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Collaborative robots, or cobots, should have the capability to 
interact with humans in a shared workspace1 in different sce-
narios, ranging from industrial production, transportation 

and delivery of goods to medical aid and rehabilitation2–4. Workers 
and cobots are expected to physically cooperate in unstructured 
common spaces, and with the ongoing Industry 4.0 transition the 
machine will no longer be considered a potential substitute but 
rather a companion, assisting and complementing human abilities 
in performing a wide range of tasks.

Current cobots typically integrate sensing technologies for con-
tact detection, such as force/torque sensors5, complementing prox-
imity identification6,7. These technologies lead to constraints on 
modularity, scalability and retrofit to the installed non-collaborative 
machines and require low inertial and payload configurations too. 
Since their presence might be harmful for humans, robots still oper-
ate inside closed cages and are kept separated from workers in most 
processes. In this domain, accidental or voluntary contact might 
occur; thus, the availability of intelligent sensing systems would 
be essential towards a coexistence in unstructured environments. 
A robot able to sense, categorize and respond to touch throughout 
its body, ideally mimicking the human sensory performance, might 
lead to more meaningful and intuitive interactions8 and enhanced 
flexibility, reproducibility, productivity and risk reduction.

Thus, safe physical cooperations and interactions with the sur-
roundings depend on the availability of tactile feedback, touch being 

the sensory modality that enables humans to gather a variety of hap-
tic information about the external world by exploring object prop-
erties through contact and manipulation9,10. The main families of 
human mechanoreceptors that provide the brain with short-latency 
feedback to enable closed-loop sensorimotor control are innervated 
by myelinated fibres and are classified in categories depending on 
end-organ morphology and positioning with respect to the skin 
structure, determining the neural encoding of the mechanical input 
signal11. Mechanoreceptors are defined as slowly adapting (SA) or 
fast adapting (FA) depending on their temporal response, with SA 
units responding to sustained indentations and FA ones mainly 
encoding stimulation transients. Type 1 (surface-located) or type 
2 (deeply located) classes instead reflect the positioning referred 
to the epidermal layer, with impact mainly on the receptive field 
and definition of the borders. Specifically, type 1 units have smaller 
and well defined fields with multiple hotspots (that is, regions with 
maximal sensitivity within the receptive field), whereas type 2 ones 
present blurred sensitive regions with single larger spots12,13. The 
combination of temporal response and spatial properties returns 
four main classes, namely FA1 (Meissner corpuscles), SA1 (Merkel 
cells), FA2 (Pacinian corpuscles) and SA2 (Ruffini corpuscles)14. 
The integration of multiple mechanoreceptor spiking outputs gives 
rise to perceptual functions in the brain, such as the ability to deter-
mine the location and the magnitude of physical contact through 
the skin15. These physiological properties, together with explanatory 
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mechanical models describing interactions with soft materials for 
tactile sensing16,17, became a source of bio-inspiration for the pres-
ent study.

An ideal bio-inspired artificial skin should consist of tactile sen-
sors distributed over large curved areas, able to solve tactile stimuli 
with millimetric localization, millinewton magnitude sensing and 
millisecond temporal accuracy10,12,18. Artificial skins should also 
be soft19, stretchable20–23, lightweight24 and conformable25 and have 
minimal wiring encumbrance. Therefore, the application of soft 
components for tactile feedback is pivotal for both their high flex-
ibility and their intrinsic compliance to enable safe interactions.

Soft e-skin for sensorizing large areas of robot bodies
In the last decade, remarkable sensing patches leveraging differ-
ent transduction mechanisms have been presented26–31 and soft 
e-skin solutions have been developed for application in collabora-
tive anthropomorphic robots32 and neuroprosthetics33–37. However, 
artificial skins are not yet an integral component of robotic tech-
nologies, unlike vision sensors38. Conventional tactile and prox-
imity sensors have usually been developed using bulky and rigid 
components. Limited flexibility, deformability and adaptability to 
unconstrained environments have prompted, so far, the usage of 
robots in confined spaces. On the other hand, the emerging class 
of soft sensing devices, provided with deformable substrates such 
as polymers, gels and fluids39–41 in combination with miniaturized 
sensors42, suggests an approach for the growing call for flexibility.

Covering the whole body of anthropomorphic robots with soft 
and curved sensing components is a major challenge that is being 
addressed by state-of-the-art technologies. As an example, the 
HRP-2 humanoid embeds a multimodal artificial sensor system 
that mimics the functional layers of the human skin by means of 
an optical proximity sensor, a three-axis accelerometer, a normal 
force sensor and a temperature-sensitive element43. Similarly, the 
iCub integrates a soft skin endowed with three-axis force-sensitive 
elements44. A step towards highly accurate and reliable soft robot-
ics has been presented with a combination of advanced electronic 
functionalities and skin-like stretchability to develop a 347-element 
transistor array for force mapping45. Another soft e-skin was 
recently based on a capacitor array within a polyurethane matrix 

and tested when mounted onto the end-effector of a robotic arm. 
This system achieved both normal and shear force estimation in real 
time with high sensitivity and excellent cycling stability, with the 
tracked signal being also used to control and stop the system during 
predefined tasks46.

Recently developed pressure-sensitive e-skins47 presented 
stretchability and conformability, even when simultaneously detect-
ing more than two stimuli48. Nevertheless, their row–column taxel 
addressing modality entails major wiring issues, especially when 
integrating a high number of sensors over complex curved shapes 
for applications in humanoid robots, human–machine interfaces 
and healthcare machines.

Sensor data and artificial intelligence (AI) to enable 
human–robot cooperation (HRC)
The ongoing Industry 4.0 manufacturing framework and, in par-
ticular, personalized mass production, enabled by HRC, require 
the enrolment of cobots, which are able to dynamically change 
their preprogrammed tasks and share the workspace with human 
operators49. Traditional control methods do not often match the 
needs of a sensor-based, flexible and integrated solution; therefore, 
HRC applications may benefit from deep learning (DL) algorithms 
to overcome the current limitations in modelling and mimicking 
human activities50.

The viability of DL has been proven in several HRC applica-
tions, such as computer vision51, object identification52 and speech 
and body posture recognition53. Furthermore, the potentiality of DL 
with the implementation of convolutional neural networks (CNNs) 
has also been investigated towards the development of electronic 
skins with biologically inspired tactile properties, thus mimicking 
the mechanoreceptors of the human skin54.

