
Design-time Analysis of Time-Critical and
Fault-Tolerance Constraints in Cloud Services

Remo Andreoli∗, Harald Gustafsson†, Luca Abeni∗, Raquel Mini†, Tommaso Cucinotta∗
∗Sant’Anna School of Advanced Studies, Pisa, Italy

†Ericsson Research, Lund, Sweden
∗{first.last}@santannapisa.it †{first.last}@ericsson.com

Abstract—This work presents a model for designing and
deploying time-critical, cloud-native applications under fault con-
ditions. Our model considers the interactions and interferences
among service components, as well as the possible occurrence of
faults. Given a set of to-be-deployed applications with precise
temporal constraints and a pre-defined configuration of the
service components, we devised an optimizer to verify at design
time if the cloud services guarantee compliance with the timing
constraints while minimizing the resources needed to achieve
fault tolerance.

Index Terms—Time-Critical Cloud, Fault Tolerance, Optimiza-
tion

I. INTRODUCTION

The latest developments towards performance predictabil-
ity in virtualized environments [3], [5], [9], coupled with
the recent advancements in 5G technologies, have expo-
nentially increased the interest in hosting innovative time-
critical applications on cloud-based infrastructures [6], [8].
Time-criticality requires that strict temporal requirements must
be met regardless of the other workloads deployed within
the cloud system, as well as the possible occurrence of
hardware/software/network failures [2]. The inability to re-
spect temporal constraints may cause undefined behaviors in
the system, which ultimately can lead to unexpected if not
catastrophic, consequences. Simply dedicating a single-tenant
infrastructure for a time-critical system results in a huge waste
of resources for the cloud provider, as it does not adhere to
the traditional cloud principle of consolidation [1]. There have
been multiple works [4], [7], [10] focusing on resource man-
agement with fault-tolerance in a cloud-based infrastructure.
However most of them do not focus on worst-case response
time guarantees, neither they take into account interferences
of co-deployed, time-critical applications. Moreover, in a time-
critical context, a deadline miss is considered a failure too; this
is not explored in related works.

This paper models a time-critical, cloud-native application
as a composition of microservices in a Directed Acyclic
Graphs (DAG) topology, with associated precise end-to-end
temporal constraints. The individual microservices may be
shared among a multitude of applications, causing resource
contentions at runtime. Fault tolerance is implemented through
replication and resubmission. To determine if the to-be-
deployed, time-critical applications can be admitted to the
cloud infrastructure without violating the temporal and fault-
tolerance constraints, we devised an analysis tool formulated

Fig. 1: Parallel real-time application modeled as a DAG
of multiple tasks (the g superscripts have been removed to
simplify the figure).

as a Mixed-Integer Linear Programming (MILP) program.
Additionally, our optimizer minimizes the use of replication,
since it may result in a waste of computational resources.

II. PROBLEM FORMULATION

This section formally presents the application, the reference
cloud infrastructure, and the fault model for time-criticality.

1) Application Model: A cloud platform hosts a collection
of nA cloud-native applications A = {Ag}nA

g=1 which are built
by composing independent and loosely coupled tasks. A cloud-
native application Ag can be represented as a Directed Acyclic
Graph (DAG) characterized by a set of tasks Γg = {τgi }

ng

i=1,
and by a set of directed edges Eg ⊆ Γg×Γg . A task τgi ∈ Γg is
a sequential activity that receives some input data, processes it,
and then generates output data. A directed edge (τgµ , τ

g
i ) ∈ Eg

represents a logical communication link between two tasks,
such that τgµ sends its output data to τgi . More specifically,
τgµ is a predecessor of task τgi , and τgi is a successor of
task τgµ . Figure 1 depicts a sample application. Tasks are
synchronously “activated”, meaning that each task τgi waits
for all its predecessors Prevgi = {τgµ ∈ Γg : (τgµ , τ

g
i ) ∈ Eg}

to generate their outputs, before processing them as input.
Once the computations are finished, the resulting output is
then propagated to all the successors Nextgi = {τgλ ∈ Γg :
(τgi , τ

