysis (whether firm, sector, or macro), the
proxies for technological change (whether embodied, such as investment in new physical capital,
or disembodied, such as R&D expenditures or measuring the outcome of innovative efforts, such
as patents),' and the country and time dimensions of the analysis.

In the following, we review the main research findings deriving from the “first wave” of
technology-employment studies, which vary according to the level of aggregation of the analy-
sis (Subsections 2.1, 2.2, 2.3) and the nature of the technological change under scrutiny, whether
process versus product.

2.1 | Macroeconomic studies

At the macroeconomic level, the labor-saving impact of new technologies should be compared
with the possible counterbalancing effects of various market compensation mechanisms: indeed,
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compensation mechanisms are put forward by Freeman et al. (1982) as a way of comprehending
the technology-employment nexus, and can be of a classical, neoclassical, or Keynesian nature.
These market mechanisms operate through different channels. For instance, process innovation
allows a decrease in average costs which in competitive markets may entail decreasing prices,
increasing demand and increasing production and employment. On the other hand, in non-
competitive markets, efficiency gains translate into higher profitability and possibly increasing
investments, production and employment. Finally, innovation may imply an increase in the pro-
duction of capital goods in upstream sectors, which may compensate the labor-expelling effect
of process innovation in the downstream industries. Obviously, all these compensation mecha-
nisms may fail (partially or totally), due to significant market failures triggered by non-competitive
markets, pessimistic expectations, low values of both demand elasticity and the elasticity of substi-
tution between capital and labor, institutional and technological rigidities, and so on (see Vivarelli,
1995 and 2015).

Empirical detection of the effectiveness of the different compensation mechanisms, together
with the opposing job-creating impact of product innovation (which has to be considered an
alternative form of innovation, rather than a compensation mechanism counterbalancing labor-
saving process innovation), were addressed by Vivarelli (1995) through a simultaneous equations
model on data from the period 1960—1988 (three-stage least squares regressions) for Italy and the
US. The author found that the most effective compensation mechanism is that “via decreasing
prices” in both countries, while other mechanisms turned out to be less important. Moreover,
the US economy emerged as being more product-oriented (and therefore resulting in an overall
positive relationship between technological change and employment) than the Italian economy,
where the different compensation mechanisms turned out to be unable to counterbalance the
direct labor-saving effect of widespread process innovation. A further test of the macroeconomic
model proposed by Vivarelli (1995), was put forward by Simonetti et al. (2000), using data from
four countries (US, Italy, France and Japan) over the period 1965—1993. Their results were par-
tially consistent with those obtained by Vivarelli (1995): in particular, the role of the mechanism
“via decreasing prices” was confirmed in general, but a clear and significant relationship between
technological change and decreasing prices emerged only in France and the US; consistently with
Vivarelli (1995), the labor-friendly nature of product innovation was clearly evident only in the US
(and to a lesser extent in France).

In a more recent study, Feldmann (2013) used as an aggregate innovation indicator the number
of triadic patents, that is, patents filed simultaneously at the European Patent Office (EPO), the
United States Patent and Trademark Office (USPTO) and the Japan Patent Office (JPO), in 21
industrial countries over the period 1985—2009, to assess the impact of innovation on the aggregate
unemployment rate. Results showed that technological change tends to increase unemployment,
although this effect does not persist in the long run.

In principle, macroeconomic empirical studies constitute an ideal setting for fully investigat-
ing the link between technology and employment, considering jointly the direct effects of process
and product innovation, and all the indirect income and price compensation mechanisms. How-
ever, in practice, macroeconomic empirical exercises are very difficult to carry out and somewhat
controversial for different reasons: first, there are problems in measuring aggregate technological
change (an attempt in this direction was made in a recent contribution by Christofzik et al. (2021),
where technological change is proxied by a multifaceted estimation of ICT technology shocks in
the German economy over recent decades); second, the analytical complexity required to repre-
sent the various compensation mechanisms makes the interpretation of the aggregate empirical
results extremely complicated; last but not least, composition effects (in terms of sectoral belong-
ing and single firms’ behavior) may render the macroeconomic assessment either unreliable or
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meaningless. This is why nowadays sectoral and particularly microeconomic literature on the link
between innovation and employment is flourishing, also thanks to the availability of new reliable
longitudinal data.

2.2 | Sectoral studies

The sectoral dimension is particularly important in investigating the overall employment impact
of innovation; in particular, the compensation mechanism “via new product” (which in recent
times generally takes the form of a compensation “via new services”) may accelerate the shift from
manufacturing to services. On the other hand, within manufacturing, new technologies seem to
be characterized mainly by labor-saving process innovation, only partially compensated by the
market mechanisms discussed above.

In this vein, Clark (1983, 1987) put forward a supply-oriented vintage model, investigating
manufacturing in the UK. The author found that the expansionary effect of innovative invest-
ments (Keynesian multiplier) was dominant until the mid-1960s, after which the rationalizing
effect (due to labor-saving embodied technological change incorporated in investments and scrap-
ping) started to overtake the expansionary effect. In a later study, Pianta et al. (1996) found an
overall positive relationship between growth in value added and growth in employment. Nev-
ertheless, especially in European countries, an important group of sectors display a markedly
labor-saving trajectory (restructuring sectors), with growing production and declining employ-
ment. In another contemporary study based on Italian data, Vivarelli et al. (1996) showed that in
Italian manufacturing the relationship between productivity growth and employment appears to
be negative. Specifically, they revealed that product and process innovation have opposite effects
on the demand for labor, in line with what has been discussed above in this article.

As already mentioned, the scenario may change if service sectors are taken into account. For
instance, using standardized sectoral data derived from national Community Innovation Surveys
(CIS), Pianta (2000) and Antonucci and Pianta (2002) found an overall negative impact of inno-
vation on employment in manufacturing industries across five European countries. In contrast,
Evangelista (2000) and Evangelista and Savona (2002) established a positive employment effect
of technological change in the most innovative and knowledge-intensive service sectors.

Looking into manufacturing and services jointly (using CIS cross-sectional sectoral data on rel-
evant innovations for different European countries), Bogliacino and Pianta (2010) found a positive
employment impact of product innovation (which is particularly obvious in high-tech manufac-
turing sectors, see also Mastrostefano & Pianta, 2009). In line with this, Buerger et al. (2010), using
data on four manufacturing sectors across German regions over the period 1999—2005, studied
the co-evolution of R&D expenditures, patents and employment through a VAR methodology.
Their main result is that patents and employment turned out to be positively and significantly
correlated in two high-tech sectors (medical and optical equipment and electrics and electronics),
while they were not significant in the other two more traditional sectors (chemicals and transport
equipment). By the same token, running GMM-SYS panel estimations covering 25 manufactur-
ing and service sectors for 15 European countries over the period 1996—2005, Bogliacino and
Vivarelli (2012) found that R&D expenditure, mainly fostering product innovation, does exhibit a
job-creating effect.

More recently, Piva and Vivarelli (2018), using data covering manufacturing and service sectors
over the 1998—2011 period for 11 European countries, discovered both a significant job-creation
effect of R&D expenditures (albeit limited to medium and high-tech sectors) and a job-destruction
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impact of capital formation, suggesting a possible labor-saving effect due to the embodied tech-
nological change incorporated in gross investment (mainly related to process innovation). These
outcomes are confirmed by Dosi et al. (2021), who put forward a two-sector agent-based model,
able to represent the sectoral patterns of job creation and job destruction and to distinguish
the alternative effects of embodied (capital formation) versus disembodied technological change
(R&D expenditures). Their empirical results, based on sectoral OECD data covering 19 European
countries over the period 1998-2016, reveal that R&D turns out to affect employment dynamics
in the “upstream” sectors positively, while expansionary investment does so in the “downstream”
industries. However, these labor-friendly effects are more than counterbalanced by the (highly sig-
nificant and greater in magnitude) labor-saving impact due to the replacement of obsolete capital
vintages in the downstream sectors.’

o

2.3 | Firm-level studies

Turning our attention to the wider microeconometric literature, since the late *90s studies have
taken full advantage of newly available longitudinal datasets and have applied panel data econo-
metric methodologies that take the time dimension and individual variability into account jointly.
For example, Van Reenen (1997) matched the London Stock Exchange database of manufactur-
ing firms with the SPRU (Science Policy Research Unit at the University of Sussex) innovation
database and obtained a panel of 598 British firms over the period 1976—1982. The author found
a positive impact of innovation on employment, and this result turned out to be robust after
controlling for fixed effects, dynamics, and endogeneity.

