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Abstract
To pursue a variable-capacitance working principle, transducers based on soft electroactive
polymers (EAPs) need deformable electrodes that match the compliance and stretchability of
the EAP polymeric substrates. A variety of manufacturing procedures are available to create
conductive materials that can achieve this, including solutions that can provide remarkably low
resistivity. However, the simplest and most feasible options often involve the use of
particle-filled (e.g. carbon-filled) polymer composites, which, while easy to produce, tend to
exhibit relatively high resistivity. This high level of resistivity, combined with the inherent
capacitance of EAP transducers, introduces dynamic effects in the devices electrical activation,
which may affect performance. This paper investigates the impact of electrode resistivity on the
electrical dynamics of EAP devices, combining continuum models and experimental
validations. We use a continuum generalisation of known resistive-capacitive (RC) transmission
line models to accurately predict voltage gradients on the surfaces of electrostatic transducers
subject to rapidly varying voltages. We then present an experimental validation by measuring
the spatial voltage distributions over carbon-based polymeric electrodes of dielectric elastomer
(DE) transducers, and find a good agreement with our model predictions. We use our validated
model to provide general estimates of the typical charging time and limit working frequency
ranges of DE devices as a function of their dimensional scale and electrode sheet resistance. Our
model provides useful indications for designing compliant electrodes in EAP transducers given
target performance, or to understand the working limits of devices with given geometry and
dielectric-electrode properties.
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1. Introduction

Electrostatic transducers based on electroactive polymers
(EAPs) are a promising class of devices that generate an actu-
ation output (force or stroke) in response to an electric field
or, viceversa, leverage mechanically driven deformations and
cyclic electric loading to convert input mechanical energy into
electrical energy [1]. Among EAP devices, dielectric elast-
omer (DE) transducers, which are variable capacitors with
stretchable polymeric dielectrics, have gathered significant
scientific attention, owing to their high energy density and
inherent compliance [2]. While, on the one hand, DEs have
established themselves as a potentially promising alternative
to electromagnetic drives for robotics [3], fluidics [4], acous-
tic applications [5] and energy harvesting [6], breakthroughs
in the field of EAP drives continue to emerge, which lever-
age new principles or material solutions, such as recently
developed liquid-gap zipping actuators [7–9] (figure 1).

One of the most critical components in EAP transducers
are compliant electrodes, which are required to preserve their
conductivity while complying with the deformations of the
flexible dielectric substrates they are applied on [10, 11]. The
limitation in conductivity due to materials’ resistivity is a
key factor, as it affects bandwidth (namely, the charging/dis-
charging time constants) and energy efficiency of transducers.
This is particularly relevant in applications that involve large-
scale devices (such as power-scale energy harvesting based on
DEs [6, 12]), or high-frequency applications (such as acoustic
applications [13–16]). The former might indeed be character-
ised by large resistor-capacitor (RC) time constants, whereas
the latter demand for fast charging/discharging times.

Whereas laboratory EAP prototypes often rely on carbon-
based grease or spray electrodes [11], which are practical for
rapid prototyping but vulnerable to desiccation and material
migration, different principles to manufacture stable and scal-
able compliant electrodes have also been investigated. These
include casting [17], screen [18, 19], pad [20] or inkjet printing
[21–23] of polymer-based mixtures containing carbon black
(CB) [17], graphite [24], carbon nanotubes [21], or metal
vapour deposition [25, 26] and ion implantation [27, 28] to
form nanometre-thin metal layers. Although metal electrodes
can reach sheet resistances often significantly below 100
Ω!−1 [11, 25, 29–31], they necessitate corrugation or com-
plex patterned designs to accommodate their limited elasti-
city. Carbon-based electrodes have been extensively investig-
ated, as they canmaintain electrical conductivity under strains.
Ultra-compliant carbon powders typically deposited on adhes-
ive dielectric substrates were reported to exhibit sheet resist-
ances Rs in the range 10− 160 kΩ!−1 [11, 21, 24, 32–36]
in their undeformed state. Electrodes based on carbon nan-
otubes were reported to achieve sheet resistances as low as
0.1 kΩ!−1 [37], but they are prone to mechanical abrasion
and carbon contamination of the environment.

To describe the effect of the electrodes’ resistivity on
a transducer’s behaviour, in past works reference has been
primarily made to lumped-parameter approaches, based on

equivalent circuit representations, in which the electrodes’
contribution was modelled as a lumped resistance in-series to
the DE capacitance [14, 38, 39]. Though lumped-parameter
approaches are effective in capturing charging/discharging
dynamics of DE transducers and for the implementation of
self-sensing algorithms [38, 40, 41], the RC dynamics in EAP
devices are inherently continuum phenomena. Similar to RC
transmission lines [42], quick charging/discharging of an EAP
transducer results in voltage gradients over the device surface.

Approaches tomodel or exploit spatial voltage distributions
owing to the electrodes’ resistivity in EAPs have been explored
by a few groups in the past. Anderson et al used transmission
networks to model DE systems and develop advanced sensor
concepts. [43–45]. They first used a transmission line model to
describe DE actuator stacks with a large number of layers [43].
They explained voltage gradients throughout the layers using a
network model with RC elements modelling the different lay-
ers, and resistive elements accounting for the interconnect res-
istances. They suggested that such a network structure can be
used to determine upper bounds for the frequency of the prob-
ing signals used in self-sensing applications. Later, they used
RC network models to describe space gradients within a same
DE sample, using RC elements to describe the resistance/ca-
pacitance of different portions of the electrodes/DE material.
Based on that, they developed stretch sensors that can measure
local inputs through a single measurement channel, via react-
ance measurements at different frequencies [45].

