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Left ventricular (LV) hypertrophy consists in an increased LV wall thickness. LV hypertrophy can be either secondary, in response to
pressure or volume overload, or primary, i.e. not explained solely by abnormal loading conditions. Primary LV hypertrophy may be due
to gene mutations or to the deposition or storage of abnormal substances in the extracellular spaces or within the cardiomyocytes
(more appropriately defined as pseudohypertrophy). LV hypertrophy is often a precursor to subsequent development of heart failure.
Cardiovascular imaging plays a key role in the assessment of LV hypertrophy. Echocardiography, the first-line imaging technique, allows a
comprehensive assessment of LV systolic and diastolic function. Cardiovascular magnetic resonance provides added value as it measures
accurately LV and right ventricular volumes and mass and characterizes myocardial tissue properties, which may provide important clues
to the final diagnosis. Additionally, scintigraphy with bone tracers is included in the diagnostic algorithm of cardiac amyloidosis. Once
the diagnosis is established, imaging findings may help predict future disease evolution and inform therapy and follow-up. This consensus
document by the Heart Failure Association of the European Society of Cardiology provides an overview of the role of different cardiac
imaging techniques for the differential diagnosis and management of patients with LV hypertrophy.
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Graphical Abstract

Main imaging findings that may guide the differential diagnosis among hypertrophic disorders. +, present; −, absent; =, unchanged; ↑, increased;
↑↑, much increased; ↓, decreased; AFD, Anderson–Fabry disease; AL, amyloid light-chain; ATTR, amyloid transthyretin; CA, cardiac amyloidosis;
ECG, electrocardiogram; ECV, extracellular volume; HCM, hypertrophic cardiomyopathy; LGE, late gadolinium enhancement; LV, left ventricle; PET,
positron emission tomography; RV, right ventricle. *Asymmetrical hypertrophy, left ventricular obstruction, papillary muscle hypertrophy.
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Left ventricular (LV) hypertrophy consists in an increased LV wall
thickness. LV hypertrophy can be classified according to the pat-
tern of wall thickening (symmetrical vs. asymmetrical), the pres-
ence of LV dilatation (concentric vs. eccentric), and possibly based
on the occurrence of right ventricular (RV) hypertrophy. Further-
more, increased LV wall thickness can be a compensatory response
to abnormal loading conditions, as in athletes’ heart, severe aor-
tic stenosis or arterial hypertension. Alternatively, no cause of
LV hypertrophy may be apparent, or the degree of hypertrophy
may be excessive compared to the pro-hypertrophic stimulus.1,2

While helpful, this distinction can be complicated when we con-
sider that certain genetic mutations may need an environmental
trigger such as hypertension to develop into hypertrophic car-
diomyopathy (HCM).3 Primary hypertrophy may be due to gene
mutations or to an accumulation of abnormal substances in the
extracellular spaces or within the cardiomyocytes, which is defined
more correctly as pseudo-hypertrophy.4 The 2014 European Soci-
ety of Cardiology (ESC) guidelines on HCM nicely classified the
causes of primary LV hypertrophy as follows: sarcomeric pro-
tein gene mutations (40–60%), unknown causes (25–30%), and
other genetic and non-genetic causes (5–10%: inborn errors of
metabolism, neuromuscular diseases, mitochondrial diseases, mal-
formation syndromes, amyloidosis, newborn of diabetic mother, or
drug-induced).1 ..
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.. The same identification of LV wall thickening requires the use of

imaging techniques. Echocardiography is the first-line technique,
and enables a sophisticated assessment of systolic and diastolic
function and cardiac valves. The strengths of cardiovascular mag-
netic resonance (CMR) include more accurate measurement of
LV and RV volumes and mass, as well as the characterization
of myocardial tissue properties, which may provide important
clues to the diagnosis. As for other imaging techniques, we must
remember at least scintigraphy with bone tracers, which plays
an essential role in the diagnostic workup of cardiac amyloidosis
(CA). Once the diagnosis is established, imaging findings may help
predict future disease trajectories. For example, the extent of
late gadolinium enhancement (LGE) on CMR (in terms of total
amount of LGE) has been associated with a worse outcome in
HCM,5 and transmural LGE with worse outcome in CA.6 Finally,
serial imaging studies could provide clues on disease evolution
and the response to treatment, as recently suggested by the rela-
tionship between CMR-derived extracellular volume (ECV), the
haematologic response and final outcome in patients with amyloid
light-chain (AL) CA.7

In this consensus document by the Heart Failure Association
of the ESC we reappraise the role of different imaging techniques
for the differential diagnosis and management of patients with LV
hypertrophy.