Applying a similar approach, Piva and Vivarelli (2005) also found evidence in favor of a positive
effect of innovation on employment at the firm level. In particular, by applying panel method-
ologies to a longitudinal dataset of 575 Italian manufacturing firms over the period 1992—-1997,
the authors provide evidence of a significant, though small, positive link between firms’ gross
innovative investment and employment. Using a similar methodological approach, Lachenmaier
and Rottmann (2011) proposed a dynamic employment equation, extended to include alterna-
tive proxies (mainly dummy variables) of current and lagged product and process innovation.
Their regressions, based on a longitudinal dataset of German manufacturing firms over the
period 1982—2002, showed a significantly positive impact of various innovation variables on labor
demand. However, Bogliacino et al. (2012), using a panel database covering 677 European manu-
facturing and service firms over 19 years (1990—2008), found that a positive and significant impact
on employment of R&D expenditures is clearly detectable only in services and high-tech manu-
facturing, but not in the more traditional manufacturing sectors, where the employment effect of
technological change is not significant.

Using firm level data (obtained from the third wave of the CIS) from four European countries
(Germany, France, UK, Spain), Harrison et al. (2014) put forward a testable model able to distin-
guish the relative employment impact of process and product innovation. The authors concluded
that process innovation tends to displace employment (although with a weak statistical signifi-
cance), while product innovation is significantly labor-friendly. The model proposed by Harrison
et al. (2014) has been widely tested (see, for instance, Benavente & Lauterbach, 2008; Cirera &
Sabetti, 2019; Crespi et al., 2019; Dachs et al., 2016; Hou et al., 2019), and virtually all studies
have found a significant job-creating effect of product innovation and a non-significant impact
of process innovation. However, an important limitation of this approach is the asymmetric way
in which product and process innovation are measured; in particular, while product innovations
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correspond to the sales from innovative products (i.e. a continuous variable with a relevant vari-
ability), process innovations are merely measured by a simple dummy, that is, a discrete measure
with constrained variability (in addition, this dummy just captures the “only process” innovations;
therefore, process innovation combined with product innovations are not taken into account, in
contrast with the proxy adopted for product innovations). Given this setting, it is not surprising
that process innovations generally turn out to be not significant in studies based on the Harri-
son et al. (2014) model. Two exceptions were identified by Arenas-Diaz et al. (2020), who found
a significant labor-saving effect of the “process only” dummy in Spanish firms over the period
2006—2014 (particularly adverse to low-skilled workers), and Lim and Lee (2019). Using data from
1999 to 2009 on more than eleven thousand manufacturing firms in Korea, Lim and Lee (2019)
again found a significant positive impact of the better measured product innovations and a non-
significant (negative) effect of process innovation, although the latter becomes significant when
the focus is narrowed to cover only the monopolistic sectors.

Van Roy et al. (2018) investigated the possible job creation effect of innovation activity, prox-
ied by patents registered by almost 20,000 European companies over the period 2003—2012. The
main outcome of their panel estimations is the labor-friendly nature of innovation. However, this
positive impact of innovation turns out to be statistically significant only for firms in the high-
tech manufacturing sectors, while it is not significant in low-tech manufacturing and services.
As discussed by the authors, their results may depend on the adopted proxy of innovation, since
patents are much more closely linked to product rather than process innovation (see Section 2).
Indeed, Bianchini and Pellegrino (2019) provided new evidence that persistent product innova-
tion ensures employment growth at the firm level (Spanish firms over the 1991—2012 period),
while process innovation does not.

Focusing on SMEs (Small and Medium Enterprises) in emerging markets, Goel and Nelson
(2022), using the Enterprise Surveys dataset from the World Bank and covering more than 50,000
firms in 125 countries, found that both R&D expenditures and process innovation foster firms’
employment growth. While the former result is consistent with most of the literature, the latter is
in contrast with other studies, which may be due both to the way process innovation is measured
(as a dummy) and to the so-called “business stealing” effect, namely innovative firms gaining
market shares at the expense of laggards and non-innovators. However, the authors performed
different robustness checks that confirmed their baseline results.

More recent studies have used longitudinal data and a more comprehensive measure of embod-
ied technological change (see Barbieri et al., 2019; Dosi et al., 2021; Pellegrino et al., 2019).
Specifically, these studies have been able to couple proxies for product innovation (such as R&D)
with accurate proxies of process innovation such as investment in innovative machinery and
equipment. In these works, the labor-friendly nature of R&D expenditures and product inno-
vation is confirmed (consistently with the previous evidence), but a possible overall labor-saving
impact of embodied technological change incorporated in process innovation is also detected.

2.4 | Wrapping up

Overall, the firm-level literature offers a detailed mapping of the possible job-creating impact
of innovation, revealing that it is small in magnitude and generally limited to high-tech and
upstream sectors, characterized by higher R&D intensity, and by the prevalence of product inno-
vation. On the other hand, technological change embodied in process innovation may generate
technological unemployment, particularly in downstream and more traditional sectors. Studies
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at the sectoral level confirm this evidence and show that the positive effect of technical change
on employment is stronger in the knowledge-intensive service sector and in high tech manufac-
turing industries. Both R&D activities in manufacturing and the creation of new services (or new
ways of providing old services) seem to have a positive effect on employment dynamics. This is in
line with the observed process of structural change and the historical decline of employment in
traditional manufacturing sectors (relative to services) in advanced economies. The empirical evi-
dence also suggests that at the aggregate (country) level, especially in the short run, technological
change can have a negative effect on employment. The effect is however heterogeneous, depend-
ing on the characteristics both of markets and of the institutional framework. Innovation is more
likely to enhance employment where the compensation effect in terms of price decrease is more
pronounced and where product innovation is more frequent (relative to process innovation).

Technical change continuously generates a reallocation of labor across occupations, firms, sec-
tors, and regions.®> At the aggregate level, the overall impact depends on how firms and jobs
are positioned relative to the ongoing process of transformation. It is therefore fundamental to
understand the specific nature of recent waves of technical change and to determine how labor,
occupations, and their related tasks are transformed. So far, discussion has suggested that within
advanced economies the category of workers most affected by technical change may consist of
unskilled workers in traditional manufacturing where firms tend to adopt process innovations.

The most recent empirical literature has particularly focused on robots, considered as the major
drivers of automation.

3 | THE SECOND WAVE OF TECHNOLOGY-EMPLOYMENT
STUDIES: THE REVIVAL OF ROBOTS AND AUTOMATION

A second wave of technology-employment studies has developed since the 2008 crisis, proposing
the revival of robots and automation as the main technological artefacts of reference influencing
the future of employment scenarios. In line with the organization of the previous section, these
studies too can be classified according to their scope of analysis, that is, whether at the aggregate
level (countries and sectors) or at the firm level.

3.1 | Automation and employment at the aggregate level

In their seminal contribution, Frey and Osborne (2017) studied computerization defined as job
automation by means of computer-controlled equipment. A group of experts hand-labelled 70
occupations from the O*NET database, marking them 1 if automatable and 0 if not, and developed
an algorithm (using a Gaussian process classifier applied to the full O*NET data) to extend the
assessment of automatability to 702 occupations. Using data from the US Department of Labor,
they predicted that 47% of occupational categories, mostly middle- and low-skilled professions,
are at high risk of being substituted by job computerization, which includes AI algorithms and
robots. Occupations at risk include not only those of blue collar workers, but also a wide range of
service/white-collar/cognitive tasks in areas such as accountancy, the health professions, logistics,
legal work, translation, and technical writing.

Arntz et al. (2016) used information on task-content of jobs at the individual level (from the
PIAAC) and showed that only 9% of US jobs are at potential risk of automation. They compared
their results with those of Frey and Osborne (2017) and claimed that within the same occupation
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some tasks can be automatized while others cannot, and therefore the associated job can be pre-
served. Indeed, significant differences are found depending on whether the empirical analysis
focuses on occupations or tasks. In general terms, forecasting studies which investigate occu-
pations tend to be more pessimistic, while analyses centered on tasks generally produce more
optimistic scenarios. For instance, in the case of a radiologist doctor, X-ray screenings can be
performed more efficiently by a robot, but other diagnostic tasks are still based on the doctor’s
competences and experience; in this case, an occupation-based empirical analysis would con-
clude that the occupation is at risk, while a task-based one would conclude that the job is likely
to be preserved.