Graf and Maas [46] resorted for the first time to continuum
formulations to describe the dynamic electric field distribution
over DEmembranes. They cast a theoretical continuummodel
(in the form of a diffusion equation) for a rectangular DEmem-
brane, found analytical solutions for the field distribution, and
used them to optimise the distribution of electrode contacts to
minimise spatial field gradients.

Garnell et al [47] proposed a fully-coupled electro-
mechanical model of the response of DE membranes with
resistive electrodes. They highlighted couplings between the
vibratory response and voltage distributions due to electrode
resistivity, and validated them with local velocity measure-
ments. However, as their focus was set on the membranes’
vibratory response, they did not perform local measurements
of voltage distributions.

This paper presents a general continuum time-domain
model and its experimental validation for the voltage dis-
tribution in capacitors with mildly resistive electrodes. We
resort to an analytical diffusion model that allows calculat-
ing space and voltage distribution of charge/electric poten-
tial on the surfaces of electrodes, given a set of boundary
conditions. While building upon an approach and formula-
tion similar to that presented in [46], our formulation holds
for thin-shell capacitors with generic shapes (including non-
uniform thickness/electric properties), and can thus be used to
describe different classes of EAP transducers that rely on thin-
film dielectric gaps, and integrated with continuum electro-
mechanical models [47]. We present a set of analytical solu-
tions (cast as Fourier series expansions) for simple geometries
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Figure 1. Examples of EAP transducers with compliant electrodes
(cross-section view): DE actuator (left) and fluid-based zipping
actuator (right).

(rectangular strip or circular capacitors) subject to prototypical
voltage excitation waveforms (step, sine response). To valid-
ate such continuum models, we performed voltage measure-
ments at different points on the surface of silicone-based DE
transducers featuring carbon-loaded polymer-based electrodes
[17]. To overcome measurement issues due to contact resist-
ance (which can be comparable to or higher than the elec-
trode resistance if a simple push contact is established with
the measurement circuit wires [48, 49]), we embedded a num-
ber of measurement pick-up contacts directly into the com-
pliant electrodes bulk. We show that applying high-frequency
excitation on the transducer through its perimeter leads to non-
uniform voltage distributions (with a decrease in amplitude far
apart from the excitation surfaces), which is accurately cap-
tured by the diffusion model presented. This model constitutes
a general tool to determine bandwidth limits and distributions
of the applied electric field in EAP transducers based on their
electrodes sheet resistance, or, conversely, to design connec-
tions among compliant electrodes and circuit wires in order to
obtain desired bandwidth and charging time.

Though multi-point resistance measurements on DE
samples have been done in the past (mostly in combina-
tion with carbon grease electrodes [50]), to the best of our
knowledge this is the first work in which continuum electrical
models are validated against local measurements on DE pro-
totypes based on technically-relevant material combinations.

The rest of the paper is structured as follows. Section 2
presents the theoretical model formulation. Section 3 presents
the experimental setup and validation. Section 4 presents a dis-
cussion on the implications of practical sheet-resistance val-
ues on the bandwidth and performance of practical EAP trans-
ducers. Finally, section 5 presents the conclusions.

2. Voltage distribution on capacitive transducers
with resistive electrodes

2.1. Problem formulation

We hereby formulate a dynamic model to calculate the voltage
distribution over time on a generic electrostatic transducer
with resistive electrodes. As compared to previous works [46],

our model holds for generic transducer and electrode geomet-
ries (e.g. variable thickness dielectrics/electrodes, asymmet-
rical electrodes layout).

For the sake of illustration, we assume that the transducer
consists of a single ideal dielectric shell (though the formula-
tion can be easily generalised to the case of multi-layer dielec-
trics), covered by adhered electrodes on both faces, as shown
in figure 2. We also assume that the transducer geometry is
kept fixed so that the state variations only involve electrical
variables. In the case of practical EAP transducers, this lat-
ter assumption holds true because mechanical dynamics typ-
ically are orders of magnitude slower than electrical dynam-
ics. The dielectric layer is a thin shell, thus opposing faces
are assumed to have the same curvature. The perimeters of
the two electrodes hold some portions that are subject to an
external voltage, and others that are let free (i.e. with no cur-
rent flowing through). From an electrical viewpoint, the sys-
tem is equivalent to a continuous network of capacitors and
resistors (with infinitesimal capacitance/resistance), as illus-
trated in figure 2(right). [42, 51, 52].

We define a set of curvilinear coordinates ξ = [ξ1,ξ2]ᵀ,
which uniquely identify a point on the shell surface.We denote
v+ = v+(ξ, t) and v− = v−(ξ, t) the voltage distributions on
the two electrodes, which are functions of the position ξ and
the time t.

We isolate an infinitesimal portion of the capacitor with
infinitesimal side lengths dξ1 and dξ2, local dielectric thick-
ness td = td(ξ) and electrodes thickness te = te(ξ), here
assumed equal for both electrodes for simplicity.

