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Abstract

This paper proposes a novel approach for privacy-preserving surveillance video streams anomaly
detection, i.e., situations implying violence, illegal actions, or situations involving hazards. In par-
ticular, this approach adopts a privacy-preserving mechanism based on autoencoder neural networks
applied in a differential private manner, exploiting three different types of differential private opti-
mizers. Recorded real-world video streams are segmented into data frames, which are compressed
into special codes with autoencoders and differential privacy and transmitted to a central server where
they get decoded into an anonymized version of the original data frame that can be analyzed to de-
tect anomalies. The anomaly detection algorithm exploits a supervised learning binary classification
methodology of extracted contextual, spatial, and motion data on imbalanced datasets. Anomalies
are differentiated into ”soft” and ”hard”, and the anomaly detection score is computed based on a
sigmoidal function. The proposed methodology has been validated with a set of experiments on a
well-known video anomaly dataset: UCF-CRIME. The experiments we conducted on the testbed
demonstrate the capability of the system to correctly identify video anomalies, with a consistent
privacy gain demonstrated by the strongly reduced ability to identify people from faces in the recon-
structed frames.

Keywords: Anomaly detection, Autoencoders, Behavioral analysis, Deep Learning, Computer vi-
sion, Differential Privacy, Trustworthy Artificial Intelligence.

1 Introduction

Currently, a large amount of video information is daily generated by new generation ubiquitous devices
like smartphones, webcams, surveillance cameras, etc. These devices can capture a real-world action
in every single moment of the day. Furthermore, the evolution of the Internet of Things (IoT), and the
rapid growth of smart cities have led to a large diffusion of surveillance cameras, also known as Closed-
Circuit Television (CCTV). These cameras can be connected to the network, and the analysis of what
they can capture would be extremely beneficial in implementing real-time and real-world monitoring
and surveillance applications. For instance, person identification to identify those who are accessing to
a restricted area (companies, airport, buildings) [1, 2], person/vehicle tracking to follow the movement
of a specific target [3], Human action recognition to detect prohibited action in a controlled environment
[4], or anomaly detection to identify events or activities that are unusual and prohibited in a surveil-
lance environment [5]. The automation of video anomaly detection is one of the main tasks in the video
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surveillance field. Such an automation, by monitoring the video camera stream, should aim at detecting
anomalous behavior as quickly as possible, to enable countermeasure for mitigating the anomaly. How-
ever, automating the anomaly detection process is challenging due to noise factors that can impact the
scene, e.g., different perspective views, human pose, lighting variability, and occlusions. In addition, the
detection systems exploits high computational capabilities, and very often such analysis is demanded to
a third-party remote server endowed of costly and dedicated hardware.

However, the continuous monitoring of a public or private environment might lead to severe privacy
concerns due to the sensitive information involved in videos such as human faces, objects, identities,
or human activities. Furthermore, in the case of remote analysis, the transfer and the managing of
video stream containing sensitive information is a risky process for data confidentiality and data breach.
Depending from the specific application field, this might be in violation of the EU proposed guidelines
for the usage of artificial intelligence1, and GDPR in general. Moreover, personal data could be the target
of cyber-attacks. To this end, video sanitization and anonymization techniques have been developed in
recent years. Object/faces removal techniques or frame blurring and noise addition mechanisms are used
to maintain privacy [6]. However, such alterations reduce accuracy (utility loss reduction) in the anomaly
detection phase. Hence, a depth study on the trade-off between privacy and accuracy is relevant.

In our work, we propose a remote video anomaly detection framework that guarantees privacy, by
adding noise to the video frames to impair the recognizing of sensitive information, and ensure data
confidentiality during the communication with the remote data analysis server. At the same time, we
demonstrate how our system is still able to recognize anomalous behaviors. The conducted experiments
focus on analyzing the trade-off between privacy and the utility loss.

The contributions of this work are the following:

• We present a privacy preserving mechanism based on autoencoder technique applied to preserve
privacy and confidentiality.

• We evaluate different privacy preserving training techniques performed on the autoencoder.

• We present the implementation of a remote video anomaly detection applied in a smart environ-
ment scenario, which exploit the proposed framework to ensure privacy during the video analysis
performed by a third-party service provider.

• We evaluate the privacy mechanism on frames quality based on the applied privacy degree.

This paper is an extension of the work presented in [7], which presents as new contributions:

• the proposal of a privacy preserving technique for video streams anomaly detection based on Au-
toencoder Neural Networks and Differential Privacy.

• The application of the framework on a use case scenario in which the data analysis is performed
on a remote server preserving data privacy and confidentiality.

• An evaluation of the privacy mechanism on the anomaly detection accuracy.

The rest of the paper is organized as follows: Section 2 lists some related works for video streams
anomaly detection and privacy preserving approaches in computer vision field. Section 3 describes the
used architecture in addition to the design and implementation of the proposed methodology. Section 4
reports the used dataset and experimental setup and implementation. Section 5 reports the experiments
results and evaluate the proposed model performance in terms of accuracy and privacy. Finally, Section
6 briefly concludes the paper and proposes some future directions.

1https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206
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2 Related Works

This section lists the related work for anomaly detection mechanisms used in video analytics and privacy
preserving techniques in computes vision field.

2.1 Video Anomaly Detection

Video anomaly detection is one of the most complexes and studied problems of computer vision. An
anomaly is any pattern that does not conform to what is considered expected 2. The two classes that
characterize the problem are defined as one the negation of the other and both can take completely dif-
ferent forms, specific to the problem under consideration, i.e., a person who runs can be considered an
anomaly within a public office but is expected in contexts such as stations or parks. Moreover, it is not
easy to establish a priori all the possible anomalies that may occur even considering a single context.