g
λ) ∈ Eg}, concluding the task activation. Therefore, set

Eg defines explicit dependencies between contiguous tasks in
Ag . It is also possible to infer implicit dependencies: two non-
contiguous tasks τgi , τ

g
j ∈ Γg have an implicit dependency

if there is at least a directed path, inferred from Eg , con-
necting the two. Each application Ag has exactly one task
with no predecessors, called the input task, which coincides
with τg1 ∈ Γg . Analogously, there is exactly one task with



no successors, called the output task, which coincides with
τge ∈ Γg . An application activates when τg1 receives input data
from an external source (i.e., a user request) and concludes
after τge generates an output. Every application corresponds to
a completely connected DAG so that for every node τgi ∈ Γg

there is always at least a sequence of tasks (i.e a directed
path) between input task and output task which includes τgi .
A single application activation may trigger multiple concurrent
sequences of task activations. In the context of a time-critical
use case, each application Ag is characterized by a minimum
inter-arrival period P g , which specifies the minimum time in-
terval between two consecutive activations of application Ag ,
and an end-to-end deadline Dg (relative deadline), assumed to
be Dg ≤ P g . An application activation must complete within
Dg time units to be considered successful.

2) Cloud Model: A cloud platform offers a set of microser-
vices S = {Sl}nS

l=1, each dedicated to the execution of a
certain activity. A microservice Sl is implemented by a pool
of Ml workers, normally cloud instances such as containers
or virtual machines, and a load balancer to distribute the
workload among them. The execution of a given task τgi by a
worker in microservice Sl takes at most a worst-case execution
time (WCET) cl. More specifically, it takes into account the
maximum amount of time required to process the input data
and generate an output, regardless of the type of request, the
application submitting it, and the data size. Then, the produced
output data is sent to subsequent microservice(s), as instructed
by the application topology to which τgi belongs.

A microservice may be shared between applications: two
tasks belonging to different applications may be implemented
by the same microservice. Therefore, the execution of a task
invocation may experience a queuing delay. The worst-case
delay Q depends on the maximum number of tasks simulta-
neously submitting requests, the load balancing discipline, and
the number of workers dedicated to the microservice. A cloud
provider interested in providing temporal guarantees for co-
located time-critical applications should plan the capacity of
its infrastructure taking into account, for every microservice
Sl, the overall worst-case response-time (WCRT) Cl = cl+Q
for an invocation.

3) Fault Model: A faulty worker is detected if a task
execution exceeds a maximum task deadline Dg

i , called a
relative partial deadline. Therefore, every τgi invocation must
finish within Dg

i time units to guarantee a successful activation
of the task. If all task activations are successful, the overall
application activation is considered successful too. We model
two possible ways to handle a fault: 1) static replication:
send two task invocation requests in parallel to two different
workers; 2) task invocation re-submission: re-submit the failed
invocation for execution and let the load balancer choose
another worker. Each method implies a different WCRT,
namely Crepl for static replication, and C ′′

l = Cl +C ′
l for re-

submission. The latter is due to the fact that the total WCRT
for a task activation must take into account both the first
execution (i.e., Cl) and the re-execution (i.e., C ′

l). A naı̈ve fault
model would assume that all task activations of the application

may experience a fault condition, but this is highly unlikely, if
not impossible, to happen in practice. Therefore, we assume
that at most F failures occur during an application activation.
Under these circumstances, it is convenient to also consider the
case where a task activation did not fail because the expected
F failures happened previously and affected the sequences of
task activations reaching up to task τgi . Finally, our model
assumes that a second fault, located in the same microservice,
is very unlikely to happen in the period of time prior to the
recovery of the first faulty worker. This indirectly implies that
when a task activation fails due to a transient fault, its re-
execution will not fail again.

