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In brief
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modulates the activity of vital organs and

can treat many pathologies. Adverse

effects could be avoided if we knew the

location in the nerve section of the fibers

communicating with different organs. We

introduce a method to determine such

locations using only recordings of

spontaneous activity without altering any

bodily functions. Such a method could be

generalized to other parts of the nervous

system and be used to produce

personalized stimulation protocols.
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THE BIGGER PICTURE Electrical stimulation of the vagus nerve modulates the activity of internal organs
and has the potential to treat many pathologies. Still, high selectivity is required because altering the func-
tioning of off-target vital organs leads to severe adverse effects. Current steering can produce selective
stimulation but requires knowing the functional organization of the target structure. Here, we introduce
and test in silico a functional imaging method that allows localization in a nerve section of the fibers linked
to several bodily functions. It employs spontaneous electroneurographic signals recorded from the im-
planted stimulation electrodes and a non-invasive physiological recording related to the target bodily func-
tion. The anatomy of the target structure is not required but can be incorporated to improve localization. The
results are robust when considering different sources of noise and artifacts. Ourmethod could be employed
to determine personalized neuromodulation protocols.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Bioelectronic medicine is an emerging approach to treat many types of diseases via electrical stimulation of
the autonomic nervous system (ANS). Because the vagus nerve (VN) is one of themost important nerves con-
trolling several ANS functions, stimulation protocols based on knowledge of the functional organization of the
VN are particularly interesting. Here, we proposed a method to localize different physiological VN functions
by exploiting electro-neurographic signals recorded during spontaneous VN fibers activity. We tested our
method on a realistic human cervical VN model geometry implanted via epineural or intraneural electrodes.
We considered in silico ground truth scenarios of functional topography generated via different functional
neural fibers activities covered by background noise. Our method accurately estimated the underlying func-
tional VN topography by outperforming state-of-the-artmethods. Our work paves theway for development of
spatially selective stimulation protocols targeting multiple VN bodily functions.
3
INTRODUCTION

Bioelectronic medicine is an emerging approach with the aim of

modulating visceral functions through electrical stimulation of

the autonomic nervous system (ANS).1,2 The vagus nerve (VN)

is a particularly important stimulation target of the ANS because

it takes part in controlling vital organs such as the heart, lungs,
This is an open access article under the CC BY-N
and digestive tract. For this reason, stimulation should be suffi-

ciently selective and grant modulation of the target function

without altering other physiological functions. Several attempts

to establish selective VN stimulation (VNS) have been performed

by different research groups employing different techniques. The

two main strategies are fiber-selective VNS and spatially selec-

tive VNS.4
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In fiber-selective VNS, the different excitability properties of

several fiber types are exploited to produce stimulation proto-

cols that stimulate only one fiber type. This builds on evidence

showing that the VN contains fibers belonging to different types4

with fibers that carry out the same physiological function

belonging to the same type. Two notable applications of this

strategy are anodal block5 and kilohertz block.6 Although these

fiber-selective stimulation methods can allow selective stimula-

tion of large myelinated fibers versus small unmyelinated ones,

they become increasingly ineffective when two target popula-

tions are similar (an afferent Ab versus an efferent Aa population

or two efferent Aa populations). They produce selectivity pat-

terns that are very sensitive to the distance from the stimulation

point.7 To overcome the limitations of fiber-selective VNS,

spatially selective stimulation protocols are currently the only

viable solution. Efficient spatially selective stimulation protocols

critically depend on the functional topography of the nerve, i.e.,

the spatial distribution of fibers accounting for different

functions.

Although some anatomical analyses of the VN in humans and

different animal models have been performed,8,9 establishing a

functional topography of the VN is technically challenging.

Immunohistochemical analyses showed a spatial segregation

at least between afferent and efferent fiber populations,8 and

the possibility to independently control bodily functions via stim-

ulation protocols seems to suggest an organotopic organization

of the VN.10,11

Electroneurographic (ENG) signals recorded through im-

planted electrodes in the peripheral nervous system have been

used to localize functionally homogeneous clusters of fibers in

motor nerves12–14 and in the pig VN.15 Wodlinger and Durand12

used a beamforming (BF) method to produce spatial filters allow-

ing localization of clusters of fibers targeting different muscle

groups in the human femoral nerve. The BFmethod12 can detect

the activity of more than one cluster, but it cannot discriminate

which part of the recovered functional distribution belongs to

which source. For this reason, in their work, the authors of this

study devise a ‘‘calibration’’ procedure where each muscle is

contracted in turn and the location of the corresponding fiber

cluster is determined. Vallone et al.15 performed a study where

cardiorespiratory-related functional clusters of fiber activity in

the pig VN were localized by employing a measure called

‘‘discriminative field potential’’ (DFP). The DFP measure was

based on an index, the discriminative index, quantifying the abil-

ity of an electrode to discriminate between different physiolog-

ical conditions of the animal. This discriminative index was

then weighted to the average values of lead field matrix entries

representing the contribution of each fascicle to the recorded

ENG signal at a given recording site. In this way, the DFP can

determine which region of the nerve was most likely to be asso-

ciated with a given cardiorespiratory function, thus quantifying

the extent of spatial segregation between cardiorespiratory

functional fiber activity clusters in a VN section.