Handcrafted Methods. The first methods of anomaly detection were trajectory-based [8, 9]. The
main idea is to identify the distinct trajectories of objects within normal videos of expected behaviour
with no anomalies. The anomalies are highlighted as objects that do not follow similar trajectories. How-
ever, these methods are of restricted applicability and can be used only in the presence of constant and
unobstructed trajectories. The use of other handcrafted features allows enriching the ability of a detector
to identify more general classes of anomalies, not limited to trajectories only. These low-level features
generally extrapolate information about appearance, movement, and texture. Histograms of optical flows
[10], histograms of oriented gradients [11], social forces maps [12] and mixture of dynamic textures [13],
are just some of the methods developed. Although very effective in identifying specific anomalies, these
feature extraction methods cannot adapt to categories of abnormalities not previously seen.

Semi-Supervised Methods. To overcome these problems, some of the most used approaches are
typically semi-supervised. This learning method category uses only normal videos to train the detector
to identify anomalies as any deviation from the notion of normality that they have learned. Precisely
avoiding giving a specific characterization to anomalies allows this type of detector to be more robust
towards types of abnormalities not initially foreseen. Another great help given to the generalization capa-
bilities of anomaly detectors is the use of features extracted through Deep Neural Networks (DNNs) [14].
Neural networks allow to autonomously extract semantically significant features that can introduce a bet-
ter generalization capability with respect to the handcrafted ones. The current state-of-the-art combines
semi-supervised approaches and neural networks. Among the most popular approaches in literature, we
can mention autoencoders [15] and Generative Adversarial Networks (GAN) [16]. These networks are
usually trained on images – frame and optical flow – extracted from normal videos to reconstruct them
or predict the next in time order [17]. When anomalous images are presented to the network this is gen-
erally not able to recreate them, as it is trained only on normal images. The anomaly generates a greater
reconstruction error, allowing it to be distinguished. Although certainly more robust than handcrafted
methods, techniques based on image reconstruction also have limitations, i.e., the networks may be able
to reconstruct even the anomalies [18], not allowing them to be distinguished. In [19] it is highlighted
that deep learning method are also characterized by a lack of explainability. In this work, the GradCam
tool [20] is used as a method to locate the regions in a frame that contributes most to the assignment of a
higher reconstruction error in their auto-encoder based approach.

2Anomalous and normal in this paper are used as strictly technical terms in the context of intrusion/danger detection and are
not intended to imply any discrimination.
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Supervised Methods. These approaches involve the use of labeled videos to reduce the problem of
binary classification. The main obstacle to studying these methods is the non-availability of large labeled
datasets, which are very expensive to produce. Recently [5] introduced a new dataset for the detection of
real-life anomalies concerning crimes – e.g., robberies, assaults, shootings – with more than 128 hours
of untrimmed videos (UCF-Crime). The same paper proposes a multiple instance learning method that
allows the training of weakly supervised binary classifiers using labels at video level. More recently
in [21] the UCF-Crime dataset has been enriched with spatiotemporal annotations (UCFCcrime2local),
allowing the experimentation of strongly supervised methods. Some commonly used neural networks
in a supervised environment are 3D convolutional networks [22]. These are also often exploited in the
field of action recognition [23] and allow to extrapolate spatiotemporal features able to describe the
actions inside video segments. They can also be used in the form of two-stream networks [24] to extract
features from streams with different frame rates or using an optical flow stream in parallel with the
video stream. However, 3D networks have the problem of being particularly heavy, both for training and
inference. For practical applications, lighter networks such as 2D-CNNs can be taken into consideration
by enriching their capabilities using solutions to add time and motion information to the spatial features
extracted from the network. Temporal information can be added, for example, by feeding Long-Short-
Term-Memory networks (LSTM) with the spatial features extracted by the CNN as in [25] while motion
information can be included using a two-stream solution [26].

2.2 Privacy Preserving Video Analytics

With the widespread deployment of surveillance cameras and great advances in video analytics and
computer vision fields, privacy and security have become major concerns raising social, ethical, and
legal issues. Therefore, adequate implementation of privacy preserving mechanisms has been an active
area of research during the last years to help mitigate these concerns. Privacy preserving mechanisms are
used to hide sensitive and identifying attributes in the datasets that might reveal the identity of a person
or other critical information. Several privacy methods has been adopted in the computer vision field such
as video anonymization mechanisms by reducing the resolution quality of the video [27] or using image
obfuscation operations in what is called denaturing, which involves modifying the original content of
an image or video frame to hide sensitive attributes [28, 29]. These operations include image blurring
[30, 31, 32], pixelating [33, 34, 35], cartoon effects addition [36], face swapping of person in the image
with a similar pose [37], and face de-identification methods that alter the faces in an image to protect the
person identity such as the K-Same algorithm [38] and its extention, the K-Same-Select algorithm [39].
In addition to the methods used to remove people and objects from images and videos [40], followed by
the use of inpainting techniques to repair the missing parts of an image or a frame after reconstruction
[41, 42, 43].

The issue in such approaches, that they completely remove the original face or object, obfuscate the
image in a manner that causes a major drop in accuracy, or do not provide strong privacy guarantees.
Thus, a mechanism that provides strong provides strong privacy guarantees while preserving a balance
with the models accuracy is required. Autoencoders [44], a kind of neural networks have also been used
for privacy preserving purposes like in [45, 46, 47]. Autoencoders are used to compress data into a
special code holding the most representative features of the original input data and then reconstruct an
altered version of the input data using this code to protect individuals privacy, Since the reconstructed
data is anonymized due to the loss of some attributes, and the degree of privacy is controlled by the code
size. Differential Privacy (DP)[48], is a powerful mechanism that has been used for privacy preserving
by adding noise to the data either before training phase using Synthetic dataset generation approaches
[49, 50], or during training phase by adding noise to the gradients [51].
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3 Proposed Methodology

This section presents in details the proposed model, the techniques used for private data protection, the
techniques for efficient and effective data utilization during training with a novel approach for anomaly
score.