This work presents a bio-inspired sensitive skin, able to detect 
external tactile stimuli in terms of both contact location and mag-
nitude, thus providing robots with the ability to dynamically inter-
act with the environment. Such an intelligent artificial skin will 
foster robots’ awareness and understanding of the surroundings 
in dynamic tasks, by means of an integrated tactile sensor array 
inspired to some extent by the large and single-hotspot receptive 
fields of Ruffini SA2 corpuscles11 combined with DL strategies. The 
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Fig. 1 | Artificial skin integrating FBG transducers. a, Sensitive skin patch and its characteristic dimensions. b, FBG working principle, showing how a strain 
applied to the grating is encoded in a peak-wavelength shift of the reflected light spectrum.
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degree of bio-inspiration is mainly achieved with the deep posi-
tioning and shape of fibre Bragg grating (FBG) sensors in the soft 
polymeric materials, to emulate the spatial properties of the recep-
tive fields of fusiform SA2 units. The developed curved modular 
sensorized e-skin patches integrating photonic FBG sensors allow 
the whole body of collaborative robots to be endowed with tactile 
sensing capabilities (Fig. 1a).

An outstanding feature of the FBG technology is the possibil-
ity to inscribe multiple sensing gratings within one single optical  

fibre core, each associated with its nominal wavelength λB and 
fully customizable in terms of length (from 1 mm up to 20 mm) 
and placement (along the fibre). This asset allows minimization of 
the number of necessary communication channels, and therefore 
reduces wiring management issues. The presented e-skin integrated 
with FBG tactile sensors advances the state of the art by enabling 
complete coverage of the cobot surface with a single wiring element 
connecting multiple wavelength-separated transducers. Grounding 
on the Ruffini-like sensor spatial outputs and DL methods, each 
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Fig. 2 | Receptive fields and cross-talk of the mechanotransducers embedded in the skin. a, Human skin with positioning and receptive fields of Ruffini 
corpuscles highlighted. b, Artificial skin with FBGs. c, Strain (RR component) experienced by the encapsulation material at 50 mN. d, Optical fibre path and 
positioning of the FBGs in the skin. e, Receptive fields of three FBGs characterized by indenting with a hemispherical probe (11 mm diameter) and plotting 
the force required to achieve a 0.02 nm wavelength variation, corresponding to ten times the threshold used for contact detection.
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patch was demonstrated to efficiently decode both the magni-
tude and the localization of the contact force distributed over the 
large-area artificial skin. This goal was achieved by leveraging the 
overlapping receptive fields of the FBGs, which were further inter-
preted by means of AI strategies.

Results
e-skin mimicking spatial properties of Ruffini corpuscles. The 
presented artificial skin was aimed at emulating the human skin 
functionality by embedding FBGs within a soft polymeric substrate 
that conveys the applied load to the optical sensors. Specifically, it 
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Fig. 3 | Cross-talk among neighbouring FBGs. The columns show three different locations of the load, while the rows show three different forces (1 N, 2 N, 
2.5 N). The bottom graphs show the raw wavelength variation for all 16 FBGs as a function of time.
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imitated to some extent the functional role of the human SA2 affer-
ents, through the cross-talk of neighbouring sensors with overlap-
ping receptive fields, each having a single large hotspot, to achieve 
contact localization and force estimation (Fig. 2a,b).

The FBG positioning along the optical fibre implemented a vary-
ing spatial density, to more coarsely reproduce that of the human 
mechanoreceptors in the forearm, which increases from the elbow 
to the wrist13,55.

Therefore, the developed artificial skin exhibits a bio-inspired 
variable transducer density, higher closer to the wrist and decreas-
ing towards the elbow (with distances between neighbouring 
FBGs ranging from 12.9 mm to 24.5 mm, Fig. 2d). The FBG tech-
nology is suitable for integrating a mesh of transducers since its 
wavelength-multiplexing functioning guarantees low wiring bulki-
ness (Fig. 2d). The thickness of the polymeric artificial forearm 
soft cover, encapsulating the optical fibre in the medial plane, was 
8 mm to achieve a trade-off between FBG sensitivity and receptive 
field size (Fig. 2c)56 resulting in the triangulation of neighbouring 

sensors that enabled simultaneous contact localization and force 
reconstruction via DL methods. This was modelled via finite ele-
ment method (FEM) analysis with a parametric sweep (in the range 
4–12 mm) on the polymer thickness while applying a load on its 
top surface (Fig. 2c; boundary conditions and simulation details 
are given in Methods). The simulation results confirmed that the 
radial RR component of the strain tensor measured in the centre 
of the polymer layer decreases with the thickness; conversely, the 
receptive field size increases (Extended Data Fig. 1). The applica-
tion of loads through calibrated Von Frey hairs to characterize the 
sensitivity of the skin in human–robot interaction (Supplementary  
Video 1) resulted in a sigmoid contact detection rate (Extended 
Data Fig. 2b; a = 2.2 mN−1, b = 12.4 mN, where a and b are the curve 
steepness and the force value that results in a 50% contact detec-
tion probability, respectively. See methods for the definition of the 
sigmoid fitting curve coefficients and code published in the Code 
Ocean repository for details) for increasing microfilament diam-
eters, with a 50.6 mN 75% probability threshold.
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Raw FBG sensor data showed the activation of neighbour-
ing FBGs (Fig. 2d), depending on the location and the intensity  
of the force applied via a hemispherical probe controlled with a 

mechatronic platform, with 15.9 mm2 median area (9.0 mm2 first 
quartile, 20.9 mm2 third quartile) of the hotspot across all FBGs 
(shown in black in Fig. 2e). In particular, wavelength changes 
are correlated with the distance/magnitude from/of the applied  
load (Fig. 3).

DL for contact force and localization inference. Considering 
fine manipulation activities that are typically categorized as gentle 
touch57–59, both a CNN and multilayer perceptrons (MLPs) were 
trained (Fig. 4) on the basis of a series of force-controlled indenta-
tions, up to 2.5 N, performed on the surface of the skin in random 
positions uniformly distributed over 120 mm in length (Y) and 90° 
rotation span (R) around the elbow–wrist Y axis (Fig. 5b). The CNN 
reconstructed the applied external force and a system of four MLPs 
localized the contact source, both relying on the 16 FBG readouts 
that were the network inputs.

The CNN (flowchart of Fig. 4) was the first step of the processing 
pipeline (that is, intensity detection block). A fivefold cross-validation 
was performed and resulted in a median cross-validation error of 
30 mN with 1 mN interquartile range (IQR) (Extended Data Table 
1). Furthermore, a consistent prediction error across the folds was 
achieved since the median of the IQRs of the single validation fold 
resulted in 56 mN with 2 mN IQR (Extended Data Table 1). It is 
worth mentioning that the implemented neural network correctly 
predicted the force across the whole 0–2.5 N range, as shown in  
Fig. 4 (upper right) and in the moving average box plot of Fig. 6. 
In fact, the CNN predictions also followed the changes in the force 
slope occurring during the initial phase of the contact (0.05–0.5 N).