All of these methods relied on modifications of neural activity

by electrically stimulating motor nerves12,14 or physiologically

induced alterations of VN activity.15 A promising alternative is

electrical impedance tomography (EIT), which measures nerve

impedance variations caused by spontaneous neural activity

employing very-low-amplitude, high-frequency current injec-
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tions not sufficient to substantially alter the physiological activity

carried along the nerve.16,17 However, it would be easier from a

technical viewpoint to infer the functional topography of a nerve

(e.g., the VN) from recorded spontaneous fiber activity without

the need of any kind of current injection. For these reasons,

here we propose a new method, which we call discriminative

BF (DBF), by combining the strengths of the BF and DFP

methods. Our approach employs discrimination indices built

on VN activity markers able to identify different functional sour-

ces, thus isolating their contribution to the ENG signals. In this

way, we do not need to alter the flow of physiological neural ac-

tivity through the nerve, and we can, in principle, simultaneously

identify an arbitrary number of sources, provided that an

adequate discriminative index is defined for each of them. We

then combined the discriminative indices with spatial filters

calculated as in the BF method12 to obtain a functional topog-

raphy of the nerve.

We tested our new method on a realistic 2D nerve model

geometry of the human cervical VN implanted via epineural or in-

traneural electrodes. We generated three different in silico ex-

periments with increasing levels of complexity, starting from

localization of single and multiple deterministic sources in Brow-

nian background noise to concurrently active, physiologically

plausible neural sources immersed in neural noise. We found

that our new DBF method significantly outperforms the two

already-existing methods: BF and DFP.

We also developed a computation pipeline to incorporate the

fascicular morphology of the VN, showing an improvement of all

localization methods with respect to missing morphological

information.

RESULTS

Modeling approach and functional localization pipeline
The first step was to choose nerve geometry, electrode geome-

try, and material properties to build a model of the implanted

nerve (Figures 1A–1C). In the present work, we performed simu-

lations corresponding to the implants of a cuff electrode or of a

transverse intrafascicular multichannel electrode (TIME).18 In

Figure 1D, we show the structural and generic geometric

models. The structural model includes all fascicles in the nerve

sections, whereas in the genericmodel, the nerve is a solid struc-

ture with the electrical properties of the extra-fascicular connec-

tive tissue. Using finite element modelling (FEM) on the chosen

geometrical model of the nerve, we can obtain in silico a matrix

containing the sensitivity of the potential recorded by each

recording site to the neural signal from a specific nerve location

(Figure 1E), called lead field matrix (LFM). In Figures 1F and 1G,

we show how this matrix can be employed, together with

discriminative indices associated with the recording sites, to

compute a localizationmap (Figure 1H), which provides the likeli-

hood that a given location of the nerve section contains the

target function. Discriminative indices are computed here from

the known features of the recorded spontaneous ENG signals;

for example, from their correlation with a function-related phys-

iological signal. Thus, the computations of neither the LFM nor

the discriminative indices require performing nerve stimulation.

In the present work, we quantified the performance of our local-

ization algorithm through the localization error, defined as the
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Figure 1. Function localization pipeline

(A) Generation of nerve geometry. Here we employ a nerve diameter of 2 mm, and a number of fascicles in (6, 8) with diameters in (0.15, 0.7) mm are placed in the

nerve section.

(B) Generation of electrode geometry. Here, we show a TIME and a cuff electrode; in the case of TIME, fascicles are displaced so that no fascicles are pierced.

(C) Different domains constituting an implanted nerve section.

(D) Structural and generic geometric models. Recorded signal generation always employs the structural geometric model, whereas localization can be performed

using either model.

(E) Left: FEM solution in terms of the electric potential map for unit current injected from each recording site. Right: discretization of the potential map. When

flattened, it corresponds to a column of the lead field matrix (LFM).

(F) For each active site, a discriminative index is computed that determines the contribution of the corresponding LFM column (DFP) or pseudo-inverse LFM row

(DBF) to the localization map (the black dot in the fascicle represents the source location).

(G) Weighting of the LFM components by the discriminative coefficients and summing up to obtain the localization map.

(H) Obtained localization map and localization error. The dot indicates the true location of the source, and the cross indicates the localization determined by the

method.
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Figure 2. Single deterministic source

discriminative indices and localization maps

(A) The discriminative index patterns of the cuff and

TIME electrode for the selected ground truth map

(red filled circles represent the spatial position of the

source).

(B) Divided by electrodes, anatomical information

available a priori, and methods. For the selected

functional topography, the localization maps for

each case are reported (black crosses represent the

estimated spatial position of the sources).
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distance between the predicted and the true locations of the

target cluster of fibers. More details can be found in the experi-

mental procedures.

DBF is more accurate for single-source localization
As a first experiment, the existing BF and DFP methods were

compared with the new method, DBF, in localization of a

single deterministic sinusoidal source oscillating at 4 Hz in

Brownian noise. The discriminative index corresponding to

each recording site was given by the power of the recorded

signal in a narrow band around 4 Hz. We placed the single infor-

mative source inside each fascicle of each nerve topography, in

turn performing a total of N = 69 simulations. For more details,

see ‘‘single deterministic sinusoidal source in Brownian noise

localization.’’