Building on Frey and Osborne (2017) but leveraging PIAAC data, Nedelkoska and Quintini
(2018) estimated the risk of automation for individual jobs in 32 OECD countries. Their evidence
shows that about 14% of jobs are highly automatable (probability of automation over 70%), while
another 32% of jobs present a risk of replacement of between 50 and 70%, pointing to the possibil-
ity of significant changes in the way these jobs will be carried out as a result of automation. At the
European level, Pouliakas (2018), using data on tasks and skill needs collected by the European
Skills and Jobs Survey (ESJS), bundled jobs according to their estimated risk of automation. Fol-
lowing Frey and Osborne (2017) and Nedelkoska and Quintini (2018), the author utilized highly
disaggregated job descriptions and showed that 14% of EU adult workers are found to face a very
high risk of automation. Pouliakas also found that routine professions not requiring many social
and transversal abilities are particularly vulnerable. Additionally, men and individuals with lower
levels of education are at a greater risk of losing their jobs to automation. The author pointed out
that the risk of automation is not distributed equally among workers: the findings in this study sug-
gest a rather monotonic decrease in the risk of automation as a function of educational attainment
and skill levels.

Acemoglu and Restrepo (2020) investigated the employment effect of exposure to robots using
sectoral data provided by the International Federation of Robotics (IFR), estimating national pen-
etration rates instrumented by European data. According to their 2SLS estimates, robotization
had a significant negative impact on the change in employment and wages in each US local
labor market over the period 1990—2007. Specifically, they showed that one additional robot
per thousand workers reduces the employment/population ratio by about 0.18-0.34%. Chiacchio
et al. (2018) applied the approach outlined by Acemoglu and Restrepo (2020) to EU labor mar-
kets. They assessed the impact of industrial robots on employment and wages in 116 regions
within six EU countries largely representative of the European automation wave, namely Fin-
land, France, Germany, Italy, Spain, and Sweden. Their results suggest that robot introduction is
negatively associated with the employment rate (one more robot per thousand workers reducing
the employment/population ratio by about 0.16-0.20%).

Graetz and Michaels (2018) used panel data on robot adoption (IFR and EUKLEMS data to
estimate robot density) within industries in 17 countries from 1993 to 2007. Dividing employees
into three skill groups (namely high-, medium- and low-skilled workers), their estimated employ-
ment coefficients for the two higher-skilled groups were positive (but limited in magnitude and
not always significant), while the coefficient for low-skilled workers turned out to be large and
negative. However, their main finding stands at odds with the studies discussed above since they
concluded that robots do not significantly reduce total employment, although they do reduce
low-skilled workers’ employment share.

Dauth et al. (2021) proposed an empirical exercise on Germany using IFR data over the
1994—2014 timespan, using a measure of local robot exposure for each region. They found no evi-
dence that robots cause total job losses, although they provided evidence that robots do affect
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the composition of aggregate employment: while industrial robots have a negative impact on
employment in the manufacturing sector, there are positive and significant spillover effects, as
employment in non-manufacturing sectors increases and, overall, counterbalance the negative
impact in manufacturing.

Finally, Mann and Piittmann (2023) provided a new measure of automation based on patents,
and studied its employment effects. Using keywords, the authors classified all US patents granted
between 1976 and 2014 as automation or non-automation patents, and they documented a strong
rise in the number and share of automation patents. Interestingly, they linked patents to their
industries of use (exploiting an old Canadian patent office cross-classification between patent
classes and industries of use), and to commuting zones. They found that automation technology
has a positive effect on employment in local labor markets, driven by job growth in the service
sector.

3.2 | Robots and employment at the firm level

Domini et al. (2021), using data for French manufacturing employers over the period 2002—2015,
found that robotic adoption or, alternatively, imported capital equipment, do not imply labor
expulsion, but rather employment growth. However, Bonfiglioli et al. (2020), using French data
over the 1994—2013 period, initially obtained a positive employment effect as a response to robot
adoption, but then found a negative employment impact of robot exposure, once demand shocks
were properly taken into account. Similarly, Humlum (2021), using Danish firm-level data from
1995 to 2015, found that robot adoption is harmful for both employment and wages, at least as
far as production workers are concerned (while the opposite outcome holds with regard to tech
workers, such as skilled technicians, engineers, and researchers).

In some studies the positive employment impact at the firm level appears to be entirely due to
the business stealing effect, that is, innovative adopters gaining market shares at the expense of
non-innovators (Dosi & Mohnen, 2019), since negative employment impacts do emerge once non-
adopters and sectoral aggregates are taken into account. Koch et al. (2021) studied robot adoption
using data from Spanish manufacturing firms over the period 1990—2016 and found that within
four years robot adopters raised their overall employment by around 10%. This positive impact
occurs, as expected, in particular among high-skill workers, but is also found among other cate-
gories of workers (ibidem, p. 2574). However, when focusing on the industry level, robot density
does have a significant negative impact on employment in companies that do not adopt robots.
Further support for the important role played by the business stealing effect is to be found in Ace-
moglu et al. (2020), who studied robot adoption using data for French manufacturing firms over
the period 2010—2015. While the authors found that among robot adopters employment increases
by about 11% (ibidem, p. 385), at the sectoral level robot adoption by competitors negatively affects
employment among non-adopters. A limitation common to both these studies is the simplistic
way in which robots are measured, namely as a dummy in the year of adoption.

A gain in competitiveness due to the implementation of robotics may also explain the results
found by Dixon et al. (2021): using data capturing imports of robots by Canadian firms over the
period 1996—2017, they revealed a positive and significant employment impact of robot capital
stock on total employment (although the impact is negative for medium-skilled workers and man-
agers). Aghion et al. (2020), using firm level data for the French manufacturing sector over the
time span 1994—2015, also found a positive impact of automation on employment at different
levels of analysis, namely plant, firm, and industry (but only in industries open to international
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competition, again pointing to the possibility of exporting the business-stealing effect). However,
this study is affected by the way automation is measured: either through the balance sheet value
of industrial equipment and machines (obviously not able to distinguish between innovative and
non-innovative investment, as achieved by studies which use measures of embodied technologi-
cal change, see above) or through electricity consumption, also an indirect and inaccurate proxy
for automation.

Using firm and plant level survey data from the IAB Establishment Panel, Benmelech and Zator
(2022) and Deng et al. (2021) discussed a set of interesting stylized facts about robot adoption
in Germany. They showed that investment in robots is limited and highly concentrated in only
a few industries (for instance, the automobile sector), that the distribution of robots is highly
skewed in only a few companies in the manufacturing sectors, and that robot users are larger, have
higher labor productivity, make more investments, and are more likely to export and adopt the
most cutting-edge technology. Deng et al. (2021) also underlined the relevance of understanding
heterogeneity in robot types, suggesting that is important to distinguish collaborative and less
expensive robots (cobots) from the prevalent and more expensive non-collaborative robots (e.g.,
cage robots). Finally, Benmelech and Zator (2022) emphasized that the impact of robotics has
probably not been the main driver of economic transformation in recent years, and proposed that
more attention should be devoted to other technologies.

With regard to the labor market, Benmelech and Zator (2022) showed that firms’ adoption in
Germany endogenously responds to an index of labor scarcity, measured as a binary firm assess-
ment signaling difficulty in finding workers. In terms of labor impact, the authors found that robot
adopters increase their employment, while at the same time the overall employment effect in
exposed industries and regions is negative. This evidence is in line with results from the contribu-
tions discussed above, and points again to the role played by the business stealing effect. However,
identification is based on a novel strategy of combining industry-level measures of automation
with local area intensity of adoption. The authors suggest that since robot adoption varies mostly
by industry and is relatively concentrated and rare, any identification strategy that relies uniquely
on industry-level data (as in some of the above-mentioned studies) may be open to significant
challenges.