The contact localization block was the second part of the process-
ing pipeline (Fig. 4), and its activation is contingent upon the inten-
sity detection block prediction for forces above 50 mN. It consisted 
of four feedforward neural networks followed by a multigrid neuron 
integration process (NIP). In more detail, by relying on the predic-
tions of the individual neural network, each area that represented a 
target class of the neural network was associated with a confidence 
level. Therefore, by geometrically overlapping the subareas and add-
ing the corresponding weights provided by the individual neural 
networks, the coordinates of the indentation were predicted. The 
resulting cross-validation median error was 3.6 mm (IQR = 0.1 mm; 
Extended Data Table 2), that is, about one-quarter of the minimal 
distance among nearest-neighbour sensing elements thanks to tri-
angulation rules learnt by means of DL strategies. The NIP resulted 
in substantial improvements on the prediction accuracies compared 
with the single neural networks. Namely, the SG-, DSG-, HSG- and 
VSG-NN (Extended Data Table 2) resulted in cross-validation 
median errors of 12.5 mm (IQR = 8.4 mm), 6.5 mm (IQR = 4.4 mm), 
11.0 mm (IQR = 9.3 mm) and 8.6 mm (IQR = 4.9 mm).

Extensive training and cross-validation results for both the con-
tact localization block and the intensity detection block are pre-
sented in Extended Data Tables 1 and 2, respectively.

The test set resulted in a median error of 35 mN (IQR = 56 
mN) for force prediction and of 3.2 mm (IQR = 2.3 mm) for posi-
tion prediction (Fig. 4, bottom right). Both the force intensity and 
the spatial accuracy predictions were robust over the skin surface, 
although force and localization errors increased at the edges of the 
skin, because of the relatively limited number of sensors to learn 
triangulation rules near the boundary (Fig. 5c,d).

The force prediction error increased linearly with the actual force 
(R2 = 0.97) and by comparing the force absolute error between the 
force ranges (Fig. 6a,b). Conversely, when the actual force increases, 
the accuracy in assessing contact position was enhanced in the force 
range 0.05–0.5 N and stabilized up to 2.5 N (Fig. 6c,d).

In addition, as a benchmark for our machine learning solution, 
random guess (RG) models, based on available data, were imple-
mented. For the intensity detection RG model, predictions were set 
equal to the median of the force in the training set, resulting in a 
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median absolute error of 194 mN (IQR = 714 mN). By comparing it 
with our CNN solution, via a Wilcoxon signed-rank test, a signifi-
cant difference was found (P < 0.001, Cohen’s d = 0.84). In the same 

way, the localization RG model, setting the predictions equal to the 
position target median from the training set, presented a median 
absolute error of 34.72 mm (IQR = 24.68 mm). Applying a Wilcoxon 
signed-rank test between the RG model and our model, a significant 
difference was found (P < 0.001, Cohen’s d = 1.90), thus confirming 
the effectiveness of the proposed neural network based model for 
contact localization.

Finally, we demonstrated real-time capabilities of the inten-
sity detection and contact localization blocks via random 
force-controlled indentations performed on the artificial skin sur-
face (Supplementary Video 3). Furthermore, we reported how the 
artificial skin responds appropriately in a real-time framework to 
the interaction with human impressed forces (Supplementary Video 
4), providing evidence of potential generalization ability, notwith-
standing the intrinsic difference in related contact mechanics in 
comparison with the hemispherical rigid probe used for training 
the DL model for contact localization and force estimation.

Discussion
The proposed skin fosters HRC using modular tactile patches, that 
could potentially fit any robot architecture (Supplementary Video 5 
shows the integration on a seven-degree-of-freedom (DoF) robot). 
More specifically, the integrated skin with optical sensors can be 
used either to cover purposely designed robots or to retrofit exist-
ing ones.

Currently, multimodal approaches combining state-of-the-art 
hardware development and fine sensing skills with advanced AI 
approaches are showing promising results in artificial skins60. Our 
study targeted this objective, integrating physical and computa-
tional intelligence in the presented soft sensitive skin for collabora-
tive robotics, demonstrating the ability to simultaneously predict 
the location and the intensity of an external load applied on the 
patch surface. A polymeric matrix embedding FBG transducers was 
developed and integrated in a human-scale forearm. The functional 
role of Ruffini corpuscles was a source of bio-inspiration in terms 
of properties of the receptive fields, which physiologically have 
large single high-sensitivity spots, in contrast to, as an example, the 
Merkel corpuscles, which present multiple smaller hotspots13. In 
this work we have shown that most of the FBG sensors integrated in 
the developed skin exhibited a single large responsive area (FBGs 1, 
3–5, 7–11, 14–16; see code published in the Code Ocean repository 
for details), one featured a single responsive area provided by clus-
tered adjacent subregions (FBG 6) and, probably because of local 
irregularities of the soft encapsulation polymer, a subset exhibited 
two large responsive areas (FBGs 2, 12 and 13, see published code 
for details). These results are to some extent comparable to the find-
ings of a background study characterizing the physiological prop-
erties of human mechanoreceptors in the forearm, with a single 
responsive area in nine out of ten SA2 mechanoreceptors13.

Conventional sensing technologies require a wired electrical 
dipole for each sensor, limiting the number of elements that can be 
integrated and, thus, the spatial resolution of the large-area sens-
ing skins. With respect to these solutions, FBGs offer competitive 
advantages, such as intrinsic multiplexing capabilities, high sensi-
tivity, ease of dense integration and immunity to electromagnetic 
interference (enabling, for example, magnetic resonance compat-
ibility in collaborative healthcare applications)61,62. Therefore, this 
approach may be considered a disruptive solution to overcome sev-
eral constraints within the development of the ideal sensitive skin.

DL networks were implemented to retrieve the distributed con-
tact localization (through four MLPs) and the force intensity estima-
tion (through one CNN), starting from the raw FBG wavelengths. 
Moreover, the NIP strategy permitted us to improve the localiza-
tion results, leveraging the integrated prediction of four MLPs based 
on half-pitch shifted grids. The median test set error was 35 mN 
(IQR = 56 mN) and 3.2 mm (IQR = 2.3 mm) for the estimation of 
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Fig. 6 | Box plot of the error distribution, showing a monotonic increase of 
force prediction error as a function of the actual force, and stable position 
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range 0.05–2.5 N. d, Inset of the localization median error—range 0.05–0.5 N.