3.1 Reference Scenario

In our scenario we considered an anomaly detection service on the cloud which provides remote analysis
for detecting anomalies in a customer video stream. Cloud services are becoming more and more pop-
ular because they offer the possibility to exploit a service that it can be executed on a server with high
computational capabilities. However, sending sensitive data across the network is a risky operation. To
preserve data confidentiality and integrity, several protocol have been proposed such as TLS, SSL that
are able to encrypt the communication and ensure data confidentiality. however, these protocols are not
free from possible attacks [52]. Another aspect to be taken in consideration is the treatment of sensitive
data by the remote service. Sending sensitive data to a remote server needed a trust agreement between
the customer and the service provider. Several trust model have been theorized from those that do not
guarantee any level of privacy, i.e., the full-trust model, where the service provider has full access to all
of the data of its customers and is trusted not to abuse its privileges. Till those that guarantee the great-
est degree of privacy but do not provide any margin for data analysis, i.e., zero-trust model, where the
service provider holds but cannot gain access to the decrypted data at the servers and has limited or no
insights about the data it holds. Such trade-off between privacy and data analysis space is a challenging
task on which is focused our framework. Figure 1 depicts the working schema of the proposed frame-
work. The reference scenario is implemented in a surveillance environment (a) composed of a smart
camera with low computational capabilities. The camera is used to monitor the scene that is taking place
in the surveillance environment. Due to the smart camera’s low computational capabilities, part of the
computational intelligence is delegated to a server (h) endowed with high capabilities (GPUs, memory,
storage). The smart camera captures the scene in the surveillance environment and apply a preprocessing
step before sending the video frames to the server to guarantee confidentiality and reduce the size of
the data transmitted: each clear frame (b) captured from the scene is passed to a compression network
(deployed in the smart camera) implemented with an encoder (c). The entire autoencoder is trained ex-
ternally and the encoder part is deployed in the smart camera while the decoder part is deployed on the
server. The output of the encoder is a representation of the compressed input frame, called latent space
(d) and it is send through a secure connection (TLS communication) to the server. The encoder acts
as a compressor to reduce the space dimensionality, removing all the redundant information and only
focusing on the most important features. In addition, the encoder is trained with a differential privacy
strategy that guarantees privacy, mitigating the risk of exposing sensitive training data in the synthetic
data model or its output. The fact that the communication between client and server happens transferring
only the latent space information provides confidentiality to the client data and reduces the communica-
tion overhead. Even if the communication is intercepted, the extraction of information from the obtained
latent space is inherently infeasible. On the server side, the latent space received is passed to the decoder
part (e), which is able to reconstruct a similar version of the original frame. The compression performed
by the encoder on the client-side produces a frame resolution decay in the reconstruction frame (f) that
guarantees anonymization of the captured scene. Finally, the anomaly detection network (g) analyses the
reconstructed video and computes an anomaly score.
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Figure 1: Privacy preserving video anomaly detection scenario

3.2 Architecture

The proposed architecture is presented in Figure 2. The model starts with an autoencoder neural network
divided in two parts, the first part lays at the client side as an encoder to encode in a differential private
manner the captured frame into a latent space representation, which is a compressed representation of the
original image with a reduced dimension. The produced latent representation is forwarded to the server
side to be decoded using the second part of the autoencoder: the decoder. The decoder reconstructs
the original frame but with a lower data utility. The reconstructed frames are then used to calculate
the optical flow between current and previous reconstructed frames. The reconstructed frames with
the optical flow are then passed to the double stream ResNet-50 network [53] to extract their features.
Additionally, A YOLOv4 [54] object detector uses the current reconstructed frame to generate a vector of
identified objects per class in the frame with their count, which is referred to as bag-of-objects. As a final
step, the features extracted from the double stream network are concatenated with the bag-of-objects and
forwarded to the fully connected layers of the network to produce a final anomaly score for the analyzed
video. All concepts exploited in this architecture are detailed in the following subsections.

Figure 2: Privacy Preserving Anomaly Detection Architecture
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3.3 Privacy Preserving Mechanisms Enforcement

Data privacy is preserved by means of Autoencoders and Differential privacy techniques. These tech-
niques do not remove faces and objects from the original frame and their degree of privacy can be
controlled in a manner that keeps a balance with the anomaly detection model accuracy. Autoencoders
are used to alter the original frame through compression and reconstruction operations, which result in
frame disturbing and some utility loss. Combined with differential privacy embedded in autoencoders
as an optimization mechanism, the model memorization of specific instances and dataset attributes is
restricted, and only general data patterns are learned. Both methods will be detailed in the following
subsections.

3.3.1 Autoencoders

To preserve the privacy of data collected as video streams, frames are passed through autoencoder neural
networks. Autoencoders are a data compression mechanism [47, 55] used for dimensionality reduction
and feature representation as a latent space [56]. This type of neural networks consists of two parts,
the first is responsible for latent space representation construction using the original input image and
is referred to as encoder. The second part is responsible for the reconstruction of the original image
from the latent space and is defined as the decoder. Autoencoders generally results in a loss of utility
for the reconstructed image compared to the original image due to the loss of some features during
the compression process. As illustrated in Fig 3, where sub-figures (a) and (c) represents original frames
collected from a video stream at the client side and sub-figures (b) and (d) represents reconstructed frames
at the server side. This loss of utility is measured by the distance between the input frame image and
the reconstructed frame image. Thus, autoencoder networks are used as a privacy preserving mechanism
[45, 57, 58] to protect sensitive data within a dataset. Aautoencoders are composed of an encoder,
which is used as a compression algorithm for dimensionality reduction and a decoder part to recreate
the original input. The result of the encoder produces a latent space image that represents encryption of
the input data. For this reason, even if a third party acquires such data, it should not be able to decrypt
it without the knowledge of the decoder part. Such a mechanism can be considered a system to reach
confidentiality during the transmission of data between a client (endowed by the encoder) and server
(endowed by the decoder).

Implementation details The architecture of the autoencoder is composed by two subnetwork. The
encoder consists of an Input Layer of size equal to the RGB frame dimension 240 x 320 x 3. Three
convolutional layers are sequentially applied to the input data having respectively 240, 64 and 16 filters
with kernel size 3×3 and strides 2. Their aim is to reduce the dimensionality of the input space producing
a latent space representation having size 30 × 40 × 16. The decoder part, increasing the dimensionality
of the output of the encoder through three transposed convolutional layers, whose reverse the operation
of the standard convolutional layers (deconvolution operation), and a final convolutional layer to obtain
the reconstructed input frame. The overall autoencoder network schema is represented in figure 4.