We denote λ+
i = [λ+

i1 ,λ
+
i2 ]

ᵀ and λ−
i = [λ−

i1 ,λ
−
i2 ]

ᵀ the vec-
tors of the linear current density (namely, the current per unit
length in the electrode perpendicular planar direction) on the
positive and negative electrodes respectively, holding com-
ponents both along ξ1 and ξ2. Denoting κe = κe(ξ) the local
conductivity of the electrodes, the voltage drop in the direction
of ξ1 on an infinitesimal portion of the top electrode reads as
follows, according to Ohm’s laws:

dv+ =− dξ1
κete!!dξ2︸ ︷︷ ︸
resistance

·λ+
i1!!dξ2︸ ︷︷ ︸

current

. (1)

Noting that similar considerations hold for the voltage drop in
direction ξ2 and for both electrodes, the current linear densities
can be simply expressed as follows

λ+
i =− 1

Rs
∇v+ =− 1

Rs

[
∂v+

∂ξ1
,
∂v+

∂ξ2

]ᵀ
,

λ−
i =− 1

Rs
∇v− =− 1

Rs

[
∂v−

∂ξ1
,
∂v−

∂ξ2

]ᵀ

with Rs = (κete)
−1 (2)

where ∇ denotes the gradient operator in the plane direc-
tions, and Rs represents the local sheet resistance of the elec-
trode, which generally varies along the transducer’s surface
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Figure 2. Model symbols definition: generic representation of an electrostatic transducer with resistive electrodes (left); charge balance on
an infinitesimal element (centre); equivalent RC circuit (right).

(e.g. as a result of a non-uniform or deformed electrode
thickness).

We denote σ+ =−σ− = σ the local charge surface density
on the positive/negative electrode portions of the infinitesimal
capacitor element. With reference to the positive electrode, we
cast the charge balance as follows:

dξ1dξ2
∂σ

∂t
=−dξ2dλ+

i1 − dξ1dλ+
i2 (3)

where the first term represents the charge stored on the infin-
itesimal capacitor patch per unit time, and the terms on the
right hand side represent the differences between the charge
flow rates flowing out of the capacitor and those flowing in, in
both surface directions.

Rearranging the differential terms and replacing the current
densities with the expressions given by (2) leads to:

∂σ

∂t
=+

∂

∂ξ1

(
1
Rs

∂v+

∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂v+

∂ξ2

)
. (4)

Similar considerations can be done for the negative electrode,
referring to voltage distribution v− and observing that the
accumulated charge is negative, which lead to the following
equation:

∂σ

∂t
=− ∂

∂ξ1

(
1
Rs

∂v−

∂ξ1

)
− ∂

∂ξ2

(
1
Rs

∂v−

∂ξ2

)
. (5)

Defining the capacitance of an infinitesimal patch of trans-
ducer allows putting σ in relation to v+ and v−:

σ"""dξ1dξ2︸ ︷︷ ︸
charge

=
ε"""dξ1dξ2

td︸ ︷︷ ︸
capacitance

(
v+ − v−

)
, (6)

where ε is the dielectric medium’s permittivity (for multi-
material layered dielectrics, the equation still holds, provided
that an equivalent series permittivity is introduced).

Replacing (6) into (4) and (5) leads to the following system
of partial differential equations (PDEs):

∂ (v+ − v−)
∂t

=
td
ε

[
∂

∂ξ1

(
1
Rs

∂v+

∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂v+

∂ξ2

)]
,

∂ (v+ − v−)
∂t

=− td
ε

[
∂

∂ξ1

(
1
Rs

∂v−

∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂v−

∂ξ2

)]
.

(7)
Equating the right hand sides of the two equations allows

recasting (7) as a system of a diffusion PDE (holding time
derivatives of the voltages) and a Laplace-like PDE [53].

Adding to the equations a set of initial conditions (ICs) and
boundary conditions (BCs) provides the following PDE prob-
lem, in which v+ and v− are the unknowns:





∂ (v+ − v−)
∂t

=
td
ε

[
∂

∂ξ1

(
1
Rs

∂v+

∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂v+

∂ξ2

)]

∂

∂ξ1

(
1
Rs

∂ (v+ + v−)
∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂ (v+ + v−)
∂ξ2

)
= 0

v+ (ξ, t)
∣∣
γ+ = V+ (t)(

∇v+ (ξ, t) · n̂
)∣∣

Γ\γ+ = 0
v− (ξ, t)

∣∣
γ− = V− (t)(

∇v− (ξ, t) · n̂
)∣∣

Γ\γ− = 0
v+ (ξ,0) = v− (ξ,0) = v0 (ξ)

.

(8)

Here, we denote Γ the electrode frontier (same for both
electrodes), and γ+ (γ−) a portion of the positive (negative)
electrodes frontier where external voltages V+ and V− (with
V− < V+) - generally time-varying - are applied (Dirichlet
BC). In the free portions of the electrodes’ frontier (denoted
Γ \ γ+ and Γ \ γ− for the two electrodes), no current can flow
perpendicularly to the edges (whose normal external unit vec-
tor is denoted n̂). Using relationship (2) between current and
voltage gradient thus results in a Neumann-type homogeneous
BC.

Assuming that the capacitor is initially uncharged
(σ(ξ,0) = 0), both electrodes hold the same voltage distribu-
tion v(ξ,0) = v0(ξ) at t= 0, based on (6). The determination
of v0(ξ) requires the solution of an additional PDE problem,
as detailed in the appendix.
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Figure 3. Rectangular strip and circular capacitor: variables
definition. The copper-colour strips are the excitation contacts.
Assuming symmetrical geometry and excitation (V− =−V+), the
middle plane is iso-potential with zero voltage.