Bessen et al. (2023), performing an event-study on Dutch firms, reported a higher probability
of separation for workers employed in firms where an automation spike has taken place. This
study has the pro of using direct automation expenditure as a proxy of technological change at
the firm-level, but does not distinguish the type of automation implemented. When compared to
employment losses due to plant closures, separation rates due to automation are shown to be one
order of magnitude lower than in the case of massive lay-offs.

3.3 | Wrapping up

Although this evidence is not unequivocally consistent, most firm-level studies point to a posi-
tive effect of robot adoption on employment. Adopters tend to increase their employment and are
in general larger firms, with higher levels of productivity and internationalization. A substantial
part of this employment growth is related to the so-called selection effect. These companies gain
market shares at the expense of smaller and less innovative firms. As a consequence, at the aggre-
gate level, results are mixed. Some papers find a negative impact of robot diffusion at the industry
level. As for the results illustrated in Section 2, the negative effect on employment seems to be
concentrated in the manufacturing sector and for low-skilled categories.
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Some scenarios examined at the aggregate level, many of them based on the seminal work
by Frey and Osborne (2017), contradict firm-level findings, and have corroborated the idea that
“this time is really different” (Brynjolfsson & McAfee, 2012, 2014; Ford, 2015). A substantial share
of occupations seems to be at risk of automation; however, analyses centered on tasks produce
more optimistic scenarios because not all tasks in an occupation can possibly be automatized.
Moreover, the occupations at risk are not restricted to those of low skilled blue collar workers
in downstream manufacturing sectors but extend to a wide range of white-collar jobs in ser-
vices (e.g., health and finance). Taken together, these contributions clearly indicate a significant
reallocation of jobs across industries, and to a relevant transformation of how occupations are con-
figured and tasks are allocated to different occupations. We explore this issue in more depth in
Section 5.

4 | THE THIRD WAVE OF TECHNOLOGY-EMPLOYMENT STUDIES:
PATENT TEXT CONTENT AND ARTIFICIAL INTELLIGENCE

In this section we present two lines of research: the first group involves analysis of the direct
impact of Al on jobs, typically by the use of data on job posts or patents to assess Al exposure and
study the impact of AT on employment. The second group of studies involves using patent texts
to analyse the proximity between specific innovation functions and occupations and tasks in the
labor market. The authors of these studies argue that the description in patent texts can be used
to identify the tasks and occupations that are exposed to automation.

Very recent papers have focused on artificial intelligence, often blamed for having a strong
labor-saving impact on white-collar jobs more related to service activities. For instance, Felten
et al. (2021), refining the measure proposed in Felten et al. (2018), linked the Electronic Frontier
Foundation dataset (EFF) within the AI Progress Measurement initiative, with O*NET abilities.
They constructed a direct matching between 10 Al selected scopes of application (abstract strategy
games, real-time video games, image recognition, visual question answering, image generation,
reading comprehension, language modelling, translation, and speech recognition) and human
abilities. The matching was performed by crowd-sourcing a questionnaire to gig workers at Ama-
zon’s Mechanical Turk (mTurk) web service. 2,000 mTurkers residing in the United States were
asked whether, for each of the 52 abilities listed in the O*NET, they believe that the AI application
is related or could be used in their place. The study reported higher AI exposure for white-collar
workers.

Webb (2020) also found that artificial intelligence is more likely to affect skilled and older work-
ers than previous innovation waves based on robots or software. He proposed a direct measure
of exposure via co-occurrence of verb-noun pairs in the title of AI patents and O*NET tasks.
One potential limitation is that titles of patents do not contain a full description of the under-
lying functions executed by the technological artefact and, in addition, restricting co-occurrence
to verb-noun pairs carries a high likelihood of false positives. The measure of exposure is not
constructed in terms of overall similarity of the two text corpora but rather in terms of the rela-
tive frequency of occurrence of the elicited pairs in Al titles versus the remaining titles of non-Al
patents. Moreover, the proposed methodology does not permit a distinction between labor-saving
and labor-augmenting technologies.

Acemoglu, Autor et al. (2022) looked at Al-exposed establishments and their job posts using
Burning Glass Technologies data, which provide wide coverage of firm-level online job postings,
linked to SOC occupational codes. In order to account for the degree of firm-level Al exposure,
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three alternative measures were employed, namely those proposed by Brynjolfsson et al. (2018),
Felten et al. (2021), and Webb (2020). Unsurprisingly, considering the still relatively niche-level
nature of adoption, no clear effect at the industry and occupational level was detected, while
re-composition towards Al-intensive jobs was suggested. In addition, the authors did not find evi-
dence of any direct complementarity between Al job posts and non-Al jobs, hinting at a prevalent
substitution effect and workforce re-composition, rather than productivity enhancement after Al
adoption.

Damioli et al. (2022) studied 3,500 front-runner companies who patented Al-related inven-
tions over the period 2000—2016. They found a moderate positive employment impact of Al
patenting (with a short-term elasticity of about 3-4%), and this labor-friendly effect combines
with that triggered by other (non-AlI) firm innovation activities. These findings confirm the
employment-friendly nature of product innovation in general (see Section 2), and provide novel
specific evidence for emerging AI technologies.

Kogan et al. (2021) constructed a similarity measure between the textual description of tasks
in the fourth edition of the Dictionary of Occupation Titles (DOT) and that of so-called break-
through innovations, in accordance with the methodology described in Kelly et al. (2021). They
built a measure for each (breakthrough) patent-occupation pair and observed how the expo-
sure of an occupation varies over time. Time variability is obtained by summing the similarity
with the defined breakthrough innovations in each year ¢, over the period 1850—2010, for each
occupation. Breakthrough innovations, identified as the distance between backward and forward
similarity of each filed patent compared to the existing stock of patents, are not ex-ante defined
as being of a labor-saving nature. However, their measure singles out two types of technology:
labor-saving innovations, and new technologies that while potentially complementary to labor,
require skills that incumbent workers lack. This measure captures the clustering of technolo-
gies under mechanization in the first period of analysis, followed by automation and the ICT
phase, and reflects the dynamics of breakthrough innovations according to their emergence dur-
ing subsequent technological revolutions, quite akin to the findings of Staccioli and Virgillito
(2021). They found that most exposed occupations experienced a decrease in wage and employ-
ment levels, and that over time white-collar workers become relatively more exposed compared
to blue-collar workers. In particular, they found that workers are being replaced at both the top
and bottom ends of the wage distribution. From this perspective, low-paid workers lose their jobs
as a result of automation, while high-paid workers see slower wage growth, as some of their abil-
ities become obsolete. However, it is not unequivocally clear whether their results reflect more
long-run dynamics in technological and structural change, rather than actual similarity between
patents and occupations.

The measure proposed by Kogan et al. (2021) was applied by Autor et al. (2022), who were
interested in examining the entry of new work titles as revealed in the historical records of the so-
called Census Alphabetical Index of Occupations (CAI), an index listing all new job-title entries.
The authors defined as ‘labor-augmenting’ innovations those patents matched with the CAI text
(new job titles), and as ‘labor-automating’ technologies those linked to the DOT text (existing job
titles). They showed that the great majority of employment is in new jobs. The paper documents
the increasing entry of white-collar middle-paid occupations in the period 1940—1980; since 1980
new jobs have been concentrated in services provided by both high-educated and low-educated
workers. They also showed that ‘labor-augmenting’ patents and ‘labor-automating’ patents are
correlated across occupations but have different causal effects on labor demand. The former have
apositive and the latter a negative effect, with the negative effect of automation having intensified
over time.
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Another application of the measure proposed by Kogan et al. (2021) with reference to patents
characterizing the current technologies was adopted by Meindl et al. (2021), matching in this case
the patent text corpus with the “detailed work activities” (DWAs) section of the O*NET. According
to their results, financial and professional occupations are more exposed to 14.0 patents compared
to non I4.0 patents.