© 2023 European Society of Cardiology.
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Imaging in patients with a LV hypertrophic phenotype 3

Imaging findings as diagnostic
tools
Echocardiography
Standard transthoracic echocardiography

Many echocardiographic findings can help differentiate physiologi-
cal from pathological hypertrophy, and then between the different
forms of hypertrophy (Table 1).8 Patients with HCM display more
often asymmetric LV hypertrophy involving just the interventricu-
lar septum, but other morphologic variants have been described.9

In 70% of the cases, HCM is associated with LV outflow tract
obstruction at rest or during exercise, mainly because of the
systolic anterior movement of the anterior mitral valve leaflet. In
rare cases, the obstruction occurs at the mid-ventricular level.
The continuous-wave Doppler show a typical ‘dagger-shaped’
morphology in the sites of obstruction.10 Most patients show
mitral regurgitation due to poor leaflet apposition (with poste-
riorly directed jets). Left atrial (LA) enlargement and diastolic
dysfunction are common.

The echocardiographic pattern of CA is characterized by con-
centric hypertrophy with non-dilated left ventricle, and usually
extends to the right ventricle. The atria are typically enlarged, and
the interatrial septum is often thickened, particularly in late dis-
ease stages.11 To our knowledge, no definition of interatrial septal
thickening has been proposed so far. Based on the experience of
the Authors, interatrial septal thickening could be defined by a sep-
tal thickness>5 mm during atrial diastole, measured preferentially
with CMR also to exclude lipomatous hypertrophy. Diastolic dys-
function is present from the early disease stages, and a restrictive
pattern appears in advanced stages. LV ejection fraction (LVEF) is
usually preserved until the very late stages.

Right ventricular hypertrophy is a pathologic increase in RV
wall thickness in response to pressure overload (e.g. because
of pulmonary hypertension), but possibly also cardiomyocyte
hypertrophy due to a gene mutation, or even infiltration of the RV
wall. RV hypertrophy in HCM is extremely heterogeneous, varying
from mild concentric hypertrophy to more severe obstructive
disease, either isolated or associated with LV hypertrophy.12 RV
hypertrophy is common in CA and may show an apical spar-
ing pattern.13,14 In Anderson–Fabry disease (AFD), RV and LV
hypertrophy are often associated.15 Few data are available on the
prevalence of RV hypertrophy in these three settings. The patterns
of RV hypertrophy are nonetheless quite similar and do not help
differentiate between different disorders.

Speckle-tracking echocardiography

Speckle-tracking echocardiography (STE) is a very sensitive tool
for identifying the early stages of HCM. A decrease in longitudinal
deformation in single segments precedes the deterioration of
global longitudinal strain (GLS). Segmental longitudinal strain is
typically reduced in the site of maximal LV hypertrophy, which
is also the site with most fibrosis.16 A more severely impaired
GLS predicts a higher risk of ventricular arrhythmias17 and worse
post-operative outcome after septal myectomy.18 ..
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.. Speckle-tracking echocardiography is very useful for early diag-
nosis as it detects a systolic dysfunction from the early stages and
often an ‘apical sparing pattern’, which is a sensitive but not very
specific marker for CA, as it can also be seen in other forms of LV
hypertrophic phenotype like HCM.19,20 Mild-to-moderate pericar-
dial effusion is common.21

Speckle-tracking echocardiography also enables early detection
of LA and RV involvement in CA, which may be useful for dif-
ferential diagnosis.22–24 LA strain is more severely depressed in
patients with transthyretin (ATTR)-CA than those with AL-CA or
those without CA,25 and RV strain shows a basal-to-apical strain
reduction distribution similar to the left ventricle.23 Many diag-
nostic scores have been developed to improve the diagnosis of
CA in patients with unexplained LV hypertrophy. Multiparametric
echocardiographic diagnostic scores have also been proposed, such
as the increased wall thickness (IWT)26 and AMYLoidosis Index
(AMYLI) scores,27 the latter not requiring STE imaging.

In patients with AFD, cardiac remodelling is due to replacement
fibrosis (starting in the basal inferolateral wall) and vasculopathy.28

LV GLS in the basal inferolateral wall is typically decreased,29 and
the loss of normal circumferential strain base-to-apex gradient
may represent an early marker of cardiac involvement in AFD.30

Compared with patients with HCM, those with AFD typically show
a greater impairment in free wall RV strain and a lower difference
between free wall and global RV strain.31

Cardiovascular magnetic resonance
Morphology assessment

Cardiovascular magnetic resonance provides an assessment of ven-
tricular mass, chamber volume, cardiac function, pattern and distri-
bution of hypertrophy and tissue characterization without ionizing
radiation.32–35 In detail, CMR allows absolute mass quantification36

and the detection of unusual patterns of LV hypertrophy.37 More-
over, CMR can detect early markers of HCM in gene carriers, such
as myocardial crypts, elongated anterior mitral leaflets, abnormal
apical trabeculae and smaller LV ventricular volumes38 (Figure 1).