In Figure 2, illustrative simulation examples of estimated

source localization maps by using the different source localiza-

tion algorithms and discriminative index values for cuff and

TIME electrodes are shown. We reported both cases where

the information of a generic and structural model geometry is

considered in the source localization algorithm pipeline. As we

expected, independent of the considered electrodes, discrimi-

native index values are higher for recording sites closer to the

informative source and lower for sites that are farther away (Fig-

ure 2, top panels). When the generic model geometry is em-

ployed, it is evident that the BF-based methods (BF and DBF)
4 Patterns 3, 100615, November 11, 2022
produce more focal localizations, whereas

DFP tends to identify a large area around

recording sites (Figure 2, bottom panels).

When a structural model is considered, ac-

curate localization errors are obtained by

all source localization algorithms (Figure 2,

right column panels).

In Figure 3, localization error distribu-

tions for all performed simulations using

BF, DFP, and DBF of the same case are

shown. The distribution of random locali-

zation errors is also displayed. We found

that our considered methods produced

localizations maps that are significantly

more precise than random localization

(p < 0.001, N = 96, Kolmogorov-Smirnov

test followed by Bonferroni correction for

multiple comparisons.). The median, first,

and third quartiles of the localization error

distributions are shown in Table S1.
We employed a generalized linear (mixed-effects) model

(GLM) to quantify and test the significance of the effect of the

different localization algorithm, electrode, and geometrical

model choices (the fixed effects in the model) and quantify the

variability of the results because of different sections and fasci-

cles (the random effects in the model). Because localization er-

rors are positive definite, we assumed an underlying gamma dis-

tribution with link function 1=x so that positive values of fixed

effect estimates indicate that they tend to decrease the localiza-

tion error and vice versa. For more information, see experimental

procedures ‘‘comparisons between source localization algo-

rithms, electrode types, and geometrical models.’’ We found

that the DBF method improves significantly with respect to the

BF, whereas the DFP does not lead to performance significantly

different from BF (see Table 1, where the fixed effect estimates,

standard errors, and p values are shown) The TIME leads to

significantly worse localization estimates than a cuff electrode.

Introducing structural information significantly improves perfor-

mance (Table 1). Overall, the highest localization error decrease

is provided by choosing the DBF method using cuff electrodes

and incorporating a structural model geometry.

We found that random effect contributions are negligible with

respect to the fixed effects, which means that there is not a

strong systematic dependency of performance on the applica-

tion of the localization methods for different nerve section topog-

raphies or different source fascicular locations (Table 1).
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Figure 3. Single deterministic source locali-

zation

(A–D) Localization error distributions (N = 69) for

(A) generic model and cuff electrode, (B) generic

model and TIME, (C) structural model and cuff

electrode, and (D) structural model and cuff elec-

trode, divided by electrode (columns) and by

anatomical information available a priori (rows).

Outliers (1.5 IQR beyond the first or third quartiles)

are depicted as isolated points outside of the box-

plots. The dotted red lines correspond to the first

and third quartiles of the distribution of localization

errors for random localization, and the filled lines

correspond to the median of the same distribution

(experimental procedures). All distribution results

are significantly different from the random (results).
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Discriminative methods (DBF and DFP) are necessary
for multiple-source localization
Next, we tested the ability of the three methods (BF, DFP, and

DBF) to localize each one of three deterministic sinusoidal

sources oscillating at 2 Hz, 4 Hz, and 16 Hz concurrently active

in the nerve section. The discriminative index corresponding to

each recording site and informative source was still computed

as the power of the recorded ENG signals in a narrow band

around the frequency of the target source, supposed to

be known. We performed simulations varying nerve section

topographies and choosing all possible assignments of the

three informative sources to the different fascicles in each

topography (N = 2119). For more information, see experi-

mental procedures ‘‘multiple deterministic sinusoidal sources

in brownian noise localization.’’
Table 1. Single deterministic source GLM parameter estimates

Fixed effects

Name Estimate Standard error P Value

(Intercept) 2.84 0.24 �1e�5***

Electrode_TIME �0.93 0.25 <1e�3***

Method_DFP �0.0006 0.24 1.00

Method_DBF 8.02 0.69 �1e�5***

Model_structural 3.15 0.33 �1e�5***

Random effects

Name Standard deviation (Std)

Section <1e�4

Fascicle | section <1e�5

We report the estimate, standard error, and p value for the fixed effects on

the localization errors given a gamma GLMwith inverse link function. The

reference level for electrode is CUFF, for method is BF, and for model is

generic. Positive values correspond to decreasing the average localiza-

tion error and negative values to increasing it. Higher values correspond

to stronger effects. ***p < 0.001.
In Figure 4, we show an illustrative simu-

lation example of typical discriminative in-

dex patterns for cuff and TIME electrodes

and localization maps using BF, DFP, and

DBF source localization methods. In the

case of BF, the estimated localization
maps tend to include all high-power regions as possible sources.

For example, when using TIME electrode and generic model ge-

ometry, BF is completely misled by power sources that are

closer to electrode sites and contribute maximally to the re-

corded signal power. In this specific case, DFP incorrectly

localize sources in ‘‘shielded’’ fascicles, and we observed that

the source is localized incorrectly in the fascicle between the

electrode and the actual target fascicle. Instead, DBF provides

an accurate estimate of the source position.