If the sheet resistance Rs is uniform throughout the elec-
trodes, PDE (8) takes the following simplified form:






∂ (v+ − v−)
∂t

= α∇2v+, with α=
td
εRs

∇2 (v+ + v−
)
= 0

v+ (ξ, t)
∣∣
γ+ = V+ (t)

(
∇v+ (ξ, t) · n̂

)∣∣
Γ\γ+ = 0

v− (ξ, t)
∣∣
γ− = V− (t)

(
∇v− (ξ, t) · n̂

)∣∣
Γ\γ− = 0

v+ (ξ,0) = v− (ξ,0) = v0 (ξ)

(9)

where∇2 is the Laplace operator (with respect to ξ), and coef-
ficient α has dimensions of m2 s−1 and plays the role of a dif-
fusion coefficient. Indeed, the first equation in (9) has the well-
known form of a diffusion equation (heat equation) [53]. Note
that, once a solution for v+ and v− is available, equation (2)
allows calculating the total supplied current i (and, hence,
power) upon integration over the excitation surfaces:

i =−
ˆ
γ+

1
Rs

∇v+ · n̂ dl=
ˆ
γ−

1
Rs

∇v− · n̂ dl, (10)

where the integrals are calculated over the length of surfaces
γ+ or γ−.

In the following, we focus our attention on two simple
examples for which analytical solutions to (9) can be found.
Namely, referring to figure 3, the examples are a rectangular
strip capacitor (with a uniform voltage applied on one edge)
and a circular capacitor (with a uniform voltage applied on
the perimeter). Both examples are representative of technic-
ally relevant DE topologies [54, 55].

2.2. 1D rectangular geometry

We consider a rectangular strip of dielectric material with
length L covered by two identical resistive electrodes, each
subject to a prescribed voltage (V+ and V−). This geometry
represents a prototypical example of a DE transducer [56], and
has been taken as a benchmark by previous works on the elec-
trodynamic field distribution in DEs [46]. Assuming that the

excitation is uniformly applied along the whole strip width,
the voltage distribution on the electrodes can be assumed uni-
dimensional, therefore it only depends on a linear coordinate
x and time. Moreover, assuming for simplicity that V+(t) =
−V−(t) = V(t) (removing this assumption simply introduces
an offset in the voltage distribution), the voltages on the elec-
trodes are equal and opposite: v+(x, t) =−v−(x, t) = v(x, t),
and the mid-plane of the device (parallel to the electrodes,
halfway through the thickness of the dielectric) is an iso-
potential symmetry plane with v= 0. Under the assumption
of uniform sheet resistance, (9) takes the following reduced
form:






∂v
∂t

= α ′ ∂
2v

∂x2
,

v(0, t) = V+ (t)
∂v
∂x

(L, t) = 0

v(x,0) = 0

(11)

with α ′ = α/2, for which analytical solutions can be found
depending on the form of V+(t). We introduce a set of dimen-
sionless quantities:

x∗ =
x
L
, t∗ =

α ′t
L2

, v∗ =
v
V0

(12)

where V0 is a constant reference voltage (e.g. the amplitude
or peak value of function V+(t)) and then we re-cast the PDE
in (11) in a dimensionless form as follows:






∂v∗

∂t∗
=

∂2v∗

∂x∗2

v∗ (0, t∗) =
V+

V0
∂v∗

∂x∗
(1, t∗) = 0

v∗ (x∗,0) = 0

. (13)

We hereby present solutions to (13) considering some proto-
typical voltage excitation waveforms (step, sine), with the aim
of highlighting relevant trends in terms of time- and frequency-
domain response, and spatial distribution of the voltage.

2.2.1. Step response. Applying a constant voltageV0 on the
initially uncharged capacitor (v∗(0, t∗) = 1) leads to the fol-
lowing voltage distribution (in dimensionless form):

v∗ (x∗, t∗) = 1− 2
+∞∑

n=0

e−γnt∗

γn
sin(γnx∗)

with γn = (n+ 1/2)π

(14)

whose expression as a Fourier series has been obtained by
solving (13) via separation of variables [53]. Figure 4(top left)
shows that the voltage holds a non-uniform distribution over
the electrode surface, which progressively flattens to a con-
stant value (v∗ = 1), as previously observed in [46]. While v∗

at the excitation edge (x∗ = 0) is constant and equal to 1, the
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Figure 4. Dimensionless plots of the voltage distributions over rectangular (left) and circular (right) capacitors, subject to a voltage step
(top) and sinusoidal excitation (bottom). All plots have been obtained truncating the series expansions to n= 50 harmonics. In the plots,
different lines refer to different time instants (lines in the bottom plots hold a dimensionless time spacing of 0.02).

voltage at the capacitor free edge rises from 0 to 1 following
a diffusion dynamics. The voltage reaches an average value
equal to 99% the target value at the far free edge in a (dimen-
sionless) time t∗ # 2.8. On a practical transducer, the physical
charging time increases with the square of the length L, the
sheet resistance Rs and the ratio ε/td (i.e. proportionally to the
device capacitance), according to (12).