Montobbio et al. (2022) relied on textual analysis of USPTO patent applications in robotics
and performed a semantic study to identify labor-saving innovations directly. They estimated
a probabilistic topic model and proposed a human-machine taxonomy that describes the spe-
cific work activities and functions which are more exposed to labor-saving innovation, and
found that the following activities are particularly exposed to labor-saving robotic patents: (i)
transport, storage, and packaging, (ii) diagnosis and therapy, (iii) transmission of digital infor-
mation, (iv) optical elements, (v) chemical and physical laboratory apparatus (measuring and
testing in chemistry), and (vi) moving parts. Montobbio et al. (2023) presented one of the first
attempts at building a direct measure of occupational exposure to robotic labor-saving technolo-
gies. After identifying robotic and labor-saving robotic patents (Montobbio et al., 2023), they
leveraged the 4-digit Cooperative Patent Classification (CPC) code definitions to detect func-
tions and operations performed by technological artefacts aimed at substituting the labor input.
This measure results in fine-grained information on tasks and occupations more exposed to
labor-saving robotic technologies (according to text-similarity rankings between patents CPC
codes and tasks). Occupational exposure by wage and employment dynamics in the United
States was then studied, complemented by investigating industry and geographical penetra-
tion rates. The authors showed that in the last two decades the occupations most exposed
to robotic labor-saving technologies are associated with lower rates of employment and wage
growth.

=

4.1 | Wrapping up

Most recent studies reported in the literature are moving towards the construction of direct mea-
sures of labor market exposure to technological change. Researchers have tried to bypass the
construction of indirect proxies of technological penetration, such as the degree of routiniza-
tion (discussed in the next section of this paper). This third wave mainly relies on patent data
(analysed by means of natural language processing (NLPs) in their titles, abstracts and texts)
overlapped with a glossary of occupation titles. Differently from the first and second waves of
technology-employment studies, these papers have increased our understanding of occupation
exposure to automation at a higher level of granularity and are a first attempt at tackling the
issue of distinguishing whether innovations are labor displacing or complementary to existing
human functions at the patent level. As regards innovations related to artificial intelligence,
although work is at a very preliminary stage, results show that white-collar workers and knowl-
edge workers could be relatively more affected. However, it is possible to argue that it is too
early to detect large labor market consequences, and that at present greater effects could be
observed with respect to the quality rather than the quantity of work (Berg & Gmyrek, 2023). In
order to reveal the reconfiguration of the quality of work, in the following section we survey the
results reached so far on the skill-biased, routine-biased and task-biased nature of technological
change.
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5 | OCCUPATIONS, SKILLS AND TASKS

The different forms of automation (in particular, AI and robots) observed in recent years are
more related to the introduction of hardware and software able to carry out tasks previously
performed by humans, rather than to the development of more productive vintages of already
existing machines. In this scenario, the quality aspect of the workforce assumes a crucial role
because, as a result of innovation, some human abilities/tasks become superfluous while others
become relatively more important. The overall picture is therefore characterized by the simultane-
ous occurrence of substitution and complementary effects. The economic literature has therefore
taken up the challenge of more detailed analysis of the impact of technical change on skills,
occupations, and tasks.

5.1 | Skill-biased and routine biased technological change

The early literature produced in the ’90s, in line with the empirical results emphasized in Sec-
tions 2 and 3, focused on the so-called “skill-biased technological change” (SBTC), revealing a
complementarity between new technologies and skilled workers (both in terms of education,
generally tertiary education, and occupation, with white-collar workers usually considered the
“skilled” category), given that the latter are able to implement these technologies effectively and
efficiently. Therefore, while a positive relationship between new technologies and the demand for
skilled workers is expected (and generally confirmed by available empirical evidence, see below),
a substitution effect between new technologies (especially when they originate from process inno-
vation, see above) and unskilled workers is generally recognized (see Bernan et al., 1994; Los et al.,
2014; Machin & Van Reenen, 1998; Piva & Vivarelli, 2004).

In line with the SBTC approach, Blanas et al. (2019) analysed 30 industries across 10 high-
income countries over the period 1982—2005 and found that ICTs and robots (measured on the
basis of bilateral trade data) negatively affect the demand for low- and medium-skill workers
(especially in manufacturing), and increase the demand for high-skill workers (especially in
services). By the same token, Balsmeier and Woerter (2019), using a representative survey on
digitization activities within Swiss firms in 2015, found that digitalization (and particularly the
presence of robots, 3D printing and the Internet of Things) is significantly associated with job
losses among mid- and low-skill workers, and with job creation among high-skill workers.

In contrast with the idea that technologies are skill biased, Hirvonen et al. (2022) used a new
approach based on large-scale data and quasi-experimental research designs to study the effects of
advanced technologies on employment and skill demand in Finland (1994—2018). They looked in
particular at robots and computer numerical control (CNC) machines, and exploited a large tech-
nology subsidy program, comparing proximate winners and losers using an event-study approach.
They found that on average subsidy-induced technology investments drive a 23% increase in
employment with no skill bias. However, their results are strongly driven by product innovations
(see Section 2 on the labor-friendly nature thereof): indeed, 91% of the scrutinized firms claimed
that their technology investments were motivated by new products and increasing demand.

Complementarity of investments in automation/ICT/AI is stressed in Bessen et al. (2022).
Using Burning Glass Technologies data, they measured firm-level effects of investment in automa-
tion/digitization technologies. The authors focused on the firm-level share of software developers
and singled out substantial increases in the relative hiring measured as investment spikes: the lat-
ter are defined therein as increases of 1% or more in the share of software developers, relative to the
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mean share over the previous four quarters. According to their DiD results, spiky firms when com-
pared to non-spiky firms hire a greater number of workers with more diverse skills, and also pay
higher wages, making a case for the complementary attributes of technologies which tend to rever-
berate beyond the specific complementary group (software engineers), affecting other workers at
the firm level. Such an approach highlights the role of innovating firm hiring strategies.

This offers an alternative approach for policymakers in the fight against income inequality
and pay disparity in the labor market. Researchers who believe that automation only replaces
labor tend to suggest strategies for redistributing income, levying taxes to discourage excessive
automation, and even encouraging engineers to forego development in the first place. However,
if automation primarily complements workers, leading to higher wage disparities between firms,
policy may need to be focused on minimizing gaps in firms’ uneven adoption of technology.

However, during the last two decades there has also been a trend in labor markets leading
to job polarization and wage inequality, together with a decreasing demand for middle-wage
occupations (Autor, 2019, 2022). This means that if jobs are ranked by their wages, increases in
employment share are observed at the bottom and the top of this distribution, while jobs in the
middle tend to lose employment share over time. More in detail, laborers and elementary ser-
vice providers (the low-paid) are to some extent increasing, and professionals (the high-paid) are
growing, while workers in middle-wage occupations (such as operators of machinery/electronic
equipment) are declining. This U-shaped curve represents the aforementioned polarization phe-
nomenon, supported by evidence related to both flexible labor markets (as in the case of the UK
and US, see Autor, 2019; Autor et al., 2006; Goos & Manning, 2007; Goos et al., 2014) and insti-
tutional settings characterized by a higher degree of employment protection (e.g., Sweden and
Germany, respectively, Adermon & Gustavsson, 2015; Spitz-Oener, 2006). This suggests that not
only occupation and education are relevant, but that the “routine dimension” comes into play,
and attention should be paid to the actual content of different jobs, namely the tasks performed
by workers. This line of reasoning has induced a revision of the SBTC approach, first into the
so-called “Routine-biased Technological Change” (RBTC) interpretative framework (Autor et al.,
2003), and then into the new “Task-Biased Technological Change” (TBTC) or “Routine-replacing
Technological Change” (RRTC) (Gregory et al., 2019) vision. This approach assumes that repeti-
tive tasks can indeed be easily replaced by recent technologies (particularly robots, automation,
Al and digitization originating a substitution effect), while non-repetitive tasks may reap benefits
from these technologies (or, at least, not be negatively affected, as in the case of non-routinized
unskilled tasks in personal services), determining a complementary effect.

5.2 | From skills to tasks: Measurement issues and empirical evidence

Acemoglu and Autor (2011, p. 1045) defined a task as a “unit of work activity that produces
output (goods and services),” and a production process as a set of tasks. In this framework,
job tasks are allocated to either labor or capital depending on: (1) the degree to which they are
automatable (repetitive and replaceable by code and machines); (2) their separability from other
tasks; (3) the relative cost of using capital versus labor (in this context, capital generally refers
to machines and robots). Acemoglu and Autor (2011), therefore, proposed a classification based
on a two-dimensional typology: routine versus non-routine, and manual versus cognitive. This
led to the consideration of four broad categories: routine-manual, routine-cognitive, non-routine
manual, and non-routine cognitive (in turn, subdivided into non-routine cognitive interac-
tive or analytical). Routine tasks comprise those that are programmable, expressible in rules,
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codifiable and repetitive, that is, a protocol. Following this approach, the expectation is that tech-
nology replaces tasks with high-routine content, while in non-routine tasks there is more space
for mental flexibility and/or physical adaptability to the new technologies, therefore resulting in
possible complementary effects.