In Figure 5, localization error distributions for all performed

simulations using BF, DFP, and DBF are shown. We found that

our considered methods produced localization maps that are

significantly more precise than random localization (p < 0.001,

N = 2,119, Kolmogorov-Smirnov test followed by Bonferroni

correction for multiple comparisons). However, BF produces a

localization error distribution that, for a large part, falls in the in-

terquartile range of random localization error distribution,

discouraging its implementation. The median, first, and third

quartiles of the localization error distributions are shown in

Table S2.

A GLM was fit, as in the case of single-source localization,

where we added a fixed effect linked to the frequency of the

source to be localized. From the GLM fixed-effect estimates

(see Table 2, where the fixed effect estimates, standard errors,

and p values are reported), we found that the DFP and DBF

methods improve significantly on the BF, whereas the DBF leads

to a muchmore marked improvement. The TIME electrode leads

to significantly worse localization estimates, and introducing

structural information improves localization performance. To

obtain an accurate functional map, the best choice is the DBF

method, followed by a structural geometry model and a cuff

electrode instead of a TIME.

We found that the randomeffect linked to the nerve section are

negligible, whereas the location of the source to be localized in a

given nerve section has a non-negligible effect on the localization

error (Table 2). This means that, although localization error does
Patterns 3, 100615, November 11, 2022 5
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Figure 4. Multiple deterministic sources

discriminative indices and localization maps

(A) For cuff and TIME electrodes, the discriminative

index patterns for the considered source (red circle)

in the selected ground truth map (red and black fil-

led circles represent the spatial position of the

sources).

(B) Divided by electrode, anatomical information

available a priori, and methods. For the selected

functional topography, the localization maps for

each case are reported (black crosses represent the

estimated spatial position of the red filled circle

sources).
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not vary substantially for different nerve sections, the location of

the source in a given nerve section for a given recording elec-

trode influences the precision of the localization result.

DBF precisely localizes multiple physiological functions
in physiologically plausible recordings
Finally, we considered a biophysically realistic scenario by

simulating physiologically plausible neural recordings via

spiking fiber models (experimental procedures‘‘generation of

physiologically plausible neural recordings’’) and macroscopic

physiologically variables, like blood pressure and respiratory

signals, by using biophysically inspired dynamic system equa-

tions (experimental procedures‘‘macroscopic physiological

signal generation’’ and ‘‘supplemental experimental proced-

ures’’). Because the BF method performed poorly for multi-

ple-source localizations, as shown in the previous section,

here we considered only the DBF and DFP methods. We

computed the discriminative indices as the ordinary least-

squares estimates of the coefficients of a linear model express-

ing the ENG signal from each recording site, preprocessed

according to the pipeline described under experimental pro-

cedures, as a linear combination of the two underlying physio-

logical signals (blood pressure and respiration). We performed

96 simulations by varying nerve section topographies and sour-

ces fascicular locations (experimental procedures‘‘multiple

biophysical source localization’’).
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In Figures 6A–6C and 7A–7C, vascular

and respiratory physiological data gener-

ated at the different levels (i.e., macro-

scopic blood pressure and respiratory sig-

nals, nerve fiber spiking activity, and ENG

recording sites) are shown. In the experi-

mental procedures, the workflow for gener-

ation of simulated physiological and ENG

signals is detailed. Signal-to-noise ratio

(SNR) measures were consistent with real

data experiments19,20 (data not shown).

In Figures 6D and 7D, typical discrimina-

tive index patterns and localization maps

for simulations performed using DFP and

DBF in the case of blood pressure (BP)

and respiration (RESP) source localization

are shown, respectively. In all cases, the

localization maps display the general fea-

tures described in the previous sections;
i.e., DFP tends to identify a large area around recording sites

with respect to the DBF, and introducing a structural model im-

proves localization performances.

Figure 8 shows localization error distributions for all performed

simulations, using DFP and DBF of the same cases. We found

that the DFP and DBF methods produced localization maps

that were significantly more accurate than random localization

(p < 0.001, N = 96, Kolmogorov-Smirnov test followed by Bonfer-

roni correction for multiple comparisons). The median, first ,and

third quartiles of the localization error distributions are shown in

Table S3. Localization errors were also computed in terms of

radial and angular components (Tables S5 and S6).

A GLM was fit, like in the previous experiments. With respect

to the single deterministic source experiment, we added among

the fixed effects the physiological function linked to each source.

From the GLM fixed effect estimates, we can see that the DBF

method produces a significantly more accurate localization

than the DFP method (see Table 3 for fixed effect estimates,

standard errors, and p values). Consistent with to previous sec-

tions’ results, we found that choosing a DBF method using cuff

electrodes and including structural information leads to optimal

estimates of localization maps.