3.3.2 Differential Privacy

A state-of-the-art and one of the most powerful privacy-preserving mechanisms is differential privacy,
which is used to add noise either to the data before the analysis phase or during data analysis based on
Laplace or Gaussian distributions in a way that makes individual data instances indistinguishable when
added to or removed from a dataset. This privacy mechanism uses privacy and sensitivity parameters to
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(a) First sample original frame (b) Reconstruction of the first frame

(c) Second sample original frame (d) Reconstruction of the second frame

Figure 3: Samples of original frames collected from a video stream and their reconstructed frames using
an autoencoder implementation

Figure 4: Autoencoder network
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control the privacy degree applied to the dataset using Equation (1) [48].

Pr[K(D1) ∈ S]≤ Pr[K(D2) ∈ S]× exp(ε)+α (1)

Where ε represents the privacy budget, α is the probability of failure, K is the randomized func-
tion providing ε-differential privacy for both datasets D1 and D2 which differ in one element only, and
S⊆ Range(K).

In our proposed approach, Tensorflow-Privacy framework 3 is used to add noise to the to the gradients
at each iteration of the training phase of the autoencoder neural network using a differential private opti-
mizer, so that the datasets elements are encoded and decoded by the model without model memorization
or leakage of a specific element sensitive features.

3.4 Video Anomaly Detection

Anomaly detection of video streams is performed using information of different types and collected at
multiple levels. This section presents the anomaly detection methodology and mechanisms exploited in
our approach.

3.4.1 Contextual Information Extraction

contextual features are extracted using a state-of-the-art version of YOLO object detector is YOLOv4
[54], which is an enhanced version in terms of accuracy, performance, average precision, and real-time
speed measured by frames count per second allowing for real-time video analysis. YOLOv4 has been
pre-trained on a large-scale object detection dataset referred to as MS COCO [59]. This dataset con-
tains 80 object categories of people, food, animals, vehicles, and things. Reconstructed video frames
using autoencoders are passed to YOLO to extract contextual features represented by the bag-of-objects
explained in 3.2. These classes of objects in specific contexts such as that of UCF-Crime, might be of
importance for the classifier downstream in order to weigh these features against other factors such as
temporal and spatial information.

3.4.2 Spatial and Motion Information Extraction

Spacial features represent the locations of the identified objects within a frame image, and motion fea-
tures are extracted to identify patterns of apparent motion caused by a relative movement in a video
stream. These features, spacial and motion features, are extracted by a two-stream architecture pre-
sented in Figure 2, which involves a pre-trained ResNet-50 [53] on ImageNet [60] as base convolutional
network. This two-stream architecture takes reconstructed frames and the optical flow generated using
reconstructed frames from the video that is being analyzed as two inputs, where the optical flow rep-
resents a pattern of apparent motion caused by the relative movement between an observer and a scene
[61]. A convolutional layer is used to extract spatial and motion features from the two-streams using
a global average pooling. Then, these features are being concatenated with the contextual information
extracted at the previous step through a joint fusion architecture. As a final step, the concatenated result
is forwarded as an input to a fully connected classifier of two fully connected layers with ReLu activation,
consisting of 4096 neurons each and connected to a final neuron that produces as an anomaly score the
anomaly class confidence between [0,1].

3https://github.com/tensorflow/privacy
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3.4.3 Data Balancing Strategies

Imbalanced datasets classification is a major issue when training a classification model such as an
anomaly detection model, where the distribution of dataset elements across classes is skewed and im-
balanced. In our case, it is concerned with the count of video frames considered as normal compared to
the anomalous frames and their distribution in the video being analyzed. To solve this issue, a training
dataset of videos with as many possible classes of anomalies need to be used and different scenarios and
contexts also need to be considered for each type of anomalies. To do this, we are considering different
sampling frame-rates for anomalous and normal segments and hard mining in our approach as explained
below:

Adaptive Frame-rate Sampling: to solve the imbalanced dataset and its classification problem, it
is necessary to subdivide videos into frames or adjacent frame segments for 2D-ConvnNets and 3D-
ConvNets respectively according to the pre-defined frame-rate, which is defined as Frames Per Second
(FPS) such as 30 FPS for UCF-Crime dataset. The issue of applying this method is that it generates a
great amount of adjacent frames with slight differences. Thus increasing redundant data to be analyzed
and the analysis cost in addition to model overfitting problems, in which the training model learns specific
details about the training data and bias in a way that affects model performance negatively. In order
to overcome these limitations, a lower frame-rate can be used with the same resources providing the
opportunity to use a wide variety of videos with various anomalies and contexts for better generalization
of the anomalous and expected patterns, thus better pattern recognition. A further enhancement to this
mechanism would be the adaptive frame-rate sampling implementation, where an even lower frame-rate
could be used with normal videos in such a way that the undersampling does not effect the quality of
the training process. This method is also applicable to 3D-CNNs by selecting a higher stride value
for anomalous video segments than normal segments during training phase, where stride represents the
overlap between two segments extracted consecutively from a video stream.

Hard Sample Mining: this method has been proposed to address the issue of very large scale and
extremely imbalanced training datasets, it involves using batch-wise incremental hard sample mining of
minority attribute classes, by selecting selecting samples with greater loss to be used during the training
phase based on the Class Rectification Loss(CRL) regularising algorithm [62]. In our approach, we used
batches of K samples during training and the sampling is performed without replacement αK candidates
frames, where α is a multiplicative factor for each patch. The steps followed are as below:

1. Loss calculation using an inference operation.

2. Only first k samples with higher loss are selected despite whether they are hard-positives or hard-
negatives.

3. The k samples are then used as areal batch training, where only 1
α

of the total training samples are
used.