T1 mapping

A variable combination of tissue characterization sequences may
help distinguish different disorders.33,38,39 Native (i.e. pre-contrast)
T1-mapping is useful to evaluate myocardial tissue changes (both
intracellular and extracellular) that are increased by presence
of oedema, fibrosis, amyloidosis and decreased by iron or fat
deposition. ECV mapping is a quantitative index of ECV expansion,
and has been validated against histology,40 similarly to LGE.41 Both
native T1-mapping and ECV mapping are slightly increased in HCM
patients, particularly in regions of hypertrophy.42–45

Native T1-mapping has high positive and negative predictive val-
ues in patients with suspected CA.46 Although native T1-mapping is
less specific than ECV mapping because the latter reflects ECV only,
rather than both intra- and extracellular volume. ECV represents
the best parameter for quantifying amyloid and has shown the best
diagnostic accuracy when compared to other CMR parameters.47

In patients with AFD, intracellular accumulation of sphingolipids

© 2023 European Society of Cardiology.
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Imaging in patients with a LV hypertrophic phenotype 5

Figure 1 Main features of hypertrophic cardiomyopathy (HCM). AML, anterior mitral leaflet.

causes a typical shortening of native T1 relaxation times, even
before the development of hypertrophy, which allows to distinguish
AFD from other conditions such as CA or HCM despite similar
morphological features48 (Figure 2). The development of myocar-
dial fibrosis in later disease stages, secondary to cardiomyocyte
necrosis, balances the effect of sphingolipids on T1 relaxation times
leading to a pseudo-normalization of native T1-mapping, at least in
myocardial regions involved by fibrosis. Similarly, ECV is typically
normal in AFD because of the intracellular accumulation of sphin-
golipids, as compared to other cardiomyopathies characterized by
interstitial infiltration (such as CA),49 although it might increase in
later disease stages in myocardial areas involved by fibrosis.

Late gadolinium enhancement

Cardiovascular magnetic resonance is a possible additional exam
when CA is suspected, and is also particularly useful in patients
with a monoclonal protein and no bone tracer uptake in the heart
(Perugini grade zero).21 A diffuse subendocardial LGE pattern
is highly specific for CA (94%). LGE imaging can be challenging
due to the diffuse nature of amyloid infiltration.50 However, the
typical alterations in inversion times responsible for the difficult
myocardial nulling, partially overcome by the development of
phase-sensitive inversion recovery sequences, are also strongly
suggestive of CA.46,50,51

The main findings in patients with AFD are concentric LV
hypertrophy52 and non-ischaemic mid-wall or subepicardial LGE ..
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. pattern mainly involving the basal inferolateral LV segment.53 In
male patients, LGE does not precede the development of LV
hypertrophy, while it has been reported in a significant proportion
of female patients without hypertrophy.54

Cardiovascular magnetic resonance may also be helpful in the
assessment of glycogen storage diseases (e.g. Pompe, PRKAG2,
Danon); for instance, Danon disease is characterized by extensive
subendocardial LGE in the left ventricle, particularly in the apex
and sparing the basal septum.55

T2-mapping, T2*-weighted imaging, diffusion tensor
imaging

Quantitative T2-mapping analysis has been used to detect myocar-
dial oedema in HCM patients,56 which might be explained by acute
ischaemic bouts, inflammatory injuries, myocyte disarray, scar het-
erogeneity, and has been proposed as a marker of disease activity.
In patients with AFD, T2-mapping has been used to demonstrate
the presence of myocardial inflammation, which is thought to con-
tribute to disease progression.49,57,58

Myocardial T2* values, an index of magnetic field inhomo-
geneities usually utilized to detect myocardial iron overload in
hereditary haemochromatosis or haemoglobinopathies, may be
slightly reduced even in HCM patients, possibly providing further
information to characterize myocardial fibrosis.59

Diffusion tensor imaging is a novel technique that shows the
microstructure of myocardial fibres and myocardial disarray. It

© 2023 European Society of Cardiology.
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6 B. Moura et al.