We found that the random effect linked to the nerve section is

negligible with respect to fixed effects, whereas the location of

the source to be localized in a given nerve section has a non-

negligible effect on the localization error (Table 3).
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Figure 5. Multiple deterministic sources

localization

(A–D) Localization error distributions (N = 2,118) for

(A) generic model and cuff electrode, (B) generic

model and TIME, (C) structural model and cuff

electrode, and (D) structural model and TIME,

divided by electrode (columns) and anatomical in-

formation available a priori (rows). Separate distri-

butions are shown for each source concurrently

active, according to their frequency (2 Hz, 4 Hz, and

16 Hz). Outliers (1.5 inter-quartile ranges [IQRs]

beyond the first or third quartiles) are depicted as

isolated points outside of the boxplots. The dotted

red lines correspond to the first and third quartiles of

the distribution of localization errors for random

localization, and the filled lines correspond to the

median of the same distribution (experimental pro-

cedures). All distribution results are significantly

different from the random (results).
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DBF and DFP are robust when considering reduced data size,

electrode damage, and motion-related BP and RESP activity

artifacts.

To understand how discriminativemethods (DBF and DFP) are

robust when considering possible constraints because of real

experimental conditions, we tested the robustness of the DBF

and DFP methods to available data size, electrode damage,

and motion-related BP and RESP activity artifacts.

We estimated how much data are necessary for the DFP and

DBF to give reliable localization functional maps. We studied

different ENG signal durations from 0.1 s (4,000 samples) to 30 s

(1,200,000 samples). In Figure 9, we report the simulation results,

showing that discriminative methods are actually very robust in
Table 2. Multiple deterministic sources GLM parameter

estimates

Fixed effects

Name Estimate Standard error p value

(Intercept) 1.43 0.08 �1e�5***

Electrode_TIME �0.16 0.01 �1e�5***

Method_DFP 1.56 0.02 �1e�5***

Method_DBF 9.17 0.06 �1e�5***

Model_structural 0.77 0.02 �1e�5***

Frequency 0.005 0.001 <1e�3***

Random effects

Name Std

Section <1e�4

Fascicle | section 0.63

We report the estimate, standard error, and p value for the fixed effects on

the localization errors given a gamma GLMwith inverse link function. The

reference level for electrode is CUFF, for method is BF, and for model is

generic. Positive values correspond to decreasing the average localiza-

tion error and negative values to increasing it. Higher values correspond

to stronger effects. ***p < 0.001.
this data range size. We do not observe

substantial degradation in the localization

errors until 0.1-s duration (4,000 samples).
We also found that performance increases with available data.

To statistically test the robustness of the discriminative methods

in case of reduced data points, we compared the localization

errors under the 4,000 sample conditionwith the random localiza-

tion error for all settings.We foundsignificant differencesbetween

these two cases (p < 0.001, Kolmogorov-Smirnov test, N = 192,

followed by Bonferroni correction for multiple comparisons).

However, we can observe in Figure 9 that localization errors are

not close to random values only for the case of a generic model

and cuff electrodes (Figure 9A); thus, we discourage use of the

other experimental setting with this available data size.

Electrode damage resulting in failure of active site recordings is

an experimental phenomenon that affects the quality of ENG re-

cordings. We thus investigated the effect on localization error of

not considering a number of recording sites because of electrode

damage (experimental procedures‘‘source localization algo-

rithms’’). We performed simulations with 1, 2, 5, 10, and 12

damaged recording sites. The results of the simulations are re-

ported in Figure 10, showing that localization errors increase with

the number of broken channels (as expected) for all possible

experimental settings. We found that, up to approximately one

third of damaged electrodes (i.e., 5 broken channels of 14), the

localization error curves are flat, indicating robustness of the algo-

rithms. We tested the robustness of the methods in the case of

highly damage electrodes by comparing the localization errors

for the caseof 12 broken channelswith the random localization er-

ror, andwe foundasignificantdifferencebetween these twocases

(p < 0.001, Kolmogorov-Smirnov test, N = 192, BP and RESP

concatenated). These results indicate that, in principle, even

when more than two thirds of the electrodes are unusable (i.e.,

12 broken channels of 14), our algorithm is significantly better

than random localization, but wecan see in Figure 10 that localiza-

tionerrorsareclose to randomvalues; thus,wediscourageuseofa

highly broken electrode for functional localization purposes.

We studied the robustness of discriminative methods (DBF

andDFP) in the presence ofmotion-related BP andRESP activity
Patterns 3, 100615, November 11, 2022 7
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Figure 6. BP discriminative indices and local-

ization maps

(A) The simulated BP signal used to generate the

ENG signals and compute the discriminative

indices.

(B) The raster plots show plausible firing patterns,

highlighting in plum purple the activity of the baro-

receptors.

(C) The simulated ENG recordings, plotting the

signals recorded by the channel in purple; i.e., the

closest active site to the fascicle containing

the baroreceptors. The same signal was pre-pro-

cessed and plotted below.

(D) The discriminative index patterns of the cuff and

TIME electrode for the selected maps is shown

graphically, referring to the legend on the right.

(E) Divided by electrode, by anatomical information

available a priori, and methods. For the selected

functional topography (purple filled circles repre-

sent the center of the spatial position of the sour-

ces), the localization maps for each case are re-

ported, referring to the legend on the bottom right.
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artifacts (experimental procedures‘‘multiple biophysical source

localization’’). We considered the case of cuff electrodes; in

Figures 11A and 11B, a representative set of simulated ENG re-

cordings affected by spurious physiological signal modulation

with different effects with respect to channel position are shown.