Anomaly detection problems are binary class problems of two output classes: Normal and Anomaly.
Normal class represent expected patterns. Even though, anomaly class involves several sub-classes for
anomalies, which have equal importance and require a balanced distribution of classes within the dataset
and to have various samples of each class in the dataset in order to be recognized accurately by the
analysis model. Thus, hard sample mining is useful for adaptive sampling of these sub-classes in each
epoch.

121



Privacy-Preserving Anomaly Detection Giorgi, Abbasi, and Saracino

3.4.4 Anomaly Types

For videos containing anomalous behavior, this behavior occurs in some specific segments. The distinc-
tion between these segments and other segments that come right before or after the anomalous action
might become difficult. Considering these other segments, unusual action can be guessable either before
or after its occurrence. For instance, a car robbery or stealing objects from a car might be guessed from
suspicious actions happening before the theft, like a stranger looking through the windows of the vehicle
or a broken glass after the occurrence of the theft. These segments are considered soft anomalies, as they
have suspicious behaviour but not a real anomalies (hard anomalies), like the segments of the theft or
the crime itself. Thus, to improve the training quality, soft anomalies labeling as fully normal or fully
anomalous must be avoided.

3.4.5 Anomaly Scoring Strategy

Anomaly score computation is preferred to a noise-robust mechanism, rather than performing direct
online anomaly detection based on the output result of the classification model [63]. For instance, using
the confidence value of the anomalous classes as an anomaly scoring strategy with a pre-defined alarming
threshold is possible, still it is not a noise-robust method and would result in recurring false positives.
Thus, a sigmoidal anomaly score (SAS) mechanism has been proposed and used in our approach for
noise-robust anomaly score computation using two parameters: sensibility and reactivity. The anomaly
score st is calculated as:

st = S(xt) =
1

1+ e−xt

Where S : R→ [0,1] is a standard logistic sigmoid function and xt the value of the accumulator at time t
computed as:

xt =

{
xt−1 +∆

+
t ν&if σt ≥ τ

xt−1−∆
−
t ν&if σt < τ

with xt ∈ [LB,UB]

Where σt is the anomaly class confidence calculated at time t by the classifier, xt−1 is the accumulator’s
value calculated at previous step, τ ∈ [0,1) is the sensibility threshold and ν ∈ (0,+∞) the reactivity
parameter. ∆

+
t ,∆

−
t ∈ [0,1] can be determined as:

∆
+
t =

σt − τ

1− τ
; ∆
−
t =

1−σt − τ

1− τ

Which represent the increase and decrease in anomaly score due to going beyond or below sensibility
threshold τ . The closer τ gets to 1, the more confidence is needed in anomaly classification to increase the
score value. And the closer τ is to 0, the more sensitive the score is to lower confidence classifications.
Whereas, reactivity ν is a multiplicative factor which allows to decide how quickly the score increases or
decreases. A higher value of ν increases the sensitivity to anomalies taking place in short time intervals,
but increase the possibility to have more false positives due to the higher possibility of having noise. In
contrast, a value below 1 for ν allows to filter out noise in a more effective manner, making the score less
sensitive to sudden anomalies. To avoid that the accumulator x assumes too high or low values, these are
limited by a lower and upper bound (LB,UB).

4 Experiments

This section reports the experiments performed to validate the proposed approach. It provides a de-
tailed description of the dataset used for training anomaly detection and autoencoder. Subsequently are
described in detail the experiments conducted on the privacy preserving and anomaly detection.
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4.1 Dataset

The performed experiments are based on the public reference dataset for anomaly detection UCF-Crime.
From this we formulated two different dataset used respectively for anomaly detection training and au-
toencoder training. The details are reported in the following sections.

4.1.1 Anomaly detection dataset

In this study, we considered the public UCF-Crime dataset [5]. This dataset consists of 128 hours of
untrimmed surveillance videos of expected events and 13 types of anomalies: Abuse, Arrest, Arson, As-
sault, Accident, Burglary, Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism.
The UCF-Crime dataset has originally been annotated at video level, but in UCFCrime2local it has been
annotated at frame in Vatic format level by [21] and the latter has been used in our approach. The training
dataset consists of 210 videos and the test set of 90 videos with only 7 classes out of the original classes
of the UCF-Crime dataset: Arrest, Assault, Burglary, Robbery, Stealing, Vandalism and Normal. For
normal videos in the dataset, all frames were considered normal. While frames with lost flags equal to
0 were considered as hard anomalies and others were considered soft anomalies, since the anomaly is
not clear. Figure 5 shows the distribution of video in each of the classes considered. As we can see the
unbalancing distribution where the normal videos is the majority class, while the other classes they are
among there balanced with a difference at most of 3.5%. Such factor is relevant and must be taken in
consideration during the training process to avoid biased model.

4.1.2 Autoencoder dataset

The dataset used to train the autoencoder for the privacy-preserving part is extracted from the UCF-Crime
dataset. Specifically, for each training class, Arrest, Assault, Burglary, Robbery, Stealing, Vandalism and
Normal are selected, in a random way, one video to have a good representation of each event. Figure 6
shows the distribution of the frames used to train the autoencoder. We can notice that we have a balancing
distribution of the classes with a unique unbalancing towards the normal event. In such a case, the dataset
unbalancing does not impact the model bias since the training is not focused on the class prediction but
on the frame reconstruction.

4.2 Privacy Preserving using autoencoders and Differential Privacy

Autoencoder [44] are used to preprocess the video input frames to the end to remove sensitive informa-
tion from the scene and build a mechanism which guarantees a training without model memorization.
To reach this objective we experimented three different Differential Private (DP) [48] training optimizers
with autoencoder neural networks and compared with the standard optimizer (Adam chosen as reference
optimizer without differential privacy). Training with differential privacy provide strong privacy guaran-
tees that the used algorithms learns only general patterns, and help to mitigate sensitive data expose risks.
DP optimizers modify the gradients used by the optimization algorithm in two steps: (1) bounding the
influence each input frame has on the gradients computation and adding random noise to these clipped
gradients during gradient computation, so that it becomes statistically impossible to know if a particular
data frame was included in the training dataset or not 4. The list of optimizers experimented is reported in
the following. These optimizers were released in TensorFlow, an open-source data flow engine released
by Google.