2.2.2. Sinusoidal response. We evaluate the steady-state
response of the strip capacitor to sinusoidal voltages in the
form v∗ = sinωt= sinω∗t∗, where ω∗ = ωL2/α is the angu-
lar frequency associated to the dimensionless time t∗ defined
in (12). The resulting dimensionless voltage distribution in
steady-state conditions (omitting the initial transient response)
reads as follows:

v∗ (x∗, t∗) = sin(ω∗t∗)−
+∞∑

n=0

2ω∗

γn
sin(γnx∗) ·

·
(
ω∗ sin(ω∗t∗)+ γ2

n cos(ω
∗t∗)

ω∗2 + γ4
n

) (15)

where γn = (n+ 1/2)π.
Figure 4(bottom left) shows the profiles of the dimension-

less steady-state voltage over the strip length at different time
instants spaced apart by 0.02 dimensionless time units (each

curve represents the profile at a given time), for two differ-
ent excitation frequencies (ω∗ = 3 and 6). The envelope of the
profiles shows that the oscillation amplitude of the voltage is
maximum at the excited edge (where voltage is applied) and
minimum at the far free edge. Gradients in the voltage amp-
litude are larger close to the excited edge, whereas the oscil-
lation amplitude is roughly constant in a broad region close to
the free edge. This result indicates that exciting the capacitor
with high-frequency would ultimately lead to a non-uniform
distribution of the voltage, with regions far from the contacts
with the circuit being constantly subject to lower electric field
than the nominal prescribed value. In practical systems (e.g.
EAP actuators and loudspeakers), this means that the dielectric
material is not exploited evenly, with peripheral regions being
subject to a fraction of the nominalMaxwell stress. Using (15),
we found that the amplitude of the voltage at the strip free edge
is at least 99% the amplitude at the excitation node provided
if ω∗ < 0.4, and 90% the excitation amplitude if ω∗ < 1.2.

2.3. Axial-symmetrical circular geometry

We consider a circular capacitor with radius R and resistive
electrodes (figure (3)), uniformly excited on the outer peri-
meter of the two electrodes. Owing to the axial symmetry
of the problem, the voltage distribution only depends on the
radial coordinate r and time: v= v(r, t). Similar to the previous
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case, we assume that opposite electrodes are excited with
opposite voltages, leading to v+(r, t) =−v−(r, t) = v(r, t).
Casting Laplace operator in polar coordinates, defining a
dimensionless radial coordinate r∗ = r/R and using the other
dimensionless parameters as in (12) leads to the following
PDE:






∂v∗

∂t∗
=

1
r∗

∂

∂r∗

(
r∗
∂v∗

∂r∗

)

∂v∗

∂r∗
(0, t∗) = 0

v∗ (1, t∗) =
V+

V0

v∗ (r∗,0) = 0

(16)

where the BC at r∗ = 0 owes to symmetry.

2.3.1. Step response. Similar to the rectangular case, we
solve (16) assuming that a voltage step, v∗(1, t∗) = 1, is
applied on the circular capacitor’s perimeter. The Fourier
series expansion of the solution reads as follows:

v∗ (r∗, t∗) = 1−
∞∑

n=1

2J0 (βnr∗)
βnJ1 (βn)

e−β2
n t

∗
, (17)

where Jk denotes a Bessel function of the first kind and order
k, and βn a sequence of zeros of zero-order first-kind Bessel
function J0.

A plot of the voltage distribution on the circular electrode in
response to a voltage step is shown in figure 4(top right). The
trend is similar to that previously observed for a strip capa-
citor, with the dimensionless voltage at the capacitor’s centre
progressively rising from 0 to 1. The mean value of the voltage
reaches 99% of the set-point value in a dimensionless time of
0.8, i.e. lower than that of a rectangular capacitor. In practice,
this means that a circular capacitor with radius equal to the
length of a rectangular strip capacitor featuring same dielectric
and electrode properties would fully charge in a shorter time.
This entirely owes to geometrical factors, i.e. the fact that in
an axial-symmetrical capacitor current is uniformly supplied
through the entire device perimeter and flows through concent-
ric electrode surfaces.

2.3.2. Sinusoidal response. Applying a sinusoidal voltage
excitation (as in section 2.2.2) leads to a steady-state response
in the following form:

v∗ (r∗, t∗) = sin(ω∗t∗)− 2
+∞∑

n=1

1
βn

J0 (βnr∗)
J1 (βn)

·ω∗
(
ω∗ sin(ω∗t∗)+β2

n cos(ω
∗t∗)

ω∗2 +β4
n

)
.

(18)

The corresponding dimensionless plots, showing the voltage
profiles on a circular electrode at different time instants for
two different excitation frequencies (ω∗ = 7 and 14), are
shown in figure 4(bottom right). These profiles are qualitat-
ively similar to those obtained for a rectangular capacitor,

with the quantitative difference that frequencies required to
induce radial amplitude gradients comparable to axial gradi-
ents obtained in the previous case are larger. The voltage
amplitude at the capacitor centre is at least 99% the excit-
ation voltage amplitude if ω∗ < 0.8 and 90% if ω∗ < 2.8
(as opposed to 0.4 and 1.2 of strip capacitors) denoting a
broader bandwidth that a counterpart rectangular capacitor
with length equal to the radius and same dielectric/electrode
layers composition.

3. Experimental validation

We validated the model presented in section 2.1 on practical
electrostatic transducer systems, consisting of a widely used
DE material with carbon-loaded polymer based electrodes.
We carried out a validation by performing measurements of
voltage distributions over multiple points on the electrodes of
transducers with different geometries, subjected to sinusoidal
excitations.

