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Simple Summary: This study aims at developing a machine-learning-based classification approach 
to recognize insect species of economic importance. Two tephritid pest species with similar shape 
and locomotory patterns (e.g., the Mediterranean fruit fly Ceratitis capitata, and the olive fruit fly 
Bactrocera oleae) were used as model organisms. The proposed method, based on a convolutional 
neural network (CNN), accurately detects and discriminates moving C. capitata and B. oleae adult 
individuals in real-time. These results importantly contribute to the development of autonomous 
pest monitoring methods, to intervene with tailored measures instantaneously and remotely. Over-
all, this study promotes sustainable and efficient crop protection approaches based on integrated 
pest management and precision techniques.  

Abstract: Artificial Intelligence (AI) and automation are fostering more sustainable and effective 
solutions for a wide spectrum of agricultural problems. Pest management is a major challenge for 
crop production that can benefit from machine learning techniques to detect and monitor specific 
pests and diseases. Traditional monitoring is labor intensive, time demanding, and expensive, while 
machine learning paradigms may support cost-effective crop protection decisions. However, previ-
ous studies mainly relied on morphological images of stationary or immobilized animals. Other 
features related to living animals behaving in the environment (e.g., walking trajectories, different 
postures, etc.) have been overlooked so far. In this study, we developed a detection method based 
on convolutional neural network (CNN) that can accurately classify in real-time two tephritid spe-
cies (Ceratitis capitata and Bactrocera oleae) free to move and change their posture. Results showed a 
successful automatic detection (i.e., precision rate about 93%) in real-time of C. capitata and B. oleae 
adults using a camera sensor at a fixed height. In addition, the similar shape and movement patterns 
of the two insects did not interfere with the network precision. The proposed method can be ex-
tended to other pest species, needing minimal data pre-processing and similar architecture. 

Keywords: deep learning; AI; agtech; integrate pest management; machine learning; tephritid; olive 
fruit fly; Mediterranean fruit fly; monitoring; real-time classification 
 

1. Introduction 
The recent rapid progress in Artificial Intelligence (AI) and automation is producing 

a new wave of technological advancement with tangible impact on social, health, indus-
trial, and environmental contexts [1–3]. AI provides robust applicability to complex prob-
lems, with performances, in some scenarios, challenging human results. Agriculture rep-
resents an application field of crucial importance for AI, due to the benefits that machine 
learning strategies may provide to face challenges related to pest and disease monitoring, 
weed management, chemicals use, irrigation issues, yield prediction, precision livestock 
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farming, and more [2,4–6]. AI techniques provide the best fitting solution for specific ag-
ricultural problems that are generally highly dynamic and cannot be generalized to pro-
pose a common solution [2,7].  

Crop protection is one of the most expensive practices in the agribusiness, often re-
lated to improper strategies adopted, as well as to the impossibility of adequately recog-
nizing and preventing severe parasite infestations and pathogen infections [8,9]. In addi-
tion, an increasing environmental concern and public demand for the reduction of toxic 
insecticides use, make pest management even more challenging [10]. Integrated pest man-
agement (IPM) aims at ensuring more sustainable and efficient crop protection programs 
based on adequate strategies to control pests [8]. One of the IPM’s core components is 
represented by monitoring pests’ activity and density [11]. However, monitoring opera-
tions are still mainly based on human experts that analyse traps in loco, or their digital 
images, to recognize and count pests [12]. This monitoring approach is labour intensive, 
time demanding, and expensive [13]. Furthermore, the unavailability of a standardized 
counting process frequently makes monitoring operations error prone [14]. 

The option of autonomously and remotely monitoring pest organisms is gaining a 
momentum due to the advantage to intervene in protectingcrops in real time [15–18]. In 
several previous studies, insect models have been used, since specimens are generally well 
preserved, and their images can be captured at high resolution in ideal laboratory condi-
tions [19–22]. In other research, insects collected in nature have been classified in labora-
tory conditions [23–25]. Image quality was worse than those of the specimen’s case, but 
thanks to the laboratory environment, it was possible to adjust several experimental set-
tings. Different machine learning models have been used, such as support vector ma-
chines (SVM) [21], artificial neural networks (ANN) [21,26], k-nearest neighbours (KNN) 
[27], and ensemble methods (e.g., adaptive boosting [28,29]). In a general perspective, the 
state of the art for insect ecology investigation and monitoring includes four main tech-
nologies [30]: computer vision, acoustic monitoring [31], radar technologies [32,33], and 
molecular methods [34].  