4https://www.tensorflow.org/responsible ai/privacy/tutorials/classification privacy
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Figure 5: Video distribution Anomaly Detection

Figure 6: Frames distribution autoencoder

• Adaptive Moment Estimation (Adam) optimizer (AdamOpt) 5: this optimizer computes exponen-
tial average weights of previous gradients and exponential average weights of previous gradients
squares, applies bias correction mechanism on these weights, and these weights are updated at
each iteration.

• Differential Private Stochastic Gradient Descent (SGD) optimizer (DPSGDOpt)6: is a differential
private replacement of SGD optimizer. In the original SGD optimizer, a sample data frame denoted

5https://www.tensorflow.org/api docs/python/tf/keras/optimizers/Adam
6https://www.tensorflow.org/responsible ai/privacy/api docs/python/tf privacy/DPKerasSGDOptimizer
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is randomly selected from the dataset to compute gradients of the loss function at each iteration of
the training for the whole dataset. DPSGDOpt modifies the working schema of SGD by performing
gradients computation for sample data frames with gradient normalization and averaging, then a
random noise is added for privacy protection.

• Differential Private Adam optimizer (DPAdamOpt)7: this optimizer replaces the origional version
of Adam optimizer using standard Gaussian noise insertion and by performing gradients compu-
tation for sample data frames with gradient normalization and averaging.

• Differential Private Adagrad optimizer (DPAdagOpt)8:this optimizer replaces the origional version
of Adagrad optimizer. Adagrad optimizer work by giving slow learning rates for gradients with
frequent updates and fast learning rates for gradients with infrequent updates, then it sums the
squares of previous gradients and divides it by a specific high or low value. DPAdagOpt modifies
this schema using standard Gaussian noise insertion and by performing gradients computation for
sample data frames with gradient normalization and averaging.

For each DP optimizer we have varied the noise perturbation, from 0.1 (minumum perturbation) to
1.0 (maximum perturbation). It correspond to the ratio of the standard deviation to the clipping gradient.
It is used to control how much noise is sampled and added to gradients before they are applied by the
optimizer. Generally, more noise results in better privacy.

Training details The training has been performed, splitting the dataset randomly into a training set
(70% of data), validation set (15%), and testing set (15%). The model has been trained, providing blocks
of 50 frames and arresting the learning as soon as the validation loss increases or remains stable for
five epochs. At the end of each processed block, the SSIM and PSNR have been evaluated. The overall
training has been stopped whenever the SSIM and PSNR remained stable or decreased for six consecutive
blocks. The learning rate has been set to 10−5.

4.3 Advanced Techniques for Anomaly Detection Improvement

In the following section every advanced techniques applied for increase the efficiency and effectiveness
of data utilization during the anomaly detection training are presented.

4.3.1 Impact of Bag-Of-Object on Anomaly Detection

Contextual information represented by the bag-of-objects and extracted by the object detector positively
affect the detection of anomalies. We used four types of models in the experiments as below:

1. 2D-two-stream-CNN model with bag-of-objects used (2S-bag).

2. 2D-two-stream-CNN model without bag-of-objects (2S-no-bag).

3. Single flow CNN model for reconstructed frames only and with bag-of-objects used (1S-bag).

4. Single flow CNN without bag-of-objects (1S-no-bag).

Training Details: Prior training phase, several preprocessing steps are carried out: (1) dataset image
resize into 224×224 and conversion from RGB to BGR, (2)zero-centering all color channels with respect
to the ImageNet dataset and without the use of scaling, (3) test set videos are divided by half to create a
validation set while preserving class distribution. For experimentation, the following rules are applied:
7https://www.tensorflow.org/responsible ai/privacy/api docs/python/tf privacy/DPKerasAdamOptimizer
8https://www.tensorflow.org/responsible ai/privacy/api docs/python/tf privacy/DPKerasAdagradOptimizer
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1. An early stopping technique is used with the validation set to control model overfitting.

2. For video segments containing anomalies, the sampling frame rate was set to the rate of 3 FPS and
for normal segments it was set to 10 FPS, normal segments in this context means segments that do
not contain hard anomalies.

3. Hard sample mining has been used with α = 3.

4. class weights were set to 1 for normal class and 2 for anomaly class.

5. Optimizers used are Adam, DPAdam, and DPAdag.

6. For each model were initially trained only the final fully-connected layers using a learning rate
of 10−5 until reaching the lowest loss on validation set with the patience of 5 epochs. Then the
networks were fully trained using the same methodology but with a learning rate of 10−6. After
each fully connected layer was applied a dropout of 0.5.

4.3.2 Impact of Hard Sample Mining on Anomaly Detection

This experiment investigates the impact of the Hard Sample Mining data balancing strategy on the
anomaly detection classification problem. The models used for comparison are as below:

1. 2D-two-stream-CNN with hard sample mining strategy and with bag-of-objects used ( 2S-bag).

2. 2D-two-stream-CNN version trained without the use of balancing strategy and (2S-bag-no-hm)

For this experiment, all other training parameters were left unchanged with a low learning rate and
early stopping to ensure fairness and an optimal degree of accuracy. Also, considering an epoch contains
1
α

of the samples of a training epoch that do not exploit it with hard sample mining strategy.

4.3.3 Impact of Soft Anomalies on Anomaly Detection

This experiment investigates the effect of soft anomalies explained in section XXX on model’s perfor-
mance during training phase. Using the same methodology of the experiment in previous section, two
models were used in this experiment: 2S-bag and 1S-bag models trained without taking into consid-
eration reconstructed frames with hard anomalies nor reconstructed normal frames. These frames are
excluded frame the training process based on frames annotations, meaning that the frames with the an
annotation lost flag equals 1 are excluded. But, no frames are being excluded from the test set and frames
with soft anomalies are considered normal in order to ensure fair comparison with the other experiments.
We will refer to the models trained with only hard anomalies as 2S-bag-ha and 1S-bag-ha.