3.1. Test-bench and samples manufacturing

We carried out tests by laying single-layer DE membranes on
a flat metallic plate (serving as a low-resistance ground elec-
trode), and casting a carbon-loaded silicone electrode layer on
one face of the sample (figure 5). The dielectric membrane
were made of a commercial silicone elastomer (Elastosil 2030
by Wacker) with thickness of 50µm and relative permittivity
of 2.8, largely used in DE applications [17, 54, 57]. The res-
ulting samples emulate one half of a symmetrical DE sample
(mirrored in the thickness direction) with a couple of resistive
electrodes (as discussed in sections 2.2 and 2.3).

Electrode samples manufacturing was accomplished using
a procedure similar to that detailed in [17] and [20], using a
mixture of CB powder (Cabot Vulcan XC72) and liquid two-
part silicone (Dragonskin 30 by Smooth-on). The mixture was
prepared following a two-step procedure: 1 g of CB powder
was first dispersed into 8 g of a volatile solvent (isopropilic
alcohol) in a centrifugal planetary mixer (Thinky ARE-250).
The resulting suspension was then mixed with 10 g of silicone
(5 g part A+ 5 g part B) and 5 g of solvent, in the same planet-
ary mixer. The mixture was blade-cast on the DE layer using
a laser-cut PET mask with thickness of 280µm (figure 6).
A PMMA structure holding a set of copper strips was sub-
sequently applied onto the mask (see figure 5). The holder had
a set of apertures to allow solvent evaporation and facilitate
the cross-linking of the electrode mixture. Copper strips were
attached to the bottom surface of the holder using double-sided
tape of sufficient thickness (∼50µm) to ensure that the copper
partially penetrates the liquid electrode when the holder is laid
onto the mask. The mixture was left to cross-link at ambient
temperature.

We produced samples with rectangular (strip) and circular
shape (figure 7), to validate the analytical models presented
in figure 3 and discussed in section 2.1. The manufactured
strip sample had a length L= 142mm and width w= 18mm,
and it held 5 equally-spaced copper strips (approximately

7



Smart Mater. Struct. 33 (2024) 095022 D Vignotto et al

Figure 5. Photograph and schematic of the measurement setup for a rectangular strip DE sample. To reject measurement errors due to
contact resistance, copper contacts were embedded into the compliant electrode bulk.

3mmwide). During the tests, a voltage difference was applied
between the ground metal plate and one of the copper connec-
tions on the strip edge.

In order to accurately measure spatial voltage distribution,
copper connections were embedded during casting directly
into the liquid electrode mixture before it cross-linked, rather
than being merely placed on the solidified electrode. This
method was chosen to mitigate the effects of contact resist-
ance, which could otherwise compromise the accuracy of the
voltage measurements at different locations on the polymer
electrodes.

The circular sample had radius R= 118mm, it held a con-
tinuous copper track over the circumference (where voltage
was applied), and 3 equally spaced copper patches (roughly
3mm× 3mm) along opposite radii (at a distance ofR/4, 2R/4
and 3R/4 from the centre) where voltage was measured.

We measured the resistance RAE between the edge termin-
als of the strip sample (A and E in figure 5), and obtained an
estimate of the silicone electrodes’ sheet resistance as Rs =
Rmw/L. The measured sheet resistance for the fabricated elec-
trodes is Rs = 6.1 kΩ!−1.

We performed measurements using sinusoidal voltage
excitation at different frequencies, which allowed us to select
suitable frequency ranges (for each sample) where we could
observe a steady-state non-uniform voltage distribution over
the electrode samples. We used frequencies between 5 and
100 kHz for the strip sample (corresponding to dimensionless
angular frequencies ω∗ in the range 1.9–38), and frequencies
in the range 50–500 kHz for the circular sample, correspond-
ing to ω∗ in the range 3.3–33. We used an oscilloscope Siglent
SDS2354X HD to both provide the excitation and acquire
measurements of the voltage time-series at the different meas-
urement points. Measurements were taken at a sample rate of
10MS s−1.

3.2. Results

We conducted tests on the two samples described in
section 3.1. One has rectangular geometry and the other has
circular geometry (as shown in figure 7). We subjected them
to sinusoidal excitation at various frequencies. The objective
was to measure the non-uniform voltage distribution gener-
ated across the surface of the DE when subjected to harmonic
excitation with sufficiently high frequency.

In all tests, a voltage amplitude V0 between 2 and 2.5Vwas
selected (consistently with the current limits of the instrument
output ports). Although these voltages are significantly lower
than the expected working voltage of DE samples with the
same features as those considered here, they still allow visual-
ising and validating the RC dynamics of interest for this work.
The results for the steady-state time histories of the voltage
measured at different locations on the two samples, at differ-
ent frequencies, are shown in figure 8. In the figure, the dashed
line represents the excitation voltage applied (andmeasured) at
the excitation points whereas continuous lines represent exper-
imental measurements at different points. Model predictions
are represented by shaded colour bands, and they are obtained
by assuming a margin of uncertainty on the value of the sheet
resistance Rs (and, hence, on the value of diffusivity α intro-
duced in equation (9) which is then used asα ′ in equations (13)
and (16)) and the position of points where voltage is meas-
ured (which have a margin of uncertainty because the con-
nection points embedded into the electrodes have finite size,
hence locally affecting the voltage distributions). In particu-
lar, we assumed that both Rs and the positions of the measure-
ment points are known with an uncertainty of ±10%, we ran
the model for several combinations of parameter values, and
we obtained the shaded areas as the envelopes of the result-
ing curves. We used different excitation frequencies for the
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Figure 6. Steps of the manufacturing process of the compliant
electrode (rectangular sample).

different samples, with the aim of highlighting comparable
sets of dynamic responses (which are triggered by different
frequencies for the two geometries under investigation). In
particular, we used higher maximum frequencies for the circu-
lar capacitor sample that, as observed in section 2.3, features
lower charging time than the rectangular capacitor (provided
that all parameters are comparable).