Biagi and Sebastian (2018) discussed how task-content is measured in empirical analyses. They
underlined the fact that, in general, the task content of different types of jobs is measured in two
ways: (1) direct measures, drawing from occupational databases based on assessment by experts
(e.g., the O*NET—Occupational Information Network, based on the US labor market, describes
the task content of each occupation); (2) self-reported measures, aggregating the answers of
individual workers to surveys on skills and working conditions: see, for example, the Federal
Institute for Vocational Training/Research Institute of the Federal Employment Service in Ger-
many (IAB/BIBB), the OECD Program for the International Assessment of Adult Competencies
(PIAAC), and the European Working Condition Survey (EWCS—Eurofound).

However, Cetrulo et al. (2020), working on the Italian ICP (Indagine Campionaria delle Pro-
fessioni), comparable to the US O*NET, performed a data-driven dimensionality reduction factor
analysis. They found that specific interaction with tools and machinery (routinization) is not what
determines the variability between occupations, but rather that the latter depends on traits of
power, meant as hierarchical positioning of the occupation, and the knowledge required to accom-
plish the task. In general termes, this testifies that the RBTC approach is not the unique framework
for occupational data analysis, and tasks can be classified depending on the information available
in the dataset used and on the ground of other theoretical reasoning. However, there are impor-
tant data limitations. In the O*NET case, for instance, it is difficult to study the evolution of tasks
within occupations over time (although the database is regularly updated), since it is assumed that
the task-content of a given occupation is time-invariant. Indeed, Arntz et al. (2016, 2017) showed
that narrow feasibility studies, by ignoring the substantial variation in job tasks within occupa-
tions, may overstate the exposure of jobs to automation. On the other hand, self-reported sources
permit study of the variability in task content within each occupation or job type. However, on
the minus side, self-reported sources are prone to introduce potential measurement bias.

Turning our attention to the available empirical evidence, the previously-cited seminal con-
tribution by Autor et al. (2003) focused on the relationship between new technologies and
skills/tasks, showing that innovation can replace human labor when it is largely based on routines,
but it can hardly replace non-routine tasks where technology is complementary. Their analysis,
covering a 1984—1997 timespan and referring to general computer use and ICTs, bridges SBTC and
TBTC, as the authors considered and measured the tasks involved in each of the 450 occupations
included in the Dictionary of Occupational Titles. Each occupation received a score for each of
the task measures. Moreover, they measured technological change by the evolution of the share
of workers in the industry who use computers on the job. Regressing the change in task involve-
ment on the change in computer use reveals that technological change is positively related to the
increased use of non-routine cognitive tasks. On the other hand, routine tasks (both cognitive and
manual) turn out to be negatively related to technological change. As far as non-routine manual
tasks are concerned, these seemed to be unrelated to technological change until the 1990s, when
a positive and significant relationship between them emerged.

Caines et al. (2018), after formulating a model on TBTC with a special focus on complex tasks,
studied the relationship between task complexity connected to automation and the occupational
wage/employment structure in the US market. Complex tasks are defined as those requiring
higher-order skills, such as the ability to abstract, solve problems, make decisions, or commu-
nicate effectively. They measured the task complexity of an occupation by performing principal
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component analysis on a broad set of occupational descriptors in O*NET data, and established
four main empirical facts over the 1980—2005 time period: there is a positive relationship across
occupations between task complexity and wages and wage growth; conditional on task com-
plexity, the routine-intensity of an occupation is not a significant predictor of wage growth and
wage levels; labor has reallocated from less complex to more complex occupations over time;
within groups of occupations with similar task complexity, labor has reallocated to non-routine
occupations over time.

In a similar fashion, Gregory et al. (2019), after developing a task-based framework to estimate
the aggregate labor demand and employment effects of RRTC, proposed an empirical analysis
on regional data (238 regions) across 27 European Union countries between 1999 and 2010. They
showed that while RRTC has indeed triggered strong displacement effects in Europe, it has simul-
taneously created new jobs through increased product demand, outweighing displacement effects
and eventually resulting in net employment growth. This task-based framework builds on Autor
and Dorn (2013) and Goos et al. (2014) and incorporates three main channels through which
RRTC affects labor demand. Firstly, RRTC reduces labor demand through substitution effects,
as declining capital costs push firms which are restructuring production processes towards rou-
tine tasks. Secondly, RRTC induces additional labor demand by increasing product demand, as
declining capital costs reduce the prices of tradables. Thirdly, product demand spillovers also
create additional labor demand: the increase in product demand raises incomes, which is par-
tially spent on low-tech non-tradables, raising local labor demand. The first of these three forces
acts to reduce labor demand, whereas the latter two work in the opposite direction (in a sort
of compensation mechanism). As such, the net labor demand effect of RRTC is theoretically
ambiguous.

Marcolin et al. (2019) exploited data from PIAAC merged with the United States Current Popu-
lation Survey (CPS) and the European Labor Force Survey (EULFS) to construct a novel measure
of the routine content of occupations for 20 OECD countries. This measure is built on information
about the extent to which workers can modify the sequence in which they carry out their tasks and
decide on the type of tasks to be performed on the job. This study sheds light on the relationship
existing between the routine content of occupations and the skills of the workforce, intended as
both the skills that workers are endowed with and those that they use on the job. Marcolin et al.
(2019) highlighted the fact that routine intensity is lower for more sophisticated occupations, that
is, those less likely to be routinized. On average, in 2012 46% of employees in PIAAC countries were
working in non-routine-intensive (18%) or low-routine-intensive (28%) occupations. The authors
also provided evidence of a negative but weak correlation between skill intensity and the rou-
tine content of occupations. The more routine-intensive occupations thus tend to require fewer
skills, but while non-routine- and low routine-intensive occupations appear to be monotonically
increasing in skill intensity, the same is not true for medium- and high-routine-intensive occupa-
tions, which are mostly intensive in medium skills. This strengthens the evidence that workers
perform a bundle of tasks only slightly related to their human capital or the job functions they are
attached to through their occupational titles.

De Vries et al. (2020) combined data on robot adoption (proxied by the sectoral penetration
rates provided by the International Federation of Robotics) and occupations in 19 indus-
tries and 37 countries over the period 2005—2015. As in the previous study, occupations are
ranked using the Routine Task Intensity (RTI) index. Their results show that robot adoption
is associated with significant positive changes in the employment share of non-routine ana-
lytical jobs and with significant negative changes in the employment share of routine manual
jobs.
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5.3 | Wrapping up

Taken as a whole, the extant evidence supports the idea that when tasks are based on standard-
ized processes, innovations can generally replace them. At the same time, technology can be an
important complement to non-standardized tasks; indeed, this literature shows that technologi-
cal change is positively related to the increased use of non-routine cognitive tasks. On the other
hand, non-routine manual tasks appear to have been unconnected to technological advance until
the 1990s, when a positive correlation started to emerge. The routine content of occupations is
also associated with a lower skill intensity (see also Autor, 2022). Together with the idea that dig-
italization can be significantly associated with job losses among the mid- and low-skill workers,
some evidence emerges of a reallocation from less complex to more complex and non-routine
occupations over time. In parallel, new jobs are created through increased product demand that
can outweigh the displacement effects on routinized jobs, eventually resulting in net employ-
ment growth. Long-run studies suggest that both direct job loss due to exposure to automation,
and skill obsolescence, play an important role in the transformation of the occupational structure
of the labor market.

6 | KEY FINDINGS AND GAPS IN THE EXTANT LITERATURE

Table Al provides a synoptic picture of the most recent and seminal works devoted to the issues
investigated in this survey.
The extant literature points to the following outcomes.