Figure 2 Similar morphology but different native T1-mapping in hypertrophic cardiomyopathy (HCM), transthyretin cardiac amyloidosis
(ATTR-CA) and Anderson–Fabry disease (AFD). LGE, late gadolinium enhancement.

holds some promise to provide further insight on the myocardial
substrate and potentially refine risk prediction, but is currently just
a scientific and research tool.60

Nuclear imaging
Scintigraphy

Cardiac scintigraphy with bone tracers is the only nuclear cardi-
ology technique used in clinical practice to establish the aetiology
of LV hypertrophy. The mechanism of the more intense myocar-
dial uptake of 99mTc-labelled bone tracers in ATTR- than AL-CA is
not well understood, although may be related to the presence of
microcalcifications in the heart.61 Although these radiotracers are
generally considered to have a similar diagnostic yield, very limited
evidence is available.62,63

Scintigraphy with bone tracers involves the intravenous admin-
istration of 370 to 740 MBq of 99mTc-labelled bone-seeking
radiotracer followed by planar and possibly single-photon emis-
sion computed tomography (SPECT) imaging after 2–3 h. The
intensity of myocardial radiotracer uptake can be analysed either
by visual grading or by quantifying radiotracer uptake using the
heart-to-contralateral lung (H/CL) ratio. The Perugini grading
system is based on a visual analysis of cardiac uptake on planar
images (Figure 3).64 A grade 2 or 3 uptake has a high sensitivity
(>85%) for ATTR-CA, but a lower specificity (around 30%), as
patients with AL-CA may show a grade 1–2 uptake.65

Semi-quantitative analysis of myocardial uptake can be per-
formed using the heart-to-whole body (H/WB) or H/CL ratio. ..
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.. H/WB ratio is calculated by drawing a rectangular region of
interest (ROI) for the heart and irregular ROIs for the whole body
except urinary tract. Mean H/WB ratio of ATTR-CA was 10.0%
versus 5.4% in controls.66 An H/CL ratio≥1.5 is highly suggestive
for ATTR-CA, and therefore can be used in the diagnosis of
ATTR-CA.67,68 Other cut-off points have been proposed and
incorporated in the diagnostic algorithms by different scientific
societies.69

Patients with specific TTR gene mutations (Phe84Leu, Ser97Tyr)
may not display an uptake of bone tracers. Moreover, differen-
tiation of myocardial uptake from blood pool uptake, rib frac-
tures, valvular or annular mitral calcifications may be challeng-
ing in patients with Perugini grade 1. In these patients, additional
SPECT imaging is necessary to achieve more accurate localization
of radiotracer uptake.65 Moreover, combination between SPECT
and computed tomography (CT) imaging allows accurate quanti-
tative measures of the standardized uptake value (SUV) through
attenuation correction. SUV-based quantitative SPECT/CT param-
eters have shown excellent correlations with conventional visual
scores.70

Positron emission tomography

The differential diagnosis between AL- and ATTR-CA is clinically
important because of different treatments and prognoses. Besides
differences in clinical features and laboratory findings, some imaging
findings help distinguish ATTR- from AL-CA on bone scintigraphy.
First, the degree of myocardial uptake is usually significantly higher

© 2023 European Society of Cardiology.
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Imaging in patients with a LV hypertrophic phenotype 7

Figure 3 Cardiac uptake of bone tracers on planar scintigraphy
(left) and tomographic acquisitions (right). A visual grade of 0,
1, 2, and 3 indicates no myocardial uptake, or uptake less than,
equal to, and greater than rib uptake, respectively. Reprinted with
permission from Grigoratos et al.64

in ATTR than in AL71; second, diffuse uptake in soft tissue is more
common in ATTR-CA.

Several positron emission tomography (PET) tracers, such
as 18F-florbetapir, 18F-flutemetamol, 18F-florbetaben, and
11C-Pittsburgh B (11C-PiB), have been investigated for CA
imaging.72–74 All these tracers are analogues of thioflavin-T, a his-
tological dye binding to the beta-pleated motif of the amyloid fibril.
These tracers bind to any type of amyloid fibril, even if they seem
to have a higher affinity for AL than for ATTR.73 This may explain
why delayed acquisitions (from 50 to 60 min) highlight amyloid
deposits in AL, but not in ATTR-CA (Figure 4).72 Therefore, PET
imaging might allow to reliably differentiate AL- from ATTR-CA,
which is not possible based on echo or CMR imaging.

Myocardial tissue remodelling in AFD leads to a significant reduc-
tion of hyperaemic myocardial blood flow (MBF).75 For example,
a study reported a 60% reduction in hyperaemic MBF regardless
of LV mass. Such reduction is more prominent in males, but it is
common also in females, where it may be the only sign of cardiac
involvement.76

Computed tomography
Cardiac CT is routinely performed in patients referred to tran-
scatheter aortic valve replacement. In a small case series, ECV ..
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.. measurements by CT and CMR were well correlated (r2 = 0.85).
ECVCT was higher in amyloidosis than aortic stenosis (0.54± 0.11

vs. 0.28± 0.04, p< 0.001), with no overlap. ECVCT also tracked
clinical markers of cardiac amyloid severity (N-terminal pro-B-type
natriuretic peptide, troponin, LVEF, LV mass, LA and right atrial
area), and bone scintigraphy amyloid burden (p< 0.001).77