III. APPROACH

For each application A ∈ Ag: i) we introduce a relative
partial deadline Dg

i for each task τgi ∈ Γg; ii) we ensure
that the sum of partial deadlines over all end-to-end paths
in the application topology Γg does not exceed Dg; iii) we
ensure that the individual relative partial deadlines Dg

i cannot
be missed for each task τi, regardless of possible microservice-
level interferences and fault conditions at run-time. The partial
deadline Dg

i directly depends of the partial deadlines on the
predecessors of τgi in the topology Eg , but also on the fault tol-
erance method chosen for each task, and the associated WCRT.
A naı̈ve approach to achieve fault tolerance is to use static
replication for every task activation. However, this consumes a
lot of resources and it may require an oversized infrastructure,
depending on the number of overlapping tasks between appli-
cations. Using re-submission for every task activation may be
unfeasible by default in case of a tight end-to-end deadline
requirement that does not leave enough spare time. Therefore,
we devised a MILP-based offline analysis tool to configure
the optimum fault tolerance method for every task of a set
of interfering applications, so that each application meets its
given end-to-end deadline constraint, despite the occurrence
of a number of faults F . Static replication is used only for the
minimal set of tasks whose failure would otherwise violate
the end-to-end deadline Dg . Our optimizer computes every
possible chain of faults during application activation, and then
assigns an optimal partial deadline for every task τgi within
which its invocations must finish to guarantee a successful
activation (recall Section II-3). In this way, the optimizer
ensures that an application activation does not violate the
end-to-end deadline D, regardless of interferences and the
number of transient faults F . Under the assumption that a
given end-to-end deadline Dg is not ill-posed (i.e., application
Ag should be able to fulfill Dg under a no-interference, no-
failure condition), the optimizer cannot find a feasible solution
only if a subset of microservices is unable to accommodate all
the to-be-deployed applications (i.e. the WCRTs are too long
due to the queuing delay).

IV. EXPERIMENTAL RESULTS

This section is dedicated to the evaluation of the optimiza-
tion approach described in Section III, under the assumption
of an underlying infrastructure capable to accommodate all



Given Parameters Inferred Parameters
cl Ml Crepl

l Cl Cl + C′
l

S1 5 2 20 10 30
S2 15 4 30 15 45
S3 25 2 100 50 150
S4 30 3 90 60 120
Se 10 4 20 10 30

TABLE I: Characteristics of the microservices. Since we
assume a one-to-one task-to-service mapping, tasks and mi-
croservices can share the same indexing.

the microservices. The experiment have been performed using
the application depicted in Figure 1 with every task activation
realized by a dedicated microservice. This means that task τgi
activations are executed by microservice Si. Interferences are
modeled by duplicating the very same application topology 4
times, instead of using applications with different topologies.
Table I describes the given characteristics of each microser-
vice, in terms of WCETs and number of workers, as well as
the estimated WCRTs. Since the application topologies and
requirements are all the same, we can focus the analysis on
one of the 4 application deployments, while the other 3 create
interference. The g superscripts k subscripts are omitted for
readability. For our experiments, we used a Gurobi solver
version 9.5.1. The validity of a given end-to-end deadline for
an application activation depends on the sum of the WCRTs
on the critical path, simply called makespan. In a failure-
free (i.e., F = 0) and interference-free (i.e., nA = 1)
infrastructure with the characteristics in Table I, the makespan
is c1+c2+c4+ce = 60 time units. Removing the interference-
free assumption (i.e., nA = 4), the makespan becomes
C1+C2+C4+Ce = 95 time units. Therefore, an application
activation with D < 95 implies an inaccurate assessment of
the application’s behavior in terms of the estimated WCETs
cl: the application requirements are beyond the capabilities of
the microservices. Notice that the presented example cannot
guarantee a successful activation within D = 95 under fault
conditions and with the microservice characteristics of Table I.
The reason is that there is no spare time between the end-to-
end deadline D and the partial deadline de of output task
τe, thus re-submission is not possible. Moreover, setting all
task activations as statically replicated implies a makespan
of Crepl

1 + Crepl
2 + Crepl

4 + Crepl
e = 160 time units, which

violates D = 95 by 65 units of time. This is due to the fact
that the number of workers Ml is not enough to ensure fully
parallel static replication, which requires 2 · nA = 8 workers
per microservice. Such considerations justify the need for an
analysis tool to verify if the current infrastructure is able to
guarantee temporal and fault-tolerance constraints.