However, beside the morphology of stationary or immobilized animals, other fea-
tures related to living animals behaving in the environment (e.g., walking trajectories, dif-
ferent postures, etc.) have been overlooked so far. Developing a technology considering 
these features can strongly contribute to improve automatic monitoring in real scenarios. 
Furthermore, localizing and classifying insects that naturally behave in the environment, 
can pave the way to the development of a new generation of monitoring stations that are 
more selective than traditional sticky traps. For instance, Bjerge et al. [35] constructed a 
system using a deep learning software that performs real-time classification and tracking 
of pollinators. Unfortunately, sticky traps also capture non-target and/or beneficial organ-
isms [36–39], with obvious negative effects on biodiversity and ecosystem stability.  

Herein, we developed a detection method based on a convolutional neural network 
(CNN) that can accurately classify living true fruit flys’ species (Diptera: Tephritidae) 
moving and constantly changing their posture in real-time. Particularly, an artificial neu-
ral network (ANN) was trained on two different species belonging to the family Tephri-
tidae: the Mediterranean fruit fly, Ceratitis capitata Wiedemann, a polyphagous pest at-
tacking more than 200 fruit species [40]; and the olive fruit fly Bactrocera oleae (Rossi), that 
is the major pest of commercial olives worldwide [41]. Our approach can be extended to 
other pest species, with minimal data pre-processing. In a broader context, the technology 
can be used for a wide range of applications with other species of economical and medical 
importance, such as pollinators and mosquitoes [42]. 
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2. Materials and Methods 
2.1. Ethics Statement 

This research is compliant with the guidelines for the treatment of animals in behav-
ioral research and teaching [43], as well as with the Italian (D.M. 116192) and the European 
Union regulations [44]. 

2.2. Animal Rearing 
C. capitata and B. oleae adult flies were maintained in separate cylindrical PVC cages 

under controlled conditions (21 ± 1 °C, 55 ± 5% relative humidity, 16:8 h light:dark) at the 
BioRobotics Institute. Adults were fed on a dry diet of yeast extract and sucrose mixture, 
at a ratio of 1:10 (w:w), while a cotton wick provided water. 

2.3. Images Acquisition Setup 
Flies were individually transferred in a transparent petri dish (60 mm diameter) 

turned upside down avoiding insects’ escape. An equal proportion of males and females 
for each species were tested. Although sexual dimorphism exists in both species, the col-
ours and morphology between the two species are clearly distinguishable regardless of 
their sexes. 

The petri dish was framed by an image sensor (specifically, camera module with 
1/2.7" CMOS sensor, Full-HD maximum resolution, 60 FPS, and coloured), mounting fixed 
2.8–12 mm optics (i.e., without automatic focus), Figure 1. Flies were allowed to move 
freely inside the plate enabling the camera to capture each insect in different poses and 
positions in order to build a relevant dataset. In the configuration with maximum resolu-
tion (i.e., 1920 × 1080) 1 pixel covers 0.6 mm. 

 
Figure 1. Experimental setup for images acquisition with the camera pointing to the fly inside a petri 
dish. 

Flies were recorded both individually and in pairs (i.e., one per each fly) in the same 
petri plate, without additional illumination other than laboratory lights, Figure 2. Record-
ing time for each video varies from a few seconds up to 3 min depending on the insects’ 
behaviour. For instance, some recordings were stopped in case the insect remained mo-
tionless for several seconds. The use of video recording simplifies the data collection 
phase, avoiding the set of a timer for image capturing which can lead to blurred images 
or missing insect’s motion. In addition, video recording is easier to analyse than single 
images and faster in trimming parts where insects are motionless. Images selection criteria 
maximizes insects’ different poses and minimizes multiples of similar ones to improve the 
training process. 

Although, C. capitata and B. oleae adult flies are chromatically and morphologically 
distinct as shown in Figure 2, differences are reduced in the captured images given the 
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insects’ small size (i.e., 4–6 mm long). Hence, images display two similar insects making 
the recognition process challenging. 