Integration of imaging and clinical data
The first step to make the diagnosis in a patient with LV hypertro-
phy is to assess the personal and family history. Age at diagnosis is
an important element. For example, inborn errors of metabolism
and congenital syndromes are much more common in neonates or
infants than in older children or adults, and ATTRwt-CA affects
elderly individuals.78–80 When collecting the clinical history, an
important goal is to exclude common causes of LV hypertrophy,
while keeping in mind that they may coexist with primary car-
diomyopathies.81 The family history should be detailed to identify
other family members with known or suspected cardiomyopa-
thy or other elements such as a history of sudden cardiac death
(SCD), heart failure, heart transplantation, pacemaker or defibril-
lator implantation, stroke in a young individual, or neuromuscular
disease.81 When this is the case, the likely pattern of inheritance
and other clinical features possibly pointing towards a specific diag-
nosis should be searched.81 A negative family history does not rule
out a genetic aetiology because the disease may be the result of
a de novo mutation, or the manifestations of the genetic disorders
may have gone unnoticed.81

Signs and symptoms of systemic disorders should be searched.
The mechanisms of multi-organ involvement include: the expres-
sion of the mutated protein in multiple organs (e.g. dystrophin),
infiltration of multiple organs (e.g. amyloidosis), mitochon-
drial dysfunction (e.g. MELAS), or developmental abnormalities
(e.g. cardiofaciocutaneous syndrome).81 Some features of systemic
involvement may be readily detected (such as a dysmorphic appear-
ance), while others require specific investigations (e.g. carpal tunnel
syndrome) or laboratory testing, such as an increment of transam-
inase levels and creatine kinase for glycogen storage diseases,
mitochondrial and muscular disorders. Skeletal muscle weakness
usually precedes cardiac involvement and dominates the clinical
picture, but is occasionally subtle and less prominent than cardiac
disease.81

An abnormal electrocardiogram may be the only manifestation of
a cardiomyopathy. Many electrocardiographic features can suggest
the underlying diagnosis, in association with other specific clinical
and imaging features. Progressive atrioventricular conduction delay
due to disease of the atrioventricular node or His–Purkinje sys-
tem is common in many genetic diseases including laminopathies,82

mitochondrial disorders,83 and storage or infiltrative diseases.80,84

Ventricular pre-excitation is a common feature of storage dis-
eases85 and some mitochondrial disorders.83 Repolarization abnor-
malities are common but not specific. Abnormalities of the ST
segment and T wave are usually the expression of ventricular strain
or a specific location of the disease process; an example is giant
T-wave inversion in the precordial and/or inferolateral leads in
patients with apical HCM. Extremely large QRS voltage is typical

© 2023 European Society of Cardiology.
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8 B. Moura et al.

Figure 4 Cardiac 18F-florbetaben uptake in patients with and without cardiac amyloidosis. Upper panel: 18F-florbetaben cardiac positron emis-
sion tomography myocardial time–activity curves in patients with immunoglobulin light-chain amyloidosis, transthyretin-related amyloidosis,
and non-cardiac amyloidosis. The 95% confidence interval is represented as a shaded area for each curve. Lower panel: early (5–15 min), inter-
mediate (30–40 min), and late (50–60 min) 18F-florbetaben cardiac positron emission tomography scans in patients with amyloid light-chain and
transthyretin-related cardiac amyloidosis and in those with non-cardiac amyloidosis. SUV, standardized uptake value. Reprinted with permission
from Genovesi et al.72

of storage diseases.85 Low QRS voltage is frequent in CA but has
low sensitivity; the relation of the total or peripheral QRS voltages
to LV mass is more important.86 A low ratio in the presence of a
hypertrophic phenotype is consistent with CA, whereas it is rare
in patients with sarcomeric disease.80 A pseudo-infarction pattern
(due to asymmetric hypertrophy or a myocardial scar) is particu-
larly common in HCM and CA.80,87 In patients with severe aortic
stenosis, the discrepancy between the degree of hypertrophy and
QRS voltages may also be informative,88 while the classical apical
sparing pattern may be concealed.89 Myocardial ECV quantification
can help identify CA, particularly ATTR-CA.88,90

The value of routine laboratory testing lies mostly in the assess-
ment of organ dysfunction or in the detection of non-specific ..
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.. markers of disease severity such as natriuretic peptides. The

possibility of metabolic disorders such as Danon or mitochondrial
disease should be considered. Measurement of alpha galactosidase
A can be considered in male patients with unexplained LV hypertro-
phy over the age of 30 years, as most cardiovascular signs of AFD
develop from the third decade of life onwards.91 In female patients
with AFD, plasma and leucocyte enzyme levels are often within
the normal range, and genetic testing may be more appropriate.92

When CA is suspected, a monoclonal protein must be searched
in the serum and urine.21 It is important to remember that up to
5% of the general population of elderly people have monoclonal
gammopathy of uncertain significance, which is not necessarily an
abnormal condition.93

© 2023 European Society of Cardiology.
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Imaging in patients with a LV hypertrophic phenotype 9

Imaging findings for risk
stratification
Imaging findings may help predict future disease trajectories and
patient outcomes. This topic has been extensively investigated in
HCM and CA (Table 2).