In Figure 11E, localization error distributions for eachmethod are

shown. We compared the discriminative methods’ performance

with the random localization error by a Kolmogorov-Smirnov test

on the three distributions versus random (N = 192, BP and RESP

concatenated), followed by Bonferroni correction for multiple

comparisons. We found that all methods perform significantly

better than random (p < 0.001). We also tested the differences

among the performance of the two methods, DFP versus DBF,

and we found that DFP performs significantly better than DBF

(p < 0.001, Kolmogorov-Smirnov test, N = 192, BP and RESP

concatenated). Finally, we assessed the differences in the DBF
8 Patterns 3, 100615, November 11, 2022
and DFP methods in cases with and

without noise effect, and we found that,

for BP and RESP localization, noise effect

significantly affects the performance of

the two methods (p < 0.001, Kolmogorov-

Smirnov test, N = 96). DBF and DFP are

sensible with respect to multiplicative

noise effect but still provide good localiza-

tion errors significantly better than random

guessing. DBF turned out to be the best

method for functional localization, even in

the presence of multiplicative noise.

DISCUSSION

The efficacy of VN bioelectronic neuromo-

dulation strongly depends on spatially se-

lective neuromodulation protocols based

on VN functional topography. Here we pro-

posed a method to spatially localize simul-

taneous cardiorespiratory functions within
the VN by exploiting ENG signals recorded during spontaneous

neural activity. Our new method, called DBF, was developed by

combining two existing approaches: the BF method,12 providing

a spatial map of neural fiber activity in terms of their power, and

discriminative indices of neural interfaces, characterizing the abil-

ity of recording sites to assess relevant functional information.15

We tested our method on a realistic nerve model geometry of

the human cervical VN implanted via epineural (cuff) or intraneu-

ral (TIME) electrodes. We outlined a way to incorporate structural

information in the localization algorithm by forcing the output of

source localizations only inside fascicles. We considered three

different ground truth scenarios of multi-functional topography

generated by single- and multiple-frequency sinusoidal neural

fiber activities immersed in Brownian background noise and a

biophysically realistic model of cardiorespiratory neural fiber

activities.
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Figure 7. RESP discriminative indices and

localization maps

(A) The simulated RESP signal used to generate

the ENG signals and compute the discriminative

indices.

(B) The raster plots show plausible firing patterns,

highlighting in light blue the activity of the pulmonary

stretch receptors.

(C) The simulated ENG recordings, plotting the

signals recorded by the channel in light blue; i.e.,

the closest active site to the fascicle containing the

pulmonary stretch receptors. The same signal was

pre-processed and plotted below.

(D) The discriminative index patterns of the cuff and

TIME electrode for the selected maps is shown

graphically, referring to the legend on the right.

(E) Divided by electrode, anatomical information

available a priori, and methods. For the selected

functional topography (light blue filled circles

represent the center of the spatial position of the

sources), the localization maps for each case are

reported, referring to the legend on the bottom right.
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Under all tested conditions, the DBF method provides accu-

rate estimates of the underlying multi-functional topographical

organization, outperforming previous methods like BF12 and

DFP15 (Figures 3, 5, and 8; Tables 1, 2, and 3). In all settings

and for all methods, adding structural information significantly

improved localization predictions (Tables 1, 2, and 3), justifying

efforts to obtain in vivo structural information. We found that

discriminative methods are quite robust when considering

possible experimental constraints, such as reduced data size,

electrode damage, and motion-related BP and RESP activity

artifacts (Figures 9, 10, and 11). DBF in particular turned out

to be the best method for functional localization, even in the

presence of multiplicative noise related to BP and RESP activity

artifacts.
In the case of single-source localization,

DBF outperformed BF. This can be justi-

fied by noticing that DBF employs the re-

corded signal power in a narrow band

around the informative source frequency,

whereas BF employs the total power of

the of the ENG signals. Both capture the

whole informative source power, but in

the DBF, the noise contribution is inte-

grated only in a small band, providing

more accurate localizations.

We found that the BF method performs

poorly in the case of multiple sources by

providing a localization error distribution

that falls for a large part in the interquartile

range of random localization error distribu-

tion (Figure 5). Although BF generally pro-

duces multimodal localization maps,

where the modes correspond to all

different power hotspots present in the

nerve (noisy or informative; see Figure 4

for sample localization maps for multiple

sources concurrently active in the nerve),
it is unable to refer each of these hotspots to the different func-

tions because its definition does not include any ‘‘discriminative’’

measure. Very frequently, the estimated source position was the

location of the hotspot at a minimum distance from a recording

site so that its power has a larger contribution to the recorded

ENG power. The fact that BF is not intrinsically ‘‘discriminative’’

requires inducing a higher activation in the fiber cluster being

localized so that its contribution to the recorded ENG total power

is higher, as was done previously.12

We observed that DBF provides more focal results with

respect to DFP (Figures 2, 4, 6, and 7). We expected this result

because, in the inversion of the LFM, the column corresponding

to the field of view of each recording site is adjusted, taking into

account the field of view of the other recording sites as well. On
Patterns 3, 100615, November 11, 2022 9
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Figure 8. Multiple biophysical source locali-