(i) The employment and skill effects of technical change are heterogeneous and differ accord-
ing to the level of aggregation, the adopted proxy for technology, and the unit of analysis,
whether sectoral versus firm, or occupations versus tasks. In more detail, an overall posi-
tive impact of innovation on employment is detected by most previous firm-level studies,
suggesting some degree of complementarity between technological change and employment
(see also Hotte, Somers et al., 2022). While this complementarity is easy to comprehend at
the company level, it becomes more controversial at the sectoral and aggregate levels. More-
over, it tends to be small in magnitude and limited to the most innovative firms and the
most dynamic and high-tech sectors, while labor-saving effects may well arise in low-tech
sectors, particularly in manufacturing (see Section 3.1). When we consider recent automa-
tion technologies (Section 3.2), sectoral studies (generally limited to studying the impact of
robot adoption) tend to highlight a significant substitution effect, with negative implications
in terms of both employment and wages, in particular in manufacturing (in contrast, some
service sectors seem to benefit in terms of employment). On the other hand, firm-level anal-
yses on adopting firms tend to confirm a positive employment impact after the introduction
of new automation technologies, although of negligible magnitude, possibly due to selection
and business stealing effects and often contrasting with an overall sectoral negative impact.

(ii) Recent developments in the literature provide interesting attempts to build direct measures
of labor market exposure to technological change (Section 4). Exploiting patent texts, nat-
ural language processing (NLPs), and the glossaries of occupations and tasks, these papers
provide a higher level of granularity in the analysis of the relationship between innovations,
their functions, and tasks required by the labor market. They raise the issue of eliciting labor
saving innovations directly, or innovations that are complementary to existing skills.
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Turning our attention to the impact of innovation on workers’ skills, the literature on SBTC
has underlined a substitution effect between new technologies and unskilled workers, and a
positive relationship between new technologies and skilled (white-collar) workers. At the
same time, some recent literature either has not found skill-bias (Hirvonen et al., 2022),
or has suggested that innovation generates a general positive impact at the firm level in
terms of labor quality (Bessen et al., 2022), suggesting that the key issue is not skilled ver-
sus unskilled, but rather the difference across firms in terms of innovativeness, and across
jobs in terms of task content. In parallel, the empirical literature has focused on different
categories of exposed workers, on routinized versus non-routinized tasks and occupations,
or manual versus cognitive tasks and occupations. Together with the hypothesis that job
losses among mid- and low-skill employees may be significantly due to digitalization, there
is evidence of a shift in employment over time to more complex, cognitive and non-routine
occupations (Section 5.2). In general, occupational-level analyses tend to overstate negative
labor-shedding effects, while task-based analyses are more conservative in their negative esti-
mates. Forecasting studies point to an overall substitution effect: according to the different
studies, 9% to 47% of jobs are at risk and are concentrated within more routinized tasks and
occupations. In contrast, a very recent focus on Al technologies has so far produced rather
mixed evidence, pointing to a higher degree of exposure for white-collar and service jobs,
without clearly showing whether the substitution or the complementary effect is dominant
(see also Section 4).

|‘|‘k‘
SURV/

Albeit extensive and diverse, the extant empirical literature is not free from important
shortcomings; the main research drawbacks and gaps appear to be the following.

®

(i)

There are currently many alternative proxies for “technology” at different levels of aggre-
gation: these range from more traditional product versus process innovation at the firm
level (proxied either by R&D expenditures, or patents, or embodied technological change),
to the share of robots at the industry level, to imported capital-equipment, to expenditure
in electricity, to the share of newly hired software engineers. However, adopting alterna-
tive measures of technological change is not neutral. On the one hand, some technological
variables, such as R&D expenditures and patents, are more linked to product innovation
and often drive an overall positive employment impact (complementarity). On the other
hand, other technological variables, such as scrapping or robot adoption, are more related
to process innovation, often involving an overall labor-saving employment impact. There-
fore, researchers should be cautious from a twofold perspective: on the one hand, given the
data available and the perspective adopted, they should choose the most appropriate proxy
for innovation;* on the other hand, once they have chosen a given proxy, they should take
into account the aforementioned ex-ante biases in terms of the expected employment impact.
Some methodological limitations and trade-offs affect the available empirical/econometric
analysis. On the one hand, the relationship between technological change and employment
triggers both partial equilibrium re-adjustments and general equilibrium compensation
forces which are particularly difficult to disentangle in empirical analyses. With the excep-
tion of only a few aggregate studies (see Section 2.1) and some very recent contributions (see
Acemoglu & Restrepo, 2022; Humlum, 2021) able to combine partial and general equilib-
rium settings, empirical analyses conducted at the sectoral or, a fortiori, at the firm level,
only focus on the direct labor-saving effect on the one hand, and on a selection of possible
compensating market forces on the other (such as the “via decreasing prices” mechanism
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(iii)

confined to a specific market). This prevailing partial-equilibrium setting in empirical firm-
level analyses needs to be admitted and mitigated: for instance, the “business stealing” effect
discussed above should be taken into account with the inclusion of proper controls in the
preferred econometric specification (through regressors such as firm’s value added, sales, or
market shares). However, while microeconometric studies appear to be extremely precise
in grasping the nature of innovation and in distilling information from very large datasets,
they inevitably lose in terms of assessing the overall employment impact of technological
change. On the other hand, empirical studies have to deal with an intrinsic endogeneity
issue: while technological change is driven by science and characterized by a high degree
of path-dependence, it is also affected by economic determinants such as cumulated prof-
its, cash-flow, demand expectations, etc. This means that the technological impact variable
(proxied by R&D or other measures) should be cautiously considered endogenous and possi-
bly instrumented. Indeed, most of the empirical literature expresses awareness of this issue,
which is generally mitigated by means of two different strategies. Starting from Piva and
Vivarelli (2005), one strand of studies makes use of GMM methodologies (generally GMM-
SYS given the highly autocorrelated nature of the employment series and the availability of
panel data characterized by a dominant cross-sectional nature) to instrument both the lagged
employment variable and most of the regressors, including the proxy for innovation when
necessary (see also Dosi et al., 2021; Lachenmaier & Rottmann, 2011; Pellegrino et al., 2019).
Another strand of literature, initiated by Acemoglu and Restrepo (2020), instruments the
key impact variable (for instance the robot sectoral penetration taken from the International
Federation of Robotics dataset) using data related to different geographical locations (for
instance, European robot penetration rates instrumenting those in the US; see also Chiacchio
et al., 2018 and Dauth et al., 2021).

A further gap in the current economic literature is its limited degree of granularity in dealing
with different technologies. A finer analysis of the relationship between specific techno-
logical advancements, tasks, and skills becomes necessary for a detailed understanding of
the impact on skills, the nature of job reallocation, the degree of obsolescence of tasks,
and the possibility to learn on the job. A more granular measurement of technologies is
also required to design appropriate policy interventions affecting skill supply, labor market
institutions and government policies, such as taxes, R&D subsidies, and regional policies
for innovative clusters. Indeed, even within the automation domain, specific technologies,
devices and algorithms might exert different impacts in terms of affected jobs, skills, and
tasks. For instance, while robotics might be aimed at substituting human functions, other
forms of digitization, such as the adoption of Enterprise Resource Planning or Manufac-
turing Execution Systems, are more directed at improving control monitoring, rather than
automating tasks and making jobs redundant. In this respect, technological and organiza-
tional changes are more oriented towards a recombination of tasks performed by the same
workforce (reallocated across different functions and departments) rather than to purely
labor-saving and skill-biased strategies. In other cases, product modularity together with the
use of additive manufacturing jointly provide new products and processes, reshaping and
reallocating tasks along the vertical supply chain. Employment effects can be generally geo-
graphically dispersed, as additive manufacturing affects the structure of vertical relations
and can be associated with reshoring. However, heterogeneity and selectivity in adoption
strategies emerge as stylized facts. For instance, Cirillo et al. (2021) conducted a case study
of three pivotal adopters of 14.0 artefacts and departed from the archetypal idea of a fully-
fledged 14.0 factory. Indeed, they found that the introduction and use of 14.0 artefacts are
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W)

scattered both between and within firms, and across different departments. In particular, not
all production processes are affected to the same extent. Currently, the areas most involved
are not assembly lines (as suggested by common wisdom), which are already equipped with
intelligent robots, but rather communication and monitoring systems, and interconnected
machines which allow timely recording of the production process, the quantity produced in
each phase, the errors which occurred, and possible underlying bottlenecks. Similarly, recent
digitization and innovation surveys (Acemoglu, Anderson et al., 2022 for US; Costa et al.,
2023 and Calvino et al., 2022 for Italy) conducted by national statistical offices through the
administering of firm-level questionnaires about the level of ICT and robot adoptions reveal
that implementation thereof constitutes a very selective process, both in terms of sectors and
across firms within the same sector. In addition, the multiple technology approach, which
involves the simultaneous adoption of robots, software, Al, cloud computing, etc., does not
represent the rule but rather the exception across firms. In other words, firms tend to adopt
selectively the most appropriate type of technology to solve specific, localized problems.