4.4 Privacy on Anomaly Detection

The anomaly detection on the video streaming is performed by a remote server which analyzes the frames
passed by the smart camera as presented in section 3. The smart camera encodes the frame and passes to
the server the latent space. The server decodes the frame and analyzes the reconstructed image. Before
passing the frames to the server, compression and noise are applied. They provide a reconstruction frame
with a certain level of noise needed to reduce the understanding level of sensitive information, e.g., faces.
To demonstrate the privacy introduced by our method have been computed the frame similarity between
the original image and the reconstructed one with the metrics presented in section 5. In addition, we
experimented the contextual information detected into a reconstructed frame. Specifically, we applied
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a face detection algorithm, DeepFace [64], on the original and reconstructed frame, and we compared
them. The frame quality reduction helps us to increase the privacy hiding the sensitive information, but
it directly impacts anomaly detection accuracy. Therefore we conducted different experiments to find
the best trade-off between privacy and accuracy. For example, increasing the noise in the DP training
optimizer increases privacy at the expense of accuracy.

5 Experimental Results

In this section we discuss the results of the experiments previously described in section 4.

5.1 Evaluation Metrics

To measure the validity of our approach, we used two sets of metrics that are used (i) to demonstrate the
privacy-preserving of our framework and (ii) to evaluate the anomaly detection.

5.1.1 Privacy preserving Evaluation Metrics

The evaluation of the privacy-preserving technique is performed by evaluating the quality degree of the
frames after the application of the autoencoder. The main metrics used to evaluate the quality of an image
[65] and used in our experiments are the following:

• MSE (Mean Squared Error) it measures the average of the squares of the errors, that is, the
average squared difference between the estimated values and the actual value. This is the metric
that provides the error calculation of the training model. However, it does not give no information
about the quality of the image. For example, if every pixel were ”1” off, the picture would look
brighter. However, a frame with half of the pixels ”1” off would look noisy but have a smaller
MSE. The MSE is calculated as follow:

MSE =
∑

n
i=1(xi− x̄i)

2

n

where xi is the predicted pixel, x̄i is the actual value and n is the total amount of pixels.

• PSNR (Peak Signal to Noise Ratio) The signal-to-noise ratio measures the actual proportion of
noise to the maximum possible value of a pixel. This is on a logarithmic scale, so minor differences
will not factor in as much, and the final number mostly is how far off-peak differences are. Low
values of PSNR correspond to a complete noise image, while increasing the PSNR value increases
the quality of the image. The PSNR is calculated as follow:

PSNR = 20× log10(
max(I)√

MSE
)

where max(I) is the maximum value of the pixel in the image.

• SSIM (Structural Similarity Index Measure) This measure takes into account differences in
luminance, contrast, and structure. The lower the SSIM value, the poorer the image quality.
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5.1.2 Anomaly Detection Evaluation Metrics

As in [5] and [21] the various models were compared using the area under the ROC curve calculated
frame by frame (FL-AUC). In the case of the 3D-CNN model, the classification is considered on the last
frame of the segment as the model is intended to be used online. It was also introduced a new metric to
evaluate the effectiveness of the models in the classification at the video-level: the video-level F1 score
(VL-F1). This metric is useful to evaluate the models’ anomaly detection capabilities with a weakly-
labeled test set. The same model can obtain different results for the two metrics. For example, it can
distinguish normal videos from anomalous ones correctly but not normal and anomalous segments inside
the same video. It is therefore important to use both metrics to have a correct comparison. Using the
VL-F1 score, a whole video is classified as anomalous if its sigmoidal anomaly score exceeds 0.5 at any
point and normal otherwise. Once all videos have been classified, the F1 score is calculated as:

V L-F1 =
2

1
vl-r +

1
vl-p

Where vl-r is the video-level recall and vl-p the video-level precision. SAS parameters have been heuris-
tically set with: τ = 0.5, ν = 2, UB = 7 and LB =−7.

5.2 Evaluation of privacy preserving using autoencoder

In this section, we reported the results related to the privacy-preserving mechanism proposed using the
autoencoder described in section 3. Specifically, we have shown the results obtained in the reconstruction
frames, and we proved the effectiveness of autoencoder as a privacy-preserving mechanism showing the
face detection applied on the reconstruction frames.

5.2.1 Autoencoder with DP

Figure 7 shows a comparison between the original frame and its decoder reconstruction using different
training mechanisms. We selected a frame composed explicitly of sensitive information (person in front
of the camera). As described in section 4.2, we experimented 4 different autoencoder training using
different optimizers. In the absence of DP, we obtained a reconstruction frame visually near the original
one. It is highlighted by SSIM, PSNR, and MSE, with values respectively 0.79 and 70.58 and 0.02. The
worst reconstruction is provided by the DP Adam and the DP SGD optimizers. They are trained to add a
noise factor of 0.1, and the result is relatively similar visually and statistically. They provide respectively
SSIM 0.44 and 0.47, PSNR 65.44 and 65.25, and MSE 0.06. The best result is reached with the DP
Adagrad optimizer, which provides an SSIM equal to 0.6, PSNR 66.85, and MSE equal to 0.04. As a
result, we recognize that there are several people in front of the camera, but we cannot distinguish their
identities. The MSE, as explained in section 5.1, it gives no information about the quality of the image.
In fact, the value of MSE is low in each comparison.

5.2.2 Privacy Preserving in Reconstructed Frames

As explained in section 4, to prove the effectiveness of the privacy-preserving mechanism, we compared
the face detection capacity of DeepFace on the original frame and on the reconstructed frames. Figure
8 shows the results obtained after the application of the face detection on the original frame. The model
is able to detect 8 faces over 13. The undetected faces are due to the occlusions and brightness of the
image. Instead, we notice that the faces detected considerably decrease when applying the detector on
the frame reconstructed by the autoencoder trained with the Adam optimizer. Specifically, as shown on
figure 9, 1 single face is detected over 13. Performing the same experiment on the other autoencoders
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Figure 7: Reconstruction frames using different training optimizers

trained with DP Adam, DP Adagrad, DP SGD optimizers, we obtained 0 faces detected over 13. Such
results prove how the application of DP and noise addition contribute to making the sensitive information
of the reconstruction frame, i.e., faces, not only visually unrecognizable, but also unrecognizable by a
machine learning mechanism.