Nature Machine Intelligence | VOL 4 | May 2022 | 425–435 | www.nature.com/natmachintell 431

http://www.nature.com/natmachintell


Articles Nature Machine Intelligence

the force and the localization of the source, respectively. In particu-
lar, the error distribution of localization all over the skin surface 
(120 mm along Y and 90° along R) and across the whole range of 
force (0–2.5 N) was uniform, as shown in Figs. 5 and 6, with lower 
accuracy and higher error fluctuations observed just at the edges. 
This suggests exploring the development of a continuous skin in 
critical applications, rather than discrete patches, so as to remove/
mitigate potential boundary effects on sensing accuracy.

The present work illustrated multiple breakthroughs with 
respect to the previous one-dimensional sensing approaches56. In 
particular, a soft tactile skin, made of FBG transducers embedded 
in a soft matrix, proved that normal load exerted onto its curved 
and complex surface can be identified in terms of both magnitude 
and application location. Here, the localization capability through-
out the curved and large-area sensorized surface has been demon-
strated, whereas in the previous study56 contact information was 
retrieved alongside the optical fibre only.

Future works will further investigate the generalization abil-
ity and robustness of the DL strategies, as an example with respect 
to the possibility of changing skin curvature between training and 
operation phases, and will address the implementation of collab-
orative behaviours enabled by the availability of such skin patches 
integrated within a robotic arm (Supplementary Video 5) to achieve 
interaction management, path replanning and robot programming 
by demonstration.

Methods
Biomimetic sensitive e-skin. The skin was a soft-material tactile sensor array 
system distributed over a large area to enable intensity detection and localization 
of an external force. This skin was designed and developed to cover a 3D-printed, 
custom-made anthropomorphic robotic arm and to make its forearm sensitive56,63. 
The sensing system consisted of a 8-mm-thick stretchable polymeric layer 
(Dragon Skin 10 Medium, Smooth-On), integrating a 430-mm-long optical fibre 
(FemtoPlus Grating, FemtoFiberTec), whose diameter was 80 μm (102 ± 5 μm with 
polyimide coating) and bending radius smaller than 4 mm.

FBGs are microresonant structures with a typical length in the range of 
millimetres, that are inscribed along the core of an optical fibre by means of a laser 
beam passing through a phase mask. The resulting spatial periodic structure is an 
interference pattern inside the fibre core, which acts as a narrow-band optical filter. 
When a light source illuminates the FBG, part of the light spectrum is transmitted, 
whereas the residual one, centred around the so-called Bragg wavelength (λB), is 
reflected backward. λB (Fig. 1b) depends on both the effective refractive index of 
the fibre core (ηeff) and the grating period (ΔB), or pitch, as defined in

λB = 2ηeff∆B.

FBGs are sensitive to strain, since it affects both ΔB and ηeff, so the reflected 
signal (λB) changes accordingly, as shown in Fig. 1b. The efficacy of this technology 
has been previously assessed in robotics, ranging from simple integration in soft 
polymers64–66 to more complex tactile sensors56 and robotic hand prototypes67, 
often in combination with AI techniques and FEMs56. These works share the idea 
of encapsulating optical fibres in silicone rubbers for an efficient transfer of the 
external contact pressures to the embedded FBGs and to mimic the soft properties 
of human skin. The strain experienced by a grating results in a shift of its central 
wavelength, which is proportional to the distance from/intensity of the contact 
interaction (Supplementary Video 2). Furthermore, the polymeric substrate 
enhances the robustness of the encapsulated optical fibre.

The integrated optical fibre was endowed with nFBG = 16 FBGs, each 8 mm in 
length, with λB ranging from 1,530 nm to 1,564.5 nm and a pitch of 2.3 nm (pattern 
shown in Fig. 2d). The skin dimensions were 150 mm along the vertical elbow–
wrist axis (Y), covering a 145° region (labelled with rotational coordinate R).

e-skin fabrication process. The manufacturing process of the soft curved skin 
for the covering of the anthropomorphic forearm is reported in Extended Data 
Fig. 3. Several custom moulds were designed and fabricated by means of a 3D 
printer (Ultimaker S5, Ultimaker). A first polymeric layer was cast by pouring 
Dragon Skin 10 into a mould consisting of the forearm support and a cover with 
the pattern (1 mm extrusion) for hosting the optical sensor. Once the optical fibre 
equipped with the 16 FBGs was encapsulated within the dedicated channel, the 
closing silicone layer was poured into a smooth surface mould.

FEM simulation. An FEM analysis of the sensitive skin behaviour was performed 
in COMSOL Multiphysics (COMSOL). The simulations addressed the evaluation 
of a load applied onto the skin top surface when a hemispherical indenter was 

used. The scope of this preliminary study was to evaluate the effect of an increasing 
thickness of the encapsulation material, searching for a proper trade-off between 
the receptive field size and the sensitivity of the sensors. The skin model consisted 
of a soft polymeric layer with parametric thickness in the range 4–12 mm. The 
lower limit was set to prevent delaminations of the soft polymer and to ease 
integration of the optical fibre, whereas the upper limit was enforced to guarantee 
enough space for the actuation units embedded in the robotic arm. To simplify the 
model and reduce the computational burden, a two-dimensional axisymmetric 
simulation was run, by considering the mid-thickness skin radial strain as 
representative of that experienced by the fibre. The polymeric substrate (density 
ρ = 1,070 kg m−3, Young’s modulus E = 152 kPa, Poisson coefficient ν = 0.49) was 
modelled as Yeoh hyperelastic material, i.e., through a third order polynomial 
expression with coefficients c1, c2 and c3 (for the considered polymer68: c1 = 36 kPa, 
c2 = 258 Pa, c3 = −0.56 Pa), which reduces to the classical neo-Hookean model 
when only considering c1, that in turn represents half of the material shear 
modulus in the undeformed configuration. The steel indenter was modelled as 
a linear elastic material, whose mechanical properties were E = 200 GPa, ν = 0.30 
and ρ = 7,850 kg m−3. The simulation consisted in applying loads by means of 
the indenter on the top surface of the soft object, replicating the experimental 
indentations. In the FEM simulation, a null displacement at the bottom surface of 
the skin was set, since it was attached to the support rigid surface. Moreover, mesh 
independence was achieved by performing a mesh refinement study until robust 
results were reached.