In addition, the narrow focus on robotization by the recent empirical literature should be
seen as a further shortcoming. At the very least, future studies should encompass the entire
Al domain (including robots, but extended to other applications of Al in manufacturing, and
particularly in services, ranging from software algorithms to platforms). Initial attempts in
this direction have been made by Acemoglu et al. (2022), Webb (2020), Felten et al. (2021),
all discussed in the previous section. However, there are at least two important limitations
in this nascent literature. On the one hand, there are multiple ways of unpacking Al sectors
and firms, since a clear definition of AI technologies has yet to be established in the scien-
tific debate. In fact, conceptual definitions of AI typically insist on the ability of a system
to perform human-like cognitive functions (learning, understanding, reasoning and inter-
acting) aimed at obtaining rational outcomes (Ertel, 2018; Russell & Norvig, 2016). On the
other hand, although AI technologies focus on a core of digital technologies including knowl-
edge processing, speech recognition, computer vision, evolutionary computation, natural
language processing, and machine learning (see Giczy et al., 2022; Martinez-Plumed et al.,
2020), several studies consider a broader definition of AI which includes a combination of
software and hardware components, as well as functional applications such as robots and
“big data” (Damioli et al., 2022; European Commission, 2018; Fujii & Managi, 2018; WIPO,
2019). Obviously, the way in which Al technologies are singled out and measured may affect
the results obtained in terms of their labor market effects (see Autor, 2022; Hotte, Tarannum
et al., 2022). Moreover, the extant literature devoted to the employment impact of Al tech-
nologies has so far dealt only with the demand side, by looking at the potential labor-saving
effect that may take place among users of Al and robotics technologies conceived as process
innovations in downstream sectors. However, an obvious gap exists regarding a possible job-
creation effect in the supply side, among developers of AI and robots conceived as product
innovations in the upstream sectors. Initial investigations in this direction include Damioli
et al. (2022).

Finally, a major challenge for future research in this area should be to address the impact of
technological transformation on labor quality, not only in terms of wages (e.g., Vannutelli
et al., 2022), but also in terms of types of jobs and working conditions. While the aggre-
gate quantitative employment impact of different forms of technological change (from robots
to Al) is still unclear, what is becoming increasingly evident is that technology transforms
how, and under what conditions, workers do their jobs. To disentangle such transforma-
tions, greater granularity is needed in the analysis of different technologies to gain a precise

35UBD1 7 SUOLILLIOD) AR 3|ceat|dde ay3 Aq paulsnob afe sapie YO ‘8sh JO S3|NJ 10§ AriqiT BUIUQ AS|IA UO (SUO T IPUOD-PUR-SWBY WO AB | 1M Afeiq 1)U |UO//SNY) SUORIPUOD pUe SW.S | Yl 39S *[£202/2T/2T] Uo Ariqi auliuo A8(IM ‘el pueiyoo) AQ TO9ZT 'S0 TTTT 0T/I0pA0d A3 1m ARiq Ul uo//:Sdny Wo.y popeoiumod ‘0 ‘6TY9.91T



% | WILEY kit

MONTOBBIO ET AL.

|
'}

understanding of their heterogeneous impacts on tasks, occupations, and working condi-
tions. Some authors, focusing on highly innovative firms, have shown, for example, that the
adoption of ICT increases demand for a variety of skills and tasks and raises wages (e.g.,
Bessen et al., 2022). However, other authors have found that particularly in low wage indus-
tries, the quality of jobs, wage levels, and equal treatment of disadvantaged workers can be
seriously threatened by new technological advancements (e.g., Acemoglu, 2021; Hammer-
ling, 2022). In this respect, the analysis of technological organizational capabilities at the
workplace level, their impact on the way technology is implemented and on the nature of the
work process, and the institutional setting (e.g., trade unions and labor market regulations)
are particularly promising and interesting avenues for research.

7 | CONCLUSIONS

In this critical survey we have discussed the main technological drivers playing a role in deter-
mining the employment impact of new technologies. Since economic theory does not have a
definitive answer to the overall employment effect of innovation, the role of empirical analyses
is pivotal. In general terms, the available empirical evidence supports a positive (although small
in magnitude) link between technology and employment, especially when R&D and/or product
innovation are adopted as proxies of technological change, and when the focus is on high-tech sec-
tors. On the other hand, job losses may occur in the downstream and more traditional economic
sectors.

However, three decades of literature have shown that the employment impact of innovation is
different across tasks and occupations, and not only across firms and sectors. So-called routinised
tasks are more prone to automation than non-routinised tasks, with some of the latter turning out
to be complementary to the new technologies, in particular Al. Although the current standard
economic conceptualization is based on the contrast between automatable and non-automatable
tasks, decision choices regarding technological adoptions and firm-level techno-organizational
capabilities are crucial factors in explaining across-firm heterogeneity, the mix of technology in
use, and the effects on the workforce.

While more fine-grained microeconomic studies, based on selected samples (in terms of geog-
raphy or technology), help to further understanding of how technological change transforms
occupations, tasks, and the related quality of work and working conditions, these types of studies
may not be generalized to different contexts. Indeed, more general considerations and analyses at
the aggregate level help in understanding the technology-employment nexus in contexts in which
other forces, such as institutional and structural change, also drive the dynamics of the labor
market. Our understanding is that the issue remains at the core of the agenda of economics in
general, and of classical political economics in particular; that said, both additional empirical evi-
dence, and further efforts are required on the theoretical side. Some instances have been devised
by means of macro-economic and sectoral evolutionary agent-based models addressing the topic
from a multi-level, integrated perspective (see Dosi et al., 2021, 2022). However, more research in
these directions is very much needed in order to escape the trap of partial analysis, and to address
the theoretical conditions under which the labor displacing versus labor augmenting effects of
technology prevail.

Finally, beyond market-based considerations concerning cost of labor and skill requirements,
the role of institutions (e.g., in regulating job contracts, industrial relations, minimum wage and
employment termination conditions) and of the overall macroeconomic development of a country
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remain among the most prominent drivers of employment dynamics and labor remuneration.
These represent other future avenues of research.
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ENDNOTES

IThere is a vast literature about the nature, limitations and pros and cons of the different variables used as proxies
of innovation. For instance, R&D is an input measure, so pointing to potential innovation, driven by specific fac-
tors (being larger in big firms and high-tech sectors, for a recent survey and analysis see Goel et al., 2023),) and
neglecting the embodied technological change incorporated in capital information (see infra). Moreover, R&D
expenditures may be private, public or subsidised with relevant implications in terms of possible complementari-
ties, substitution effects and additionality (see, for instance, Bérubé and Mohnen, 2009; Catozzella and Vivarelli,
2016; David and Hall, 2000). On the other hand, patents are an output measure but their relevance is dramatically
different according to the investigated sectors, the nature of the involved technologies and the appropriability
conditions in terms of institutional setting and IPRs (see, for instance, Levin et al., 1987; Hall, 2005; Goel, 2020).
Although very important, these issues are beyond the scope and aims of the present study.

2In a similar vein, Vermeulen et al. (2018), put forward an evolutionary economic model of multisectoral structural
change and discussed descriptive evidence showing how job losses due to automation in “applying” sectors may
be counterbalanced by job creation in “making” sectors.

3Indeed, the regional dimension is explicitly taken into account in some of the articles discussed in this section
(such as Buerger et al., 2010), as well as in Capello and Lenzi (2013), Moroc and Barnutiu (2019) and Mondolo
(2023); since the geographical focus is not within the scope of the present survey, we readdress the reader to the
cited articles.

“4For instance, if the investigated firms are small enterprises in traditional sectors, R&D expenditures might be a
poor proxy for innovation, while the opposite might be true for large companies in high-tech industries.
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