 
Figure 2. Dataset composition: (a) C. capitata adult fly in a petri dish; (b) B. oleae adult fly in a petri 
dish; (c) C. capitata and B. oleae in the same petri dish (performance set); (d) C. capitata and B. oleae in 
different petri dishes (performance set). Photographs of (e) C. capitata adult fly and (f) B. oleae adult 
fly. 

2.4. Dataset Creation and Pre-Processing 
Frames were extracted from the captured videos by manually labelling the region of 

interest (ROI) of each fly in multiple poses for high quality annotation. Then, datasets 
were pre-processed to generate different resolution sizes for a better network generaliza-
tion. Multi-scale feature extraction is a method to improve the training accuracy of neural 
network models. This method first scales the input image to several different scales, then 
performs feature extraction of the image at each scale and finally constructs a feature pyr-
amid using all the extracted scale features and inputs them into the neural network model. 
In this work, three resolutions were used: 1920 × 1080, 640 × 360 and 416 × 234.  

Datasets were composed of 912 images split in 70% training set, 20% validation set 
and 10% testing set. The training set was almost equally distributed with 49% images for 
C. capitata and 51% images for B. oleae. Furthermore, frames used for training included 
only individual insects in the petri dish, the dataset of multiple insects in the same image, 
called the performance set (i.e., 914 images), was used afterwards to assess the network 
performance, Table 1. Once results are evaluated using the performance set, validation 
and testing sets’ distributions are irrelevant. A schematic workflow of the developed ap-
proach is shown in Figure 3.  

Table 1. Dataset composition, size, and type distribution. 

Dataset Composition Dataset Size Dataset Type 
C. capitata 309 Training set 

B. oleae 330 Training set 
C. capitata 66 Validation set 
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B. oleae 117 Validation set 
C. capitata 63 Testing set 

B. oleae 27 Testing set 
C. capitata and B. oleae 914 Performance set 

 
Figure 3. A schematic representation of the developed steps from data capturing (1) and data pre-
processing (2–4) towards network setup, training, and performance evaluation (5–7). 

2.5. YOLO Network 
Convolutional neural networks of the YOLO (You only look once) family [45–47] are 

one-stage object detection systems computationally inexpensive with good performance 
metrics and outperforming other target recognition algorithms [48]. These networks were 
used in a variety of recognition tasks: apple detection during different growth stages [49], 
uneaten feed pellets detection in underwater images for aquaculture [50], simultaneous 
detection and classification of breast masses in digital mammograms [51], automatic li-
cense plate recognition [52] or even medical face mask detection in COVID-19 scenarios 
[53]. Compared with the Faster R-CNN network, the YOLO network transforms the de-
tection problem into a regression one without requiring a proposal region. Indeed, the 
network, using a single CNN for the entire image, divides the input image into sub-re-
gions predicting multiple bounding box coordinates and probabilities of each class di-
rectly through regression increasing the detection speed. 

YOLOv5 network [54] is a version of the YOLO architecture series. This network 
model has proven to significantly improve the detection accuracy and the inference speed 
(the fastest detection speed being up of 140 frames per second); these attributes are of 
great importance when moving forward in system implementation to bigger datasets and 
real-time detection. Nevertheless, the size of the weight file related to the target detection 
network model is small, nearly 90% smaller than the previous YOLOv4, meaning that the 
YOLOv5 model is lightweight and suitable for deployment to embedded devices imple-
menting real-time detection. For the sake of completeness, YOLOv5 contains four archi-
tectures: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Each architecture has a differ-
ent amount of feature extraction modules and convolution kernel. Simplifying, size and 
parameters number of the model in the four architectures increase in turn. Since, we have 
two targets to be identified in this study, and the recognition model has high requirements 
for real-time performance and lightweight properties, we based our experimental archi-
tecture on YOLOv5s. The network model size is about 14 MB and its inference time with 
PyTorch is 2.2 ms. 

The network architecture of YOLOv5, shown in Figure 4, is divided into three main 
parts: Backbone, Neck and Head, built on CSPDarknet (cross stage partial network into 
Darknet), PANet (path aggregation network), and YOLO layer, respectively. Images are 
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the input of CSPDarknet for features extraction, then PANet is fed for feature fusion and, 
lastly, the YOLO layer returns detection results such as class, probability, location, and 
size. 