Figure 8: Faces detected in the original image

5.3 Impact of the advanced techniques on anomaly detection

In this section are exposed the anomaly detection results obtained applying the advanced training tech-
niques described in section 4. Bag-of-Objects. Referring to Table 1 is possible to notice how the use
of bag-of-objects has a clear impact on the model’s ability to classify at frame-level. In particular, both
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Figure 9: Faces detected in the reconstructed frame (Adam Optimizer)

Model FL-AUC (%) VL-F1 (%)
2S-bag 82.6 66.7

2S-no-bag 77.6 61.5
2S-bag-no-hm 80.2 64.0

2S-bag-ha 83.7 91.0
1S-bag 78.6 74.1

1S-no-bag 75.3 58.3
1S-bag-ha 81.5 87.5

Table 1: Experimental Results

two-stream and one-stream architectures have an AUC increase of 6.4% and 4.4%: from 77.6% (2S-
no-bag) to 82.6% (2S-bag) and from 75.3% (1S-no-bag) to 78.6% (1S-bag). Also, with regard to the
video-level F1 score both architectures have an increase of 8.5% and a remarkable 27.1%: from 61.5%
(2S-no-bag) to 66.7% (2S-bag) and from 58.3% (1S-no-bag) to 74.1% (1S-bag). It certifies that the use
of the bag-of-object has a positive impact on the classification of the single frames and the distinction of
videos containing anomalies from normal ones.

Hard Mining. Always referring to Table 1 the impact of hard mining on anomalous detection can
be verified by comparing 2S-bag with 2S-bag-no-hm. There is an increase in AUC accuracy of 3%, from
80.2% to 82.6%, with the use of hard mining and also the VL-F1 score increases by 4.2%, from 64.0%
to 66.7%.

Soft Anomalies. In Table 1 can also be assessed the impact of the exclusive use of hard anomalies as
positive samples. For both architectures the maximum AUC values are reached, with an increase of 1.3%
and 3.7%: from 82.6% (2S-bag) to 83.7% (2S-bag-ha) and from 78.6% (1S-bag) to 81.5% (1S-bag-ha).
But the most significant results are the VL-F1 values with a significant increase of 36.4% and 18.1%:
from 66.7% (2S-bag) to 91.0% (2S-bag-ha) and from 74.1% (1S-bag) to 87.5% (1S-bag-ha). It means
that an accurate selection of abnormal and normal frames – so that they are completely unambiguous
for their use in training – leads to a general improvement of the frame-level classification and allows a
considerably better video-level detection.

5.4 Impact of privacy preserving techniques on anomaly detection

The impact of privacy-preserving (autoencoder reconstruction frame) on the anomaly detection is com-
pared using the Area Under the Curve (ROC). Figure 10 shows the comparison between three anomaly
detection models trained with the frames encoded by the client-side and decoded on the server-side. As
autoencoder model, we considered the model without DP and Adam optimizer (No DP), and two models
with DP. Specifically, the model trained with DP Adam optimizer (DP Adam Opt), where we obtained
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the worst reconstruction frame, and the model trained with DP Adagrad optimizer (DP Adagrad Opt),
through which we obtained the best reconstruction frame with DP. The model with the DP SGD opti-
mizer is not taken into consideration since it produces an image reconstruction quality similar to the DP
Adam optimizer. As the ROC curve shows, the reconstruction frames’ quality has a high correlation with
the anomaly detection accuracy. The best reconstruction quality frame, obtained without DP, produces
the highest AUC (0.788). Decreasing the quality of the frame (DP Adagrad optimizer), we obtained
a decrement of detection accuracy (AUC = 0.707). Finally, we obtained the worst detection accuracy
with the worst frame quality, represented by AUC equal to 0.577. To summarize, we can claim that the
privacy-preserving increment produces an anomaly detection reduction because the quality of the recon-
struction frame is not sufficient to distinguish contextual information from the scene. Hence a trade-off
between anomaly detection accuracy and privacy-preserving is indispensable.

Figure 10: Anomaly Detection with Autoencoder frame reconstruction

6 Conclusion and Future Work

New challenges are arising in the latest years concerning multimedia data analysis. The high availability
of data and the possibility to perform analysis online, thanks to the increased connectivity speed and
the possibility to perform computationally challenging operations also on constrained devices, make it
possible to provide new services, to analyze and timely handle emergency situations. However, being
able to perform this analysis in a privacy-preserving way, i.e., without violating the privacy of the people
involved in pictures and videos, would make it possible to apply these technologies virtually in any envi-
ronment, without violating international privacy regulations. In this paper, we proposed a novel approach
to perform privacy-preserving anomaly detection in video-frames, exploiting deep learning analysis tech-
niques to identify anomalous and potentially dangerous situations involving violence or other activities
that can cause harm to people. By the usage of autoencoders with differential privacy, we have ensured
that the performed analysis is done in a privacy-preserving way. We have experimentally verified that the
application of autoencoders to anonymize and reconstruct video frames marginally affects the capabil-
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ity of identifying anomalies still it strongly affects the capabilities of recognising the identity of people
present in each video frame.

Envisioned future directions for this work include training existing object detection and image classi-
fication algorithms on anonymized image datasets generated by autoencoders to increase model accuracy.
In addition, the actual object recognition model is trained with very generic classes, which puts a limit
for the model. To overcome such limitation, the contextual information given by the bag-of-object can
be enriched considering also more relevant objects for the specific anomaly detection task (i.e., knives,
guns). Another direction would be the usage and evaluation of explainability indexes to enable the veri-
fication of the parameters used to take decisions and their compatibility with ethical standards. Further
future directions would be the inclusion of features related to the objects present in the video and their
relation with the monitored people. Finally, the application on live captured video for real-time detection
is considered a possible further extension.
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