The model captures the measured response with very good
accuracy, as the experimental data fall within the uncertainty
bands of the model practically everywhere. The dynamics fol-
low the trends already discussed in section 2, i.e. the voltage

Figure 7. Layout of the excitation and measurement surfaces for the
geometries under investigation. Brown surfaces represent the
portions of electrodes where copper contacts have been embedded.

has a sinusoidal trend at all measurement points (confirming
linearity of the dynamics), with amplitude that progressively
decreases with increasing distance from the excitation points.
Uncertainty in the model predictions (namely, the amplitude
of the model bands) decreases for points that are further apart
from the excitation surface, whereas estimates for the points
in a closer proximity of prescribed voltage surfaces are more
sensitive to uncertainties. This primarily happens because the
phase and amplitude of the voltage waveforms far away from
the excitation surfaces loosely depend on the position (x or r),
rendering uncertainties on the position of the sensing points
less relevant.

Figure 9 (top row) shows a set of profiles of the voltage
spatial distribution at different time instants, generated using
the model (with nominal parameter values), for the two geo-
metries at selected frequencies. The envelope of such profiles
is compared with the excitation amplitude measured experi-
mentally at the different measurement points, showing again
a good agreement between our diffusion model and experi-
ments. Figure 9 (bottom row) compares the amplitudes (model
vs measurements) of the voltage signals at different fre-
quencies and different locations throughout the two samples.
Results confirm that the model (fed with nominal parameters)

9
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Figure 8. Comparison of experimental (solid lines) and analytical (transparent areas) voltage time histories for the rectangular (left column)
and the circular (right column) capacitor samples at different input voltage (red-dashed line) frequencies. Analytical model areas are
computed with 10% relative uncertainty on α and the measuring position.

effectively captures the trends in the voltage amplitude over
the considered frequency range.

In conclusion, experimental data largely confirm the valid-
ity of the presented continuous diffusion model for the RC
behaviour in capacitors with resistive electrodes. For the con-
sidered DE samples with silicone-based electrodes, the model

captures both the distribution of the amplitude and the phases
of the voltage waveforms recorded at different locations, con-
sidering two different prototypical DE transducer geometries
(rectangular and circular) and making use of a same nominal
value of the sheet resistance for both samples, with no need
for calibrations.
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Figure 9. Comparison of experimental and analytical voltage profile amplitudes across the capacitor in steady state. On the top graphs, two
specific frequencies are shown and the colour code of the analytical curves indicates the time: cyan is the start and red is the end of a period
of excitation. On the bottom graphs, the analytical envelope of the peaks is compared to the experimental curves for all the tested
frequencies.

4. Discussion

The analysis presented in this paper can be used to: 1) design
the layout of the connections between electrodes and driving
circuit (e.g. size/width of the portions of the transducer’s peri-
meter where voltage is applied) so as to guarantee charging
times/working frequencies/voltage gradients consistent with
the application [46]; 2) identify functional limits (e.g. max-
imum working frequency) of practical EAP transducers [43].
Whereas the first point can be tackled by solving PDE prob-
lem (8) for a given connection layout and analysing the result-
ing voltage distributions, point 2) can be tackled by resorting
to the dimensionless analysis introduced in section 2.Wemake
reference to a generic DE transducer topology, with resistive
electrodes on both DE faces, assuming same dielectric thick-
ness and permittivity as in our experimental analyses (namely,
td = 50µm and relative permittivity of 2.8, resulting in a spe-
cific capacitance of 0.5µFm−2). We note that different trans-
ducer topologies (e.g. strip and circular capacitor examined
in section 2 and, by extension, other more complex geomet-
ries) feature dimensionless charging times on the same order
of magnitude. We thus take the circular capacitor topology
studied in section 2.3 as reference, from which we estimated
a dimensionless charging time of 0.8 (needed to bring the
average voltage on the whole transducer to 99% the target

value), and a maximum dimensionless working angular fre-
quency (here, defined as the frequency for which the voltage
amplitude at the device centre is at least 90% the target value)
of 2.8. Using (12), we calculate the (dimensional) charging
time and limit frequency as a function of the device size
(i.e. radius), assuming a sheet resistance in the range Rs =
1− 150kΩ!−1. Results in figure 10(a) show that the char-
ging time quickly grows with the device size (with a quad-
ratic dependence). Large scale devices (e.g. metre-scale gen-
erators envisaged for wave energy harvesting applications [6])
might require charging times up to 100 s, if their electrodes
sheet resistance is on the order of 105 kΩ!−1. On the other
hand, implementation of thicker electrodes (with low sheet
resistance) is more practical at large scales, and it would allow
limiting the charging times. Centimetre-scale actuators, for
which many applications have been envisaged, require char-
ging times typically well-below milliseconds, even assum-
ing conservative sheet resistance values. The maximum fre-
quency at which transducers maintain nearly-constant poten-
tial over their entire surface ranges from over 104 Hz (with
sheet resistance on the order of 100 kΩ!−1) to 103 Hz for
centimetre-scale devices, making the exact value of the elec-
trodes sheet resistance a crucial factor for loudspeakers [13,
47], or for self-sensing applications, which rely on the
injection of high-frequency signals on a transducer [38, 43].