 

 
Figure 4. YOLOv5 network architecture split into three main parts: Backbone, Neck, and Head. 

2.6. Network Training and Testing Results 
The network is built up by PyTorch [55] and trained on Intel Core i7-7820X, with a 

3.60 GHz processor, 32 GB RAM, 500 GB SSD, and 8 GB NVIDIA GTX 1070 using Win-
dows OS. Results are classified as: True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN) [56]. TP and TN indicate the truly recognized olive/Medi-
terranean fruit fly points by each algorithm. Detection errors, instead, are shown through 
the FP and FN classes which indicate any olive (or Mediterranean) fruit fly identification 
(or miss), respectively. The binary classification parameters are collected in the so-called 
confusion matrix that allows the quick visualization of the algorithm performance, shown 
in Table 2. 

Table 2. Confusion matrix table layout. 

 Predicted Class 
Positive Negative 

A
ct

ua
l c

la
ss

 Positive TP FN 

Negative FP TN 

Three indices are taken into account to assess each algorithm performance. Firstly, 
the precision percentage or positive predictive value (PPV) calculated as: 
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PPV% = TPTP + FP × 100 (1) 

that gets the highest values when high precision is achieved, meaning that the network 
returned more relevant than irrelevant results. Another important index is the sensitivity, 
true positive rate (TPR), or recall defined as TPR% = TPTP + FN × 100 =  100 −  FNR% (2) 

where FN𝑅% is the false negative rate.  
Finally, the accuracy in unbalanced classes is measured by the F1 score (also F-score 

or F-measure) defined as: Fଵ = 2 ∙ precision ×  sensitivityprecision +  sensitivity = 2TP2TP +  FP +  FN  (3) 

YOLOv5 model evaluation includes the mean average precision (mAP), detection 
time, intersection over union (IoU), and floating-point operations (FLOPS). IoU calculates 
the overlap ratio between the boundary box of the prediction (pred), ground-truth (gt) 
[57]: IoU = Area୮୰ୣୢ ∩ Area୥୲ Area୮୰ୣୢ ∪ Area୥୲   (4) 

YOLO training options are summarized in Table 3. Uncited network parameters are 
set to zero.  

Table 3. YOLO training options and parameters setting. 

Parameter Value Parameter Value 
lr0 0.01 lrf 0.2 
momentum 0.973 weight decay 0.0005 
warmup epochs  3.0 warmup momentum 0.8 
warmup bias lr  0.1 box 0.05 
cls 0.5 clspw 1.0 
obj  1.0 objpw 1.0 
IoUt 0.2 anchort 4.0 
hsvh 0.015 hsvs 0.7 
hsvv 0.4 translate 0.1 
scale 0.5 fliplr 0.5 

3. Results 
The training confusion matrix and F1 score are shown in Table 4 and Figure 5, re-

spectively. In some of these figures, species names are abbreviated for convenience only 
with fruit fly (i.e., Mediterranean fruit fly) and olive fly (i.e., olive fruit fly). Training re-
sults, however, are summarized in Figure 6. In particular, the progressions of various met-
rics are shown such as box, objectness and classification during training and validation; 
metrics such as precision, recall, and mAP0.5 after each epoch are also plotted. The network 
performed very well in terms of precision (95%), recall (97%), and mAP0.5 (95%). Examples 
of the testing set results are presented in Figure 7, showing the network precision in clas-
sifying labelled images. The YOLO network was trained with a dataset composed of the 
olive fruit fly and the Mediterranean fruit fly separately (i.e., training set in Table 1). Af-
terwards, the network was tested with the performance set (i.e., dataset with two flies in 
the same image, Table 1). Figure 8 shows a visualization of some output from the network 
on tested images of the performance set. The precision rate of the performance set was 
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about 93% in total for both datasets including two insects in the same petri dish or in 
separated ones. 

Table 4. YOLO training confusion matrix results. 

Pr
ed

ic
te

d 
Co

nd
iti

on
 

 True Condition 
Training Mediterranean Fruit Fly Olive Fruit Fly 

Mediterranean Fruit Fly 𝑇𝑃 = 213 ሺ100%ሻ 
𝐹𝑃 = 16 ሺ0%ሻ 

Olive Fruit Fly 𝐹𝑁 = 11 ሺ93%ሻ 
𝑇𝑁 = 698 ሺ5%ሻ 

   

 
Figure 5. YOLO training F1 score results. 