zation

(A–D) Localization error distributions (N = 96) for

(A) generic model and cuff electrode, (B) generic

model and TIME, (C) structural model and cuff

electrode, and (D) structural model and cuff elec-

trode, divided by electrode (columns) and anatom-

ical information available a priori (rows). Separate

distributions are shown for each source concur-

rently active, according to their function (BP or

RESP). Outliers (1.5 IQR beyond the first or third

quartiles) are depicted as isolated points outside of

the boxplots. The dotted red lines correspond to the

first and third quartiles of the distribution of locali-

zation errors for random localization, and the filled

lines correspond to the median of the same distri-

bution (experimental procedures). All distribution

results are significantly different from the random

(results).
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the contrary, DFP directly used the LFMwithout any such adjust-

ment, leading to broad localization patterns with maxima often in

correspondence with electrode sites (where the LFM entries are

highest). In the structural case, the DFPmethod can be fooled by

shielding fascicles (Figure 4, TIME electrode cases). The source

is localized in the very large fascicle, covering the true location of

the informative source, because DFP tends to put out localiza-

tion positions close to electrode sites. DBF solves this problem

employing the inverse LFM, exploiting the correlation between

recordings from the different sites.

To determine the optimal peripheral interface to performmulti-

functional localization maps, we tested epineural cuff electrodes

and intraneural TIME interfaces. We found that cuff electrodes

allow better localization maps with respect to TIME. We justified
Table 3. Multiple biophysical source GLM parameter estimates

Fixed effects

Name Estimate SE p Value

(Intercept) 3.20 0.25 �1e�5***

Electrode_TIME �0.52 0.13 <1e�3***

Method_DBF 1.96 0.15 �1e�5***

Model_structural 1.97 0.15 �1e�5***

Function_RESP 0.07 0.12 0.59

Random effects

Name Std

Section <1e�3

Fascicle | section 1.22

We report the estimate, standard error, and p value for the fixed effects on

the localization errors given a gamma GLMwith inverse link function. The

reference level for electrode is CUFF, for method DFP, and for model is

generic. Positive values correspond to decreasing the average localiza-

tion error and negative values to increasing it. Higher values correspond

to stronger effects. ***p < 0.001.
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these results because cuff electrodes are

characterized by a truly bi-dimensional

structure more suitable for bi-dimensional

nerve section, while employing the one-
dimensional TIME leads in general to worse but still acceptable

performance.

Overall, the in silico experiments suggest that the lowest local-

ization errors for multiple function localization in the VN can be

obtained by employing DBF using ENG recordings from a cuff

electrode implanted on a nerve whose structure is known. How-

ever, when moving to humans, obtaining in vivo structural infor-

mation may not be feasible, inaccurate, or available only for the

part of the exposed nerve facing the surgical access. For these

reasons, in clinical settings, a realistic combination of the pro-

posed methods could be use of a generic model of the nerve

and cuff electrodes for ENG recordings.

Our discriminative methods are strongly related to the work

of Ravagli et al.16 and Thompson et al.,17 who include experi-

mental testing of a technique (EIT) for locating neural activity

sources across the cross-section of the VN using auxiliary

information from RESP/heartbeat signals. EIT can be seen

as a DBF algorithm where the discriminative coefficients are

computed using the correlation between the measured spon-

taneous impedance variation and a physiological signal. Mea-

surement of such impedance variation requires injection of a

low-amplitude, high-frequency current that does not alter

physiological functions but still requires a specific experi-

mental setup, and it takes quite a long time to perform mea-

surements from different stimulation sites. Our discriminative

algorithm employs only the recorded ENG signal, which highly

simplifies the setup, experimental protocol, and low computa-

tional time (�13 and 25 s for DFP and DBF, respectively;

calculated for simulations in biophysical source experiments).

Although the theoretical time and space resolution of EIT is

extremely good, we believe that a true comparison of the

typical errors of EIT and discriminative methods would require

performing both under the same experimental conditions for

future development of peripheral nerve functional topography

characterization.
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Figure 9. Source localization with reduced

data samples

(A–D) Quartile (Q1–Q3) area plots about the locali-

zation error distributions (N = 96) for (A) generic

model and cuff electrode, (B) generic model and

TIME, (C) structural model and cuff electrode, and

(D) structural model and cuff electrode, divided by

electrode (columns) and by anatomical information

available a priori (rows). Separate areas are shown

for DFP and DBF, represented in purple and orange,

respectively. The filled lines correspond to the me-

dian of the same distribution (experimental pro-

cedures). The worst-case distribution on each axis,

corresponding to 4,000 samples, shows results

significantly different from the random (results).
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Limitations and future directions
An important step for the reliability of our source localization

method is the choice of discriminative index. The definition of a

discriminative index requires a priori knowledge of the relation

between neural fiber activity andmacroscopic physiological var-

iables like BP and RESP signals. In our work, based on previous

studies on VN recordings in anesthetized pigs19,20 and VNmicro-

neurographic recordings in healthy humans,21 we assumed a

linear relationship between cardiorespiratory variables (i.e., BP

and RESP) and the related fiber firing rates. However, in non-

anesthetized and/or pathological situations, the simple linear re-

lationships between neural activity patterns and macroscopic

physiological variables can be altered, leading to incorrect pre-

dictions. To overcome this limitation, different discriminative

indices based on more complex non-linear relations can be

concurrently employed and compared with the linear case. In

our model, we did not consider the possible delay between

measurable physiological signals and the underlying neural ac-

tivity. Although the computation of the discriminative indices is

most likely not robust with respect to such delay, this problem

can be solved by simply shifting one of the two signals on the

other until the discriminative indices are maximized. If different

functions are linked to the corresponding neural activity via

different delays, then more complex linear models, like autore-

gressivemoving-average (ARMA)models, which incorporate de-

lays, should be employed to compute the discriminative indices.