Risk stratification in HCM cannot rely only on LVEF. Current ESC
guidelines stratify the risk of SCD using a score based on qualitative
and quantitative parameters obtained by clinical and echocardio-
graphic data, and LGE as modulating factor in selected cases.1 The
echocardiographic findings used for risk stratification are maximal
wall thickness≥30 mm, maximum (rest/Valsalva) gradient of the LV
outflow tract (>30 mmHg), and LA size.1 Areas of myocardial LGE
are present in up to 80% of patients.37 Quantitative evaluation of
LGE is mandatory, and a LGE threshold ≥15% of LV mass identifies
patients at high risk of SCD, even in the absence of other major
risk factors.33,94,95 LGE presence has been listed among the crite-
ria for patient selection in the recently updated HCM guidelines
by the American Heart Association/American College of Cardiol-
ogy.33 Scar heterogeneity with islands of viable myocardium within
the fibrotic tissue may be a better marker of poor prognosis than
LGE presence or extent, being a substrate for malignant ventricular
arrhythmias.96

Myocardial oedema may be detected in up to 40% of HCM
patients using either T2-weighted imaging (i.e. conventional
T2-STIR or T2-FAT-SAT)97 or quantitative T2-mapping.56 The
most plausible mechanism of regional T2-signal hyperintensity
in HCM is myocardial ischaemia due to supply–demand imbal-
ance in the hypertrophic myocardium, but tissue remodelling
is another possible cause. T2 imaging has been proposed as a
marker of disease activity in HCM, and has been investigated as a
marker of disease progression and prognosis. Indeed, myocardial
oedema on T2 imaging has been associated with established mark-
ers of adverse remodelling and prognosis, including LGE, elevated ..
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.. troponin levels and non-sustained ventricular tachycardia.97 Among

patients with extensive LGE, those with hyperintense areas at
T2-weighted sequences experienced more life-threatening ventric-
ular arrhythmias than those without.98 Higher T2-mapping values
were associated with increased levels of troponin T and B-type
natriuretic peptide in HCM, reflecting active myocardial injury and
probably cardiac stiffness and diastolic dysfunction.56 This mech-
anism may explain the progressive phenomenon of myocardial
fibrosis over time in HCM, justifying a follow-up based also on
CMR.1,33,99 Diffusion tensor sequences, despite their complexity
and limited availability, are able to visualize the microstructure of
myocardial fibres and myocardial disarray,98 potentially providing
additional markers of arrhythmic risk in HCM. Single studies have
reported that nuclear imaging techniques revealing myocardial
ischaemia, heterogeneity of myocardial blood flow or innervation
could help predict SCD.100 Finally, apical aneurysms (particu-
larly those ≥2 cm) predict a higher risk of malignant ventricular
arrhythmias.101

In up to 10% of HCM patients, the disease process is charac-
terized by faster rate of adverse remodelling and development of
progressive dysfunction.102 Two patterns of remodelling have been
described: a progressive dilatation with spherical remodelling and a
worsening diastolic dysfunction culminating in severe restriction.102

Serial imaging investigations can follow disease progression, but the
prediction of future ventricular remodelling at the time of diagnosis
remains challenging.

In patients with AL-CA, GLS has emerged as a strong pre-
dictor of major adverse cardiac events in AL amyloidosis with
preserved LVEF, independently of serum biomarkers.103,104 Stroke
volume index, right atrial area index, GLS and E/e’ have been inde-
pendently associated with mortality in patients with ATTR-CA.105

The function of all cardiac chambers holds prognostic signifi-
cance, as suggested by a study on 136 patients with CA (80%
with AL-CA) reporting that strain data from all cardiac chambers

Table 2 Risk stratification in hypertrophic cardiomyopathy and cardiac amyloidosis

Echocardiography Cardiac magnetic resonance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sarcomeric HCM - Maximal wall thickness≥30 mm, maximum (rest/Valsalva)
gradient of the LV outflow tract (>30 mmHg), and LA size are
part of the standardized recommendations on risk stratification
of SCD (European vs. American guidelines).