Testing of e-skin sensitivity with Von Frey hairs. The sensitivity of the FBG-based 
artificial skin was evaluated by means of Von Frey hairs to characterize the human–
machine interaction potential. These calibrated microfilaments, widely employed 
in neurophysiological tests for assessing human skin sensitivity to mechanical 
pressure, are nylon filaments with varying diameter: the smaller the diameter, the 
less force the filament exerts on the skin during application before buckling. In 
particular, eight Von Frey hairs (60 g, 26 g, 10 g, 4 g, 2 g, 1 g, 0.6 g and 0.4 g) were 
selected to manually stimulate the artificial skin. A cohort of 12 subjects was 
asked to provide 20 indentations for each of the eight filaments (12 subjects × 20 
sites × 8 filaments = 1,920 stimulations) randomly across the artificial skin surface 
covering the forearm of the human-like robotic arm (Extended Data Fig. 2a 
and Supplementary Video 1). A graphical user interface (LabVIEW, National 
Instruments) was developed for data collection and real-time processing, allowing 
us to continuously read and detect the 16 FBG wavelength variations. When at 
least one sensor output exceeded a wavelength variation threshold, a stimulus was 
classified as a touch detection. This wavelength threshold was heuristically set to 
2 pm to avoid background noise determining a spurious contact identification. The 
stimulus detection rate was then calculated for each microfilament to compute a 
psychometric-like fitting and thus the force sensitivity threshold of the artificial 
skin. Detection rates were fitted using a sigmoid curve:

F (x) =

1
1 + e−a(x−b)

where x is the force associated with the calibrated Von Frey hair, and a and b are 
the curve steepness and the force value that results in a 50% contact detection 
probability. The sigmoid coefficients were computed via a nonlinear least squares 
method (MATLAB, MathWorks). The force sensitivity threshold was estimated, 
as commonly done in psychophysical research59, by computing the stimulus force 
value that returns a 75% event probability on the sigmoid fitting.

Automated testing of the e-skin with a mechatronic platform. A four-DoF 
mechatronic platform was used to collect data about position and intensity arising 
from the force-controlled indentations on the forearm skin. As shown in Extended 
Data Fig. 4, the apparatus consisted of (i) two motorized stages (8MTF-102LS05, 
STANDA; 2.5 µm full step resolution and 102 mm × 102 mm travel range) for 
horizontal displacements (X–Y), (ii) a precision motorized positioner (8MVT120-
25-4247, STANDA; 5 µm full step resolution and 25.4 mm travel range) for vertical 
translations (Z) and (iii) a motorized rotator (8MR190-2, STANDA; 0.01° full step 
resolution and 360° rotation range around the Y axis, resulting in the R rotational 
coordinate). In addition, a six-axis load cell (Nano-43 with SI-18-0.25 calibration, 
ATI Industrial Automation; 1/256 N resolution up to 18 N sensing range), equipped 
with a cylindrical steel probe (that is, an indenter 21 mm in length and with a 
hemispherical tip 11 mm in diameter) mimicking the size of a human fingertip, 
provided the measurement of the force component exerted along the loading 
direction of the skin (Z). A benchmark optical interrogator (FBG-Scan 904,  
FBGS; 0.3 pm 1σ precision in the 1,510–1,590 nm wavelength range) was  
used to illuminate the FBGs with a broad spectrum and to detect the reflected 
wavelengths. Data streaming was achieved via the interrogator’s built-in software 
(ILLumiSense, FBGS). The control of the overall experimental set-up and data 
recording were carried out by means of a dedicated graphical user interface 
(LabVIEW, National Instruments).

Automated data collection protocol with mechatronic platform. An 
experimental protocol consisting of 2,700 force-controlled indentations was carried 
out. Such indentations were spatially randomized throughout the artificial skin 
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surface and performed by means of the steel indenter. Each selected point was 
loaded up to 2.5 N along the vertical direction (Z) and only data taken during the 
increasing-load phase were retained for further elaborations. The force intensity 
time series (Fz), the location data (Y; R) and the readouts of the FBG array were 
collected at a sampling rate of 100 Hz, during each indentation. The total indented 
area was set to 120 mm along Y and 90° along R and the final dataset included a 
total of more than 2.7 million samples.

Evaluation of receptive fields of e-skin FBG sensors. The receptive field of each 
FBG was assessed by evaluating the spatial distribution of contact force required 
to achieve a wavelength variation of at least 20 pm. These force levels and the areas 
underpinning them were represented by means of filled two-dimensional contour 
plots, where the hotspot regions with maximal sensitivity are represented in black 
(mapping the spatial regions of the receptive field responsive up to the first sixth of 
indentation force magnitude).

DL model and multigrid NIP. A DL model was developed and assessed with 
the Ngene LabVIEW module. The model was made up of two main blocks: the 
intensity detection block, that is, a CNN, chosen for its capability of handling time 
series69, and the localization block, consisting of four dense MLPs. The first block 
provided the estimation of the force applied onto the skin surface, whereas the 
second block output estimated contact point coordinates. In particular, when the 
CNN predicted a force higher than a 50 mN threshold, the localization block was 
triggered and, after the multigrid NIP, the contact point was estimated (Fig. 4).  
The CNN consisted of three identical three-dimensional convolutional layers 
for feature extraction from the raw data. Each of them presented 16 kernel filters 
(size 16 × 1 × 1) and a convolutional stride (S = 1), thus matching the input size 
rectified linear unit activation function70. A max-pooling layer followed each 
convolutional layer, and afterwards a flattening layer was added. At the end of the 
stacked convolutional module, two fully connected layers of 100 and 1 neurons, 
respectively, were connected to perform regression. The 100-neuron layer 
responded with a rectified linear unit activation function while the last neuron 
output was implemented via a linear activation function. Then, the nFBG inputs 
were processed by the second block to perform localization. The four classification 
networks consisted of three hidden layers, one dropout layer to prevent 
overfitting71 and an output layer with a softmax activation function.

As regards the NIP, a multigrid strategy was pursued by training four neural 
networks using four different grid configurations as target classes. Four different 
virtual grids of 30, 35, 36 and 42 squares (18 mm × 20 mm) were the targets of the 
classification networks (Fig. 4). With respect to the grid of 30 virtual areas (SG in 
Fig. 4), the other grids were vertically (VSG), horizontally (HSG) and diagonally 
(DSG) shifted by half a square. Each neural network provided a weight, and hence 
a classification percentage, for each area of the corresponding grid.

By virtually subdividing every single square into four smaller squares 
(9 mm × 10 mm) and overlapping the four grids, one single finer grid was  
obtained. The location of the applied load was retrieved with the weighted 
barycentre of each square.

All indentation tests involving AI strategies were performed on the 
same sample of sensorized skin, whereas the demonstrations involving the 
anthropomorphic robotic arm (Supplementary Videos 2 and 5) were performed 
with a different sample.

Model validation. The implemented validation approach consisted in (1) spatial 
random subdivision of the 2,700 indentations in training set (85%) and test set 
(15%), the latter then used to externally evaluate the model performances, and (2) 
a k-fold cross-validation (k = 5) within the training set used to internally validate 
the model. Model training was implemented via a backpropagation algorithm and 
stochastic gradient descent optimization algorithm (with momentum 0.9), and the 
samples were grouped into 50 minibatches to decrease the training time.