 
Figure 6. Visualization of various metrics (e.g., precision, recall, mAP0.5, etc.) with the number of 
epochs (i.e., x-axis) during training and validation. 
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Figure 7. Training results: (a) labelled images of the olive fruit fly (i.e., B. oleae in the orange box) 
and the Mediterranean fruit fly (i.e., C. capitata in the blue box), (b) prediction results of the testing 
set with inference precision percentage. 

(a) 

(b) 
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Figure 8. YOLO testing results using performance set. Colored boxed indicated the olive fruit fly 
(i.e., pink and green) and the Mediterranean fruit fly (i.e., purple and red) recognized from the net-
work along with the precision rate percentage. 

4. Discussion 
Results showed the feasibility of using the proposed method for real-time and accu-

rate detection of C. capitata and B. oleae adult flies. In the experimental setup, the network 
performed good, as shown in Figure 6, with precision (95%), recall (97%), and mAP0.5 

(95%). The software based on YOLOv5s architecture requires 14 MB of memory with 
PyTorch inference time of 2.2 ms. Hence, a compatible on-field hardware could be a DSP 
or a microcontroller with single core processor, and a relatively small memory capacity. 
The comparison between these two fly species, belonging to the same family, at a fixed 
camera height demonstrated that even insects with similar visual and motor patterns 
could be detected from YOLO with a good precision rate (about 93%). Nevertheless, the 
similarity challenges the network in some angular poses of the insect. For instance, in Fig-
ure 9 the network was unable to recognize the Mediterranean fruit fly, classifying it as an 
olive fruit fly with high precision. This image is not easy to classify, even manually by an 
operator, and only insect’s sizing may help us in the classification. Insects with a small 
size and morphologically similar (on a macro scale) are still challenging for deep learning 
techniques. 
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Figure 9. Detection failed to recognize the Mediterranean fruit fly (right) in an angular pose (slightly 
blurred) of the insect’s body. 

The white background enhances image contrast in both training and inference phases 
for these species with body colours prevalently black and grey. In general, the background 
colour is an important parameter to tune both for enhancing and for filtering some insects, 
making them invisible for the network inference. For instance, if the monitoring scope is 
focused on insects with dominant white colour , then white background will probably be 
a big issue for the network training.  

The results obtained with YOLO  suggest that innovative systems for monitoring 
pests' population dynamic can be developed relying on machine learning techniques. 
These systems may include a network of low-cost microcontrollers connected to a CMOS 
sensor presenting a configuration similar to that in Figure 1. In addition, the integration 
of a wireless communication module can enable information exchange with field moni-
toring platforms. Energy consumption has to be estimated and it is strongly related to the 
selected hardware. HHowever, micro-solar panels (electrical power from 0.3 W to 3 W 
roughly) can provide a valid solution at least during warmer seasons. 

This study may promote the development of innovative approaches based on a dis-
tributed network of automatic monitoring platforms in the field to investigate the popu-
lation dynamic of key insect species. This would contribute to increase sustainability and 
efficiency of control measures, and reduce negative effects on non-targeted or even bene-
ficial organisms. This approach can be extended to other species of interest, with minimal 
data pre-processing and similar architecture. 

5. Conclusions 
A CNN based on the YOLO network was used as a detection method to classify in 

real-time living fruit fly species (Diptera: Tephritidae) while moving and constantly 
changing their posture. We trained an artificial neural network on two different species 
belonging to the family Tephritidae: the Mediterranean fruit fly C. capitata, a highly po-
lyphagous phytophagous widely distributed throughout the world; and the olive fruit 
fly B. oleae, that is the major pest of commercial olives worldwide. 

The comparison between these two fly species using a fixed camera height demon-
strated that even insects with similar shape and movement patterns could be detected by 
the network with a precision rate of about 93%. The software based on YOLOv5s archi-
tecture requires 14 MB of memory with PyTorch inference time of 2.2 ms. Low-cost mon-
itoring systems can be developed with minimal hardware, creating a sensing network to 
monitor the insects’ population dynamic in the field. 

Our approach can be extended to other pests, pollinators, and hematophagous species 
with minimal data pre-processing. Further studies will focus on tests development in field 
conditions with a custom hardware configuration. 
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