- Apical aneurysms predict a higher risk of malignant ventricular
arrhythmias.

- LS, LV mechanical dispersion and LA volume index as predictors
of arrhythmic events.

• LGE ≥15% of LV mass identifies patients at high
risk of SCD.

• Myocardial oedema on T2-imaging is associated
with higher rates of ventricular arrhythmias.

CA - GLS is a strong predictor of major adverse cardiac events in
AL-CA with preserved LVEF.

- Stroke volume index, right atrial area index, GLS and E/e’ have
been independently associated with mortality in ATTR-CA.

- Strain data from all the cardiac chambers are associated with
all-cause mortality.

• A transmural LGE pattern is associated with a
five-fold increased risk of events.

• Higher ECV is associated with worse patient
outcomes.

• ECV changes over time could allow the
assessment patients’ response to treatment.

AL-CA, amyloid light-chain cardiac amyloidosis; ATTR-CA, transthyretin-related cardiac amyloidosis; CA, cardiac amyloidosis; ECV, extracellular volume; GLS, global longitudinal
strain; HCM, hypertrophic cardiomyopathy; LA, left atrial; LGE, late gadolinium enhancement; LS, longitudinal strain; LV, left ventricle; LVEF, left ventricular ejection fraction;
SCD, sudden cardiac death.

© 2023 European Society of Cardiology.
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10 B. Moura et al.

are associated with all-cause mortality.106 As for CMR imaging,
subendocardial diffuse or transmural LGE pattern signals exten-
sive amyloid deposition and a more advanced disease; a trans-
mural LGE pattern was associated with a five-fold increased risk
of events.6 Marked elevation of native T1-mapping and ECV val-
ues were associated with a poor prognosis.6 ECV emerged as
the parameter with the highest hazard ratio in predicting patient
outcomes, and its changes over time could allow the assessment
patients’ response to treatment.47,107,108 Ideally, CMR should be
repeated every 6 months to track treatment response, and clin-
ically significant changes in the cardiac amyloid burden should be
considered when there is an absolute increase or decrease of 5% of
ECV, based on previous studies on ECV repeatability.7 The role of
T2-mapping, adenosine stress perfusion and CMR feature tracking
imaging have also been shown to provide additional information in
patients with CA, but further studies are needed to validate these
findings.19,109–112

In both CA and AFD, LVEF is preserved until late disease stages.
Therefore, the assessment of LV diastolic function and GLS is
crucial in the evaluation of symptoms, disease staging and risk
stratification.113 RV hypertrophy and systolic dysfunction have
been associated with a worse outcome in patients with HCM,114

CA,13,14 and AFD.15 ..
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.. Imaging for therapy

decision-making
Echocardiography has an established role in the assessment of
LV outflow tract obstruction in patients with HCM. Symptomatic
patients with significant resting or provoked gradient (≥50 mmHg)
are usually treated with non-vasodilating beta-blockers and disopy-
ramide. Non-dihydropyridine calcium channel blockers such as
verapamil or diltiazem are alternatives to beta-blockers. Surgical
myectomy and alcohol septal ablation are two viable invasive
therapies for symptomatic patients despite optimized medical
therapy. The feasibility for alcohol septal ablation is generally
assessed through myocardial contrast echocardiography with
selective injection of contrast agent into a septal perforator
branch of the left anterior descending artery.115 Echocardiogra-
phy can disclose septal thinning and LV outflow tract gradient
decrease after septal reduction.116 In HCM patients, the evi-
dence of structural abnormalities such as massive LV hypertrophy
(>30 mm), LV apical aneurysm or LV systolic dysfunction is a risk
factor for SCD, and may help to select patients for implantable
cardioverter-defibrillator implantation.33 The extent of LGE is also
associated with an increased risk of arrhythmias, and of progres-
sion toward end-stage HCM with systolic dysfunction.94 In the

Table 3 Imaging in primary hypertrophic disorders: possible perspectives for future research

Diagnosis Risk stratification Therapy decision-making
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sarcomeric HCM • Creation of reliable algorithms for
diagnosis based on AI, possibly
integrating imaging findings with other
clinical and laboratory data

• Technological enhancement to find the
obstructive forms in CMR using 4D flow
for evaluation of cardiovascular
haemodynamics

• Virtual native enhancement from ‘cine’
and native T1-mapping images

• Standardized recommendations on
risk stratification of SCD (European
vs. American guidelines)

• Role of novel imaging modalities for
further risk stratification in HCM:
T2-mapping, tensor imaging, etc.