It is worth mentioning that each indentation was fully assigned, hence not split, 
to one of the datasets (that is, training, validation or test set). This choice ensured 
that no information about the validation/test set was provided during the model 
training, hence any form of double-dipping was avoided. Moreover, a z-score 
normalization was applied to both the training set and to the test set, using the 
mean and s.d. of the training set.

In addition, to test the algorithm force and position predictions against a 
random benchmark, RG models were developed. For the intensity detection RG 
model, the predictions were set equal to the median force value of the training set 
(176 mN), while for the localization RG model the prediction coordinates were 
set equal to the median value of the target positions (X = 0 mm and Y = 62.5 mm). 
Then the absolute error on the test set was computed using the RG model 
predictions and compared via a two-sided Wilcoxon signed-rank test (on SPSS 
27.0, IBM SPSS) with the CNN and MLP/NIP model test absolute respectively.

Demonstration of collaborative application. A collaborative application of the 
developed skin was demonstrated on the basis of its integration into a seven-DoF 
robotic arm (three DoFs for the shoulder, one for the elbow, one for forearm link 
pronosupination and two for the wrist). The two DoFs of the wrist were actuated 
with linear motors (P16-50-22-12-P Micro Linear Actuator, Actuonix), which were 
operated in static position control mode. The remaining five DoFs were actuated 

with servomotors (XM540-W270-R Dynamixel for the shoulder and elbow DoFs, 
and XH430-W350-R Dynamixel for forearm link pronosupination), which were 
controlled with two policies. First, the robot arm was in backdrivable configuration 
and it was freely moved by a human operator, while the joint encoders of the 
servomotors tracked the operated motion. Afterwards, the recorded trajectories 
were autonomously replicated by the robot arm, and the skin presented in this 
study was used to detect contact and demonstrate the feasibility of collaborative 
functionality by temporarily stopping motion in real time upon contact detection.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The test data reported here are freely available via Code Ocean at https://
codeocean.com/capsule/3018603/tree/v1 (ref. 72).

Code availability
The MATLAB scripts used to elaborate the dataset and retrieve the figures 
reported here are freely available via Code Ocean at https://codeocean.com/
capsule/3018603/tree/v1 (ref. 72).

Received: 2 August 2021; Accepted: 12 April 2022;  
Published online: 30 May 2022

References
	1.	 Bitonneau, D. et al. Design of an industrial human-robot system through 

participative simulations – Tank cleaning case study. In IEEE/SICE 
International Symposium on System Integration (SII) 1059-1066 (IEEE, 2017).

	2.	 Villani, V., Pini, F., Leali, F. & Secchi, C. Survey on human–robot 
collaboration in industrial settings: safety, intuitive interfaces and 
applications. Mechatronics 55, 248–266 (2018).

	3.	 Peters, B. S., Armijo, P. R., Krause, C., Choudhury, S. A. & Oleynikov, D. 
Review of emerging surgical robotic technology. Surg. Endosc. 32,  
1636–1655 (2018).

	4.	 Matheson, E., Minto, R., Zampieri, E. G. G., Faccio, M. & Rosati, G. 
Human–robot collaboration in manufacturing applications: a review. Robotics 
8, 100 (2019).

	5.	 Jung, B. J., Kim, B., Koo, J. C., Choi, H. R. & Moon, H. Joint torque sensor 
embedded in harmonic drive using order tracking method for robotic 
application. IEEE/ASME Trans. Mechatron. 22, 1594–1599 (2017).

	6.	 Orekhov, A. L., Johnston, G. L., Abah, C., Choset, H. & Simaan, N. Towards 
collaborative robots with sensory awareness: preliminary results using 
multi-modal sensing. In Proceedings of the IEEE ICRA workshop on Physical 
human-robot interaction: a design focus 1-5 (2019).

	7.	 Tsuji, S. & Kohama, T. Proximity skin sensor using time-of-flight sensor for 
human collaborative robot. IEEE Sens. J. 19, 5859–5864 (2019).

	8.	 Silvera-tawil, D., Rye, D. & Velonaki, M. Artificial skin and tactile sensing for 
socially interactive robots: a review. Robot. Auton. Syst. 63, 230–243 (2015).

	9.	 Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and 
sensorimotor memory in automatic control of precision grip when lifting 
rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984).

	10.	Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the 
fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

	11.	Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 
618–639 (2013).

	12.	Vallbo, A. B. & Johansson, R. S. Properties of cutaneous mechanoreceptors in 
the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984).

	13.	Vallbo, A. B., Olausson, H., Wessberg, J. & Kakuda, N. Receptive field 
characteristics of tactile units with myelinated afferents in hairy skin of 
human subjects. J. Physiol. 483, 783–795 (1995).

	14.	Fleming, M. S. & Luo, W. The anatomy, function, and development of 
mammalian Aβ low-threshold mechanoreceptors. Front. Biol. 8,  
408–420 (2013).

	15.	Birznieks, I., Jenmalm, P., Goodwin, A. W. & Johansson, R. S. Encoding of 
direction of fingertip forces by human tactile afferents. J. Neurosci. 21, 
8222–8237 (2001).

	16.	Vásárhelyi, G., Ádám, M., Vázsonyi, É., Bársony, I. & Dücso, C. Effects  
of the elastic cover on tactile sensor arrays. Sensors Actuators A 132,  
245–251 (2006).

	17.	Vásárhelyi, G., Fodor, B. & Roska, T. Tactile sensing–processing: 
interface-cover geometry and the inverse-elastic problem. Sensors Actuators A 
140, 8–18 (2007).

	18.	Johansson, R. S. & Birznieks, I. First spikes in ensembles of human  
tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 
170–177 (2004).

	19.	Tee, B. C. K. & Ouyang, J. Soft electronically functional polymeric composite 
materials for a flexible and stretchable digital future. Adv. Mater. 30,  
1802560 (2018).

Nature Machine Intelligence | VOL 4 | May 2022 | 425–435 | www.nature.com/natmachintell 433

https://codeocean.com/capsule/3018603/tree/v1
https://codeocean.com/capsule/3018603/tree/v1
https://codeocean.com/capsule/3018603/tree/v1
https://codeocean.com/capsule/3018603/tree/v1
http://www.nature.com/natmachintell


Articles Nature Machine Intelligence

	20.	Ho, D. H. et al. Stretchable and multimodal all graphene electronic skin. Adv. 
Mater. 28, 2601–2608 (2016).

	21.	Park, J. et al. Tactile-direction-sensitive and stretchable electronic skins based 
on human-skin-inspired interlocked microstructures. ACS Nano 8, 
12020–12029 (2014).

	22.	Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. 
Nat. Commun. 5, 5747 (2014).