11



Smart Mater. Struct. 33 (2024) 095022 D Vignotto et al

Figure 10. (a) Charging time, i.e. time to required to obtain an average voltage equal to 99% the applied voltage, over a circular device; (b)
maximum working frequency i.e. frequency that provides less than 90% of the commanded sinusoidal voltage at the centre of the circular
device. The data refers to a prototypical DE transducer (with td =50µm and ε= 2.8× 8.85 · 10−12 Fm−1) and are reported as a function of
the characteristic side length, for a range of values of the sheet resistance Rs.

Above-metre scale devices, on the other hand, might be prone
to non-negligible spatial voltage gradients already with driv-
ing frequency on the order of 100 Hz (though their envisaged
applications at scale involve frequencies on the order of
10−1 Hz). At such timescales, leakage current losses due to the
dielectric medium resistivity (not accounted for here) might
become comparable to (or more significant than) electrode
losses.

The assumptions used to obtain these results are expected
to hold for a broad variety of DE and EAP transducers (whose
dielectric thickness and permittivity vary in a restricted range),
and for multi-layer stacks (as the same considerations hold
layer-wise). The considered sheet resistance values are rep-
resentative of carbon-loaded elastomeric electrodes, accord-
ing to values reported in literature [11, 24, 58]. The results in
figure 10 thus provide reasonable and general orders of mag-
nitude for the characteristic times/frequencies of DE trans-
ducers for realistic applications.

5. Conclusions

We investigated the electrical dynamics in electrostatic trans-
ducers with mildly resistive electrodes, with the aim of
providing guidelines for electrode design and limit working
ranges in EAP devices, such as DE transducers.

EAP transducers rely on compliant electrodes (e.g. carbon-
loaded electrodes with relatively high sheet resistance on the
order of 10−1 − 105 kΩ!−1), which must be able to with-
stand deformations while remaining conductive. As voltage
is supplied through a portion of the electrodes perimeter, the
electrode-dielectric assembly behaves as an RC interconnect,
possibly leading to a non-homogeneous electric field distribu-
tion over the transducer surface, especially in the case of high-
frequency applications. Such non-homogeneity in the voltage
distribution causes part of the dielectric material to be subject
to lower electric fields than requested and, hence, not to be
exploited fully.

Whereas RC dynamics in EAPs are usually described using
lumped RC circuits (e.g. series resistor-capacitor sets, or trans-
mission lines with a finite number of elements), here we resor-
ted to a continuum model, cast as a system of PDEs. Making
reference to some simple prototypical geometries, we cal-
culated semi-analytical solutions (written as Fourier series
expansions) and expressed them in a dimensionless form,
with the aim of extrapolating general indications regarding
the charging time (i.e. the time in which a uniform potential
is established over the transducer surface), and the maximum
working frequency (i.e. the maximum frequency at which
space gradients in the voltage amplitude are negligible) of
devices.

We validated continuum models by performing measure-
ments on silicone-based DE samples with blade-cast elec-
trodes made of a mixture of silicone and CB. We built a setup
to embed electric contacts directly into the electrodes bulk
during the manufacturing process, to mitigate the effect of
contact resistance. We were thus able to measure the voltage
at different locations over the samples surface, in the pres-
ence of high frequency excitation. We found that the meas-
ured voltage gradients are predicted by the model with good
accuracy.

Eventually, we presented a discussion on the expected
orders of magnitude for charging time and maximum work-
ing frequency for DE transducers, assuming typical realistic
values for the dielectric layer thickness and permittivity. We
showed that changing the device scale and the electrodes sheet
resistance can change the working ranges by orders of mag-
nitude, making electrodes design a crucial aspect at high work-
ing frequencies (e.g. acoustic application) or large scales (e.g.
grid-scale energy harvesting).
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Appendix. Determination of ICs for the charge
diffusion problem

Referring to the circuit schematisation of the system in
figure 2, capacitor elements can be replaced by short-circuits at
t= 0, leading to a same voltage distribution on opposite elec-
trodes’ nodes. Such distribution can be found as the solution
to the following stationary PDE problem:






∂

∂ξ1

(
1
Rs

∂v0
∂ξ1

)
+

∂

∂ξ2

(
1
Rs

∂v0
∂ξ2

)
= 0

v0 (ξ)|γ+∪γ− = V̄+
0 (ξ)+ V̄−

0 (ξ)

(∇v0 (ξ) · n̂)|Γ\(γ+∪γ−) = 0

(19)

where

V̄+
0 (ξ) =

{
V+ (0) , ξ ∈ γ+

0, ξ ∈ Γ \ γ+

V̄−
0 (ξ) =

{
V− (0) , ξ ∈ γ−

0, ξ ∈ Γ \ γ−

(20)

which has been obtained combining the second equation of
system (8) (which does not contain time derivatives) and the
BCs evaluated at t= 0. In (19), a Dirichlet type BC is applied
on the portion γ+ ∪ γ− of the electrodes frontier, whereas a
Neumann BC holds everywhere else.
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