• LS, LV mechanical dispersion and LA
volume index as predictors of
arrhythmic events

• Optimal ways to screen for early
disease in gene mutation carriers
and timing of treatment start

• Serial imaging to assess
treatment response

CA • Standardization of diagnostic algorithms
by different societies

• PET imaging for the non-invasive
diagnosis of AL-CA

• Identification of imaging markers useful
to screen patients being tested for other
reasons (e.g. ECV expansion in patients
undergoing cardiac CT before TAVR)

• Creation of reliable algorithms for
diagnosis based on AI

• Creation of reliable algorithms for
risk prediction based on AI

• Optimal ways to screen for early
disease in gene mutation carriers
and timing of treatment start

• Serial imaging to assess
treatment response

AFD • Identification of imaging markers useful
to screen patients being tested for
other reasons

• Creation of reliable algorithms for
diagnosis based on AI

• Creation of reliable algorithms for
risk prediction based on AI

• Serial imaging to assess
treatment response

4D, four-dimensional; AFD, Anderson–Fabry disease; AI, artificial intelligence; AL-CA, amyloid light-chain cardiac amyloidosis; CA, cardiac amyloidosis; CMR, cardiovascular
magnetic resonance; CT, computed tomography; ECV, extracellular volume; HCM, hypertrophic cardiomyopathy; LA, left atrial; LS, longitudinal strain; LV, left ventricle; PET,
positron emission tomography; SCD, sudden cardiac death; TAVR, transcatheter aortic valve replacement.

© 2023 European Society of Cardiology.
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Imaging in patients with a LV hypertrophic phenotype 11

EXPLORER-HCM trial, mavacamten was associated with a greater
reduction in LV outflow tract gradient and with improved symp-
toms and exercise capacity compared to placebo.117 A positive
effect in terms of reduction of LV mass has also been reported.118

Enzyme replacement therapy (ERT) has dramatically changed the
natural history of AFD. Data suggest that mild LV hypertrophy can
partially regress after treatment initiation.119 Conversely, response
to therapy can be less pronounced at later disease stages. The
presence of LGE is associated with increased LV mass and is linked
to the failure of attaining significant regression of hypertrophy on
ERT.120 One-year treatment with ERT attenuates T1 lowering, and
is associated with small reductions in maximum wall thickness and
stabilization of LV mass index.121

Assessment of LV function in AL-CA can be useful to identify
high-risk subsets and to select the most appropriate treatment
regimen.122 A recent study on 915 patients with newly diag-
nosed AL-amyloidosis has shown that improvement in longitudinal
strain is present in patients achieving a complete haematological
response.123 A complete or very good response is also associated
with a reduction in ECV.107 The role of imaging for treatment
selection and monitoring in ATTR is less well defined. ECV has
been demonstrated to stabilize with tafamidis treatment124 and
to decrease after initiation of patisiran, a transthyretin-specific
small interfering RNA, in a small group of patients with hereditary
ATTR-CM, thus possibly reflecting cardiac amyloid regression.108

In this last study, patients also displayed a reduction in cardiac
uptake by bone scintigraphy. Quantitative assessment of bone
tracer uptake may also prove useful to assess the response to
tafamidis, a transthyretin tetramer stabilizer.125

Conclusions and future
perspectives
Several imaging findings have an established role in the differen-
tiation between the physiological response to exercise (athlete’s
heart), LV hypertrophy secondary to pathological stimuli such as
pressure overload, or primary cardiac disorders, and in the identi-
fication of the specific disease condition (Graphical Abstract). Recent
advances in echocardiography, CMR and nuclear medicine as well as
their increased accessibility allow a precise assessment of ventric-
ular volumes, thickness, systo/diastolic function and non-invasive
tissue characterization. In particular, CMR and nuclear medicine,
thanks to their ability to provide crucial information on tissue char-
acterization, are usually able to replace (or guide) invasive endomy-
ocardial biopsy. On the other hand, advance myocardial imaging
should always be interpreted and integrated with clinical, electro-
cardiographic, genetic and laboratory information, and endomy-
ocardial biopsy is still needed for specific infiltrative/storage dis-
eases. Still, there are several grey zones in the optimal application of
imaging findings, many potential applications of imaging techniques
have limited supporting evidence or may be envisaged based on the-
oretical considerations, in the absence of dedicated studies. Table 3
summarizes the main perspectives for future research on three
forms of primary hypertrophy (sarcomeric HCM, cardiac amyloi-
dosis, AFD). Novel technical improvements (including new CMR ..
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.. sequences and new nuclear tracers) are being developed, together
with an increasing use of artificial intelligence tools to help the clin-
ician to interpret and integrate such a growing amount of clinical
and imaging information. In conclusion, an integrated clinical and
imaging approach seems to be essential to guide diagnosis, to distin-
guish the different hypertrophic phenotypes by unravelling specific
underlying aetiologies, as well as to predict patient prognosis and
to ensure a tailored therapeutic management.
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