	23.	Sekitani, T. et al. A rubberlike stretchable active matrix using elastic 
conductors. Science 321, 1468–1472 (2008).

	24.	Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic 
electronics. Nature 499, 458–463 (2013).

	25.	Someya, T. et al. Conformable, flexible, large-area networks of pressure and 
thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. 
USA 102, 2321–12325 (2005).

	26.	Khan, S., Dahiya, R., Tinku, S. & Lorenzelli, L. Conformable tactile sensing 
using screen printed P (VDF-TrFE) and MWCNT-PDMS composites. In 
SENSORS, 2014 IEEE 862–865 (IEEE, 2014).

	27.	Chen, X. et al. Self-powered flexible pressure sensors with vertically 
well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. 
Chem. C 3, 11806–11814 (2015).

	28.	Pan, L. et al. An ultra-sensitive resistive pressure sensor based on 
hollow-sphere microstructure induced elasticity in conducting polymer film. 
Nat. Commun. 5, 3002 (2014).

	29.	Zhu, G. et al. Self-powered, ultrasensitive, flexible tactile sensors based on 
contact electrification. Nano Lett. 14, 3208–3213 (2014).

	30.	Yun, S. et al. Polymer-waveguide-based flexible tactile sensor array for 
dynamic response. Adv. Mater. 26, 4474–4480 (2014).

	31.	Yogeswaran, N. et al. Piezoelectric graphene field effect transistor pressure 
sensors for tactile sensing. Appl. Phys. Lett. 113, 014102 (2018).

	32.	Asfour, T. et al. ARMAR-4: a 63 DOF torque controlled humanoid robot. In 
IEEE-RAS International Conference on Humanoid Robots 390–396 (IEEE, 2015).

	33.	Micera, S. Neuroprosthetics: restoring multi-joint motor control. Nat. Biomed. 
Eng. 1, 0073 (2017).

	34.	Chortos, A. & Bao, Z. Skin-inspired electronic devices. Mater. Today 17, 
321–331 (2014).

	35.	Tan, D. W. et al. A neural interface provides long-term stable natural touch 
perception. Sci. Transl. Med. 6, 257ra138 (2014).

	36.	Lee, W. W. et al. A neuro-inspired artificial peripheral nervous system for 
scalable electronic skins. Sci. Robot. 4, eaax2198 (2019).

	37.	Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis 
perceives touch and pain. Sci. Robot. 3, eaat3818 (2018).

	38.	Dahiya, R. et al. Large-area soft e-skin: the challenges beyond sensor designs. 
Proc. IEEE 107, 2016–2033 (2019).

	39.	Majidi, C. Soft robotics: a perspective—current trends and prospects for the 
future. Soft Robot. 1, 5–11 (2014).

	40.	Trivedi, D., Rahn, C. D., Kier, W. M. & Walker, I. D. Soft robotics: biological 
inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 
99–117 (2008).

	41.	Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in 
robotics. Trends Biotechnol. 31, 287–294 (2013).

	42.	Ge, J. et al. A bimodal soft electronic skin for tactile and touchless interaction 
in real time. Nat. Commun. 10, 4405 (2019).

	43.	Mittendorfer, P., Yoshida, E. & Cheng, G. Realizing whole-body tactile 
interactions with a self-organizing, multi-modal artificial skin on a humanoid 
robot. Adv. Robot. 29, 51–67 (2015).

	44.	Tomo, T. P. et al. A new silicone structure for uSkin—a soft, distributed, 
digital 3-axis skin sensor and its integration on the humanoid robot iCub. 
IEEE Robot. Autom. Lett. 3, 2584–2591 (2018).

	45.	Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically 
stretchable transistor array. Nature 555, 83–88 (2018).

	46.	Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to 
detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 
(2018).

	47.	Núñez, C. G., Navaraj, W. T., Polat, E. O. & Dahiya, R. Energy-autonomous, 
flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017).

	48.	Hua, Q. et al. Skin-inspired highly stretchable and conformable matrix 
networks for multifunctional sensing. Nat. Commun. 9, 244 (2018).

	49.	Bragança, S., Costa, E., Castellucci, I., Arezes, P.M. (2019). in Occupational 
and Environmental Safety and Health (eds Arezes, P. M. et al.) 641–650 
(Studies in Systems, Decision and Control, Vol. 202, Springer, 2019).

	50.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	51.	Heo, Y. J. et al. Collision detection for industrial collaborative robots: a deep 

learning approach. IEEE Robot. Autom. Lett. 4, 740–746 (2019).
	52.	Sundaram, S. et al. Learning the signatures of the human grasp using a 

scalable tactile glove. Nature 569, 698–702 (2019).
	53.	Lepora, N. F., Church, A., De Kerckhove, C., Hadsell, R. & Lloyd, J. From 

pixels to percepts: highly robust edge perception and contour following using 
deep learning and an optical biomimetic tactile sensor. IEEE Robot. Autom. 
Lett. 4, 2101–2107 (2019).

	54.	Sohn, K. S. et al. An extremely simple macroscale electronic skin realized by 
deep machine learning. Sci. Rep. 7, 11061 (2017).

	55.	Corniani, G. & Saal, H. P. Tactile innervation densities across the whole body. 
J. Neurophysiol. 124, 1229–1240 (2020).

	56.	Massari, L. et al. A machine-learning-based approach to solve both contact 
location and force in soft material tactile sensors. Soft Robot. 7, 409–420 (2020).

	57.	Caldwell, D. G., Tsagarakis, N. & Giesler, C. An integrated tactile/shear 
feedback array for stimulation of finger mechanoreceptor. In Proc. 1999  
IEEE International Conference on Robotics and Automation Vol. 1, 287–292 
(IEEE, 1999).

	58.	Cutkosky, M. R., Howe, R. D. & Provancher, W. R. in Springer Handbook of 
Robotics (eds Siciliano B. & Khatib O.) 455–476 (Springer, 2008).

	59.	Jones, L. A. & Lederman, S. J. Human Hand Function (Oxford Scholarship 
Online, 2007); https://doi.org/10.1093/acprof:oso/9780195173154.001.0001

	60.	Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force 
self-decoupling. Sci. Robot. 6, eabc8801 (2021).

	61.	Massaroni, C. et al. Design and feasibility assessment of a magnetic 
resonance-compatible smart textile based on fiber Bragg grating sensors for 
respiratory monitoring. IEEE Sens. J. 16, 8103–8110 (2016).

	62.	Saccomandi, P. et al. Feedforward neural network for force coding of an 
MRI-compatible tactile sensor array based on fiber Bragg grating. J. Sensors 
2015, 367194 (2015).

	63.	D’Abbraccio, J. et al. Design and development of large-area FBG-based 
sensing skin for collaborative robotics. In 2019 IEEE International Workshop 
on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2019—Proc. 
410–413 (IEEE, 2019).