Figure 2 depicts a series of experiments using our optimizer
with different end-to-end deadlines. It depicts the minimum
amount of statically replicated task executions required to
deploy the application in Figure 1, alongside 3 other interfering

160170180190200210
E2E Deadline (From lax to tight)

0

1

2

3

4

5

Nu
m

be
r o

f s
ta

tic
al

ly
 re

pl
ica

te
d 

ta
sk

s
 (l

ow
er

 is
 b

et
te

r)

#Stat. Repl.

Fig. 2: Number of statically replicated tasks (black dashed
line) as the end-to-end deadline shrinks. Number of tolerable
transient faults is F = 3, and number of deployed applications
is nA = 4.

instances of the same application, with no deadline violation.
The number of transient faults that may happen during acti-
vation is F = 3. The x-axis shows the different end-to-end
deadlines. As we can see, the number of statically replicated
tasks increases as the end-to-end deadline shrinks, and the
assignment problem becomes unfeasible for deadlines earlier
than 160.

REFERENCES

[1] Rajkumar Buyya, Christian Vecchiola, and S Thamarai Selvi. Mastering
cloud computing: foundations and applications programming. Newnes,
2013.

[2] Mehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh, and Majid Hagh-
parast. A survey of fault tolerance architecture in cloud computing.
Journal of Network and Computer Applications, 61:81–92, 2016.

[3] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Riccardo Mancini,
and Carlo Vitucci. Strong temporal isolation among containers in
OpenStack for NFV services. IEEE Transactions on Cloud Computing,
pages 1–1, 2021.

[4] Zengpeng Li, Huiqun Yu, Guisheng Fan, and Jiayin Zhang. Cost-
efficient fault-tolerant workflow scheduling for deadline-constrained
microservice-based applications in clouds. IEEE Transactions on Net-
work and Service Management, pages 1–1, 2023.

[5] Bruno Ordozgoiti, Alberto Mozo, Sandra Gómez Canaval, Udi Margolin,
Elisha Rosensweig, and Itai Segall. Deep convolutional neural networks
for detecting noisy neighbours in cloud infrastructure. COSTAC 2017,
page 59, 2017.

[6] Peter O’Donovan, Colm Gallagher, Kevin Leahy, and Dominic T.J.
O’Sullivan. A comparison of fog and cloud computing cyber-physical
interfaces for industry 4.0 real-time embedded machine learning engi-
neering applications. Computers in Industry, 110:12–35, 2019.

[7] Roozbeh Siyadatzadeh, Fatemeh Mehrafrooz, Mohsen Ansari, Bardia
Safaei, Muhammad Shafique, Jörg Henkel, and Alireza Ejlali. Relief:
A reinforcement learning-based real-time task assignment strategy in
emerging fault-tolerant fog computing. IEEE Internet of Things Journal,
pages 1–1, 2023.

[8] Márk Szalay, Péter Mátray, and László Toka. Real-time task scheduling
in a FaaS cloud. In 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), pages 497–507, Sep. 2021.

[9] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen:
Towards real-time hypervisor scheduling in xen. In Proceedings of the
ninth ACM international conference on Embedded software, pages 39–
48, 2011.

[10] Guangshun Yao, Qian Ren, Xiaoping Li, Shenghui Zhao, and Rubén
Ruiz. A hybrid fault-tolerant scheduling for deadline-constrained tasks in
cloud systems. IEEE Transactions on Services Computing, 15(3):1371–
1384, 2022.


	Introduction
	Problem Formulation
	Application Model
	Cloud Model
	Fault Model


	Approach
	Experimental Results
	References