	64.	Lo Presti, D. et al. Wearable system based on flexible FBG for respiratory and 
cardiac monitoring. IEEE Sens. J. 19, 7391–7398 (2019).

	65.	Lo Presti, D. et al. A multi-parametric wearable system to monitor neck 
movements and respiratory frequency of computer workers. Sensors 20,  
536 (2020).

	66.	Lo Presti, D. et al. Cardio-respiratory monitoring in archery using a smart 
textile based on flexible fiber Bragg grating sensors. Sensors 19, 3581 (2019).

	67.	Massari, L. et al. Tactile sensing and control of robotic manipulator 
integrating fiber Bragg grating strain-sensor. Front. Neurorobot. 13, 8 (2019).

	68.	Hao, Y. et al. Modeling and experiments of a soft robotic gripper in 
amphibious environments. Int. J. Adv. Robot. Syst. 14, 1729881417707148 
(2017).

	69.	Zhao, B., Lu, H., Chen, S., Liu, J. & Wu, D. Convolutional neural networks 
for time series classification. J. Syst. Eng. Electron. 28, 162–169 (2017).

	70.	Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. Activation functions: 
comparison of trends in practice and research for deep learning. Preprint at 
https://doi.org/10.48550/arXiv.1811.03378 (2018).

	71.	Jimmy, L. & Brendan, B. Adaptive dropout for training deep neural networks. 
In Advances in Neural Information Processing Systems (eds Burges, C. J. et al.) 
3084–3092 (Curran Associates, 2013).

	72.	Massari, L. et al. Functional mimicry of Ruffini receptors with Fiber Bragg 
Gratings and Deep Neural Networks enables a bio-inspired large-area tactile 
sensitive skin. Code Ocean https://doi.org/10.24433/CO.7914052.v1 (2022).

Acknowledgements
This study was supported in part by the Italian Ministry of Universities and Research 
through the PARLOMA project (SIN_00132, C.M.O.), by the Italian Ministry of 
Economic Development through the Industry 4.0 Competence Center on Advanced 
Robotics and Enabling Digital Technologies and Systems (ARTES4.0, C.M.O.), by 
the Tuscany Region through the Tuscany Network for Bioelectronic Approaches in 
Medicine: AI-based predictive algorithms for fine-tuning of electroceutical treatments 
in neurological, cardiovascular and endocrinological diseases (TUNE-BEAM, 
H14I20000300002, C.M.O.) and by the European Union’s Horizon 2020 research 
and innovation programme under Marie Skłodowska-Curie grant agreement 956745 
(European Training Network for Industry Digital Transformation across Innovation 
Ecosystems, EINST4INE, 956745, C.M.O.). Results reflect the authors’ view only. The 
funding agencies are not responsible for any use that may be made of the information 
contained. C.M.O. gratefully thanks S. Micera for comments made on an earlier version 
of the manuscript.

Author contributions
L.M., J.D.A., G.T., M.Z., E.D.S. and C.M.O. designed and developed the artificial skin 
embedding the optical fibre. M.F., E.P., E.M.S., E.D.S. and C.M.O. contributed to the 
development of the experimental set-up. L.M., G.F., J.D.A. and M.F. carried out the 
experiments and L.M., G.F., M.F. and G.D.A. performed data analysis supported by A.A., 
J.D.A. and E.P. L.M., G.F., E.D.S. and C.M.O. conceived and developed the AI algorithms 
presented in the study. L.M. and M.F. performed FEM simulations. C.M.O. conceived the 
study and was responsible for planning and supervising the scientific work, for defining 
the experimental protocols and for the research grants supporting the study. E.D.S. was 
co-supervisor of the scientific work, of the definition of the experimental protocols and 
of FEM simulations. L.M., G.F., J.D.A., M.F., E.D.S. and C.M.O. wrote the manuscript. 
A.A. was responsible for the artwork, the figures and the Supplementary Information.  

Nature Machine Intelligence | VOL 4 | May 2022 | 425–435 | www.nature.com/natmachintell434

https://doi.org/10.1093/acprof:oso/9780195173154.001.0001
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.24433/CO.7914052.v1
http://www.nature.com/natmachintell


ArticlesNature Machine Intelligence

All the authors discussed the results, critically revised the paper and approved the  
final version. Correspondence and requests for materials should be addressed to  
C.M.O. and E.D.S.

Competing interests
The authors declare the following competing interests: L.M., J.D.A., G.T., M.Z., 
E.P., E.M.S., E.D.S. and C.M.O. disclose a patent filed on the developed artificial 
skin and collaborative robot arm integrating FBG transducers (application number 
IT201900003657A1). The remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s42256-022-00487-3.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s42256-022-00487-3.

Correspondence and requests for materials should be addressed to 
Edoardo Sinibaldi or Calogero Maria Oddo.

Peer review information Nature Machine Intelligence thanks Luke E. Osborn and Jie Xu 
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Nature Machine Intelligence | VOL 4 | May 2022 | 425–435 | www.nature.com/natmachintell 435

https://doi.org/10.1038/s42256-022-00487-3
https://doi.org/10.1038/s42256-022-00487-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natmachintell


Articles Nature Machine IntelligenceArticles Nature Machine Intelligence

Extended Data Fig. 1 | Thickness effect of the encapsulation material on the FBG receptive fields and sensitivity within the range 4 to 12 mm at 50 mN. 
Higher material thickness reduces sensitivity over the sensor and shifts the curve minimum.
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Extended Data Fig. 2 | Experiment with 12 subjects involving random administration of calibrated Von Frey hairs over the artificial skin surface to 
evaluate its detection rate as a function of stimulation force intensity. a) Illustration of experimental setup and procedure. b) Sigmoid fitting of contact 
detection rate as a function of the nominal force exerted by the von Frey microfilament. X-axis is represented with logarithmic scale.
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Extended Data Fig. 3 | Fabrication process of the biomimetic skin. Step 1) Integration of the 1st mold; Step 2) Dragon Skin 10 casting in the 1st mold; Step 
3) Removal of the 1st layer of the artificial skin; Step 4) Integration of the optical fiber embedding the FBGs in the soft skin; Step 5) Integration of the 2nd 
mould; Step 6) Removal of the 2nd layer of the artificial skin and demolding at the end of the procedure.
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Extended Data Fig. 4 | Experimental setup and protocol. a) 4-axis mechatronic platform for force-controlled indentations over the skin surface; b) 
Stimulation force profiles adopted for the indentation experiments (contact force up to 2.5N) to train the neural network.
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Extended Data Table 1 | CNN 5-fold cross-validation results for force intensity
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Extended Data Table 2 | MLP 5-fold cross-validation results for contact localization
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