Here we tested our method by using synthetic signals and

known ground truth functional spatial maps. The presented

method should be validated in real experimental settings where

the functional spatial map is unknown. To this aim, we could

perform animal model experiments by combining ENG record-

ings during spontaneous activity and altered physiological

states, stimulation protocols assessing the functional role of a

specific spatial region of the VN, and structural information to

build animal-specific structural-functional maps. Similar to Val-

lone et al.,15 we could record electroneurographic signals from

pig VN corresponding to baseline conditions (i.e., spontaneous

activity) and altered physiological states, like increasing BP
values and RESP rate. This protocol could

provide the means to compare localization

maps during spontaneous activity and

altered physiological states. We would be

able to test our localization methods by
observing a substantial spatial overlap between the inferred

spatial maps for a given physiological function during baseline

activity and the corresponding altered state for the given func-

tion. In a similar manner, recent stimulation protocols to test or-

gan- and function-specific organization of the pig VN11 could

also be applied to test the efficiency of our localization method

by comparing spontaneous localization maps and electrically

induced functional maps for a given physiological function.

Finally, structural information could also be employed by

following a procedure developed previously22 to visualize the

fascicular organization of the pig VN in vivo and build animal-

specific structural-functional maps.

Regarding the choice of selective stimulation parameters,

when the localization map for a given function has been ob-

tained, we could assume that the corresponding fiber group is

located in the fascicle that is closest to themaximumof the local-

izationmap or in the fascicle that has the largest intersection with

a given level set of the localization map. Then we can determine

the selectivity of the stimulation of such fascicles according to

several single- or multi-site stimulation protocols using hybrid

modeling.23 To estimate target and off-target recruitment at a

low computational cost and cover a large enough subset of the

possible stimulation protocols in a reasonable amount of time,

model-based methods like activating function formalism can

be employed, similar to what has been presented previously.24

Conclusions
Wedeveloped amethod for spatiallymapping simultaneousmulti-

functional VN activity from ENG signals recorded during sponta-

neous activity. We tested our method over three different ground

truth scenarios generated via in silico experiments, considering a

realistic geometry of the human VN and an increasing complexity

of simultaneous multi-functional neural activity.

Our method reliably provides an accurate estimation of the

multi-functional VN topography under all tested ground truth

scenarios. Our method significantly outperforms two previous

approaches, allowing generation of a precise multi-functional

topographical map for an implanted human VN.
Patterns 3, 100615, November 11, 2022 11



0 1 2 5 10 12

Broken Channels

0.25

0.5

0.75

1

1.25

1.5

Lo
ca

liz
at

io
n 

er
ro

r (
m

m
)

0 1 2 5 10 12

Broken Channels

0.25

0.5

0.75

1

1.25

1.5

Lo
ca

liz
at

io
n 

er
ro

r (
m

m
)

0 1 2 5 10 12

Broken Channels

0.25

0.5

0.75

1

1.25

1.5

Lo
ca

liz
at

io
n 

er
ro

r (
m

m
)

0 1 2 5 10 12

Broken Channels

0.25

0.5

0.75

1

1.25

1.5

Lo
ca

liz
at

io
n 

er
ro

r (
m

m
)

A

C

G
en
er
ic

St
ru
ct
ur
al

BCUFF TIME

D

DFP DBF

Figure 10. Source localization with reduced

numbers of working channels

(A–D) Q1–Q3 area plots about the localization

error distributions (N = 96) for (A) generic model

and cuff electrode, (B) generic model and TIME,

(C) structural model and cuff electrode, and

(D) structural model and cuff electrode, divided by

electrode (columns) and anatomical information

available a priori (rows). Separate areas are shown

for DFP and DBF, represented in purple and or-

ange, respectively. The filled lines correspond to

the median of the same distribution (experimental

procedures). The worst-case distribution on each

axis, corresponding to 12 broken channels, shows

results significantly different from the random

(results).
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We developed a methodological framework for in vivo func-

tional imaging of peripheral nerves through electro-neuro-

graphic recordings acquired during spontaneous activity,

reducing the invasiveness of stimulation protocols and related

side effects.

The present study could pave the way for development of

spatially selective stimulation protocols targeting multiple bodily

functions at the same time via a single neural interface.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is S.M. (silvestro.micera@epfl.ch).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and code needed to replicate the results of the present work are pub-

licly available at https://github.com/s-romeni/vagus_nerve_discriminative_

beamforming.

Nerve 3D model geometry

Ten hypersimplified nervemorphologies (circular fascicles in a circular nerve23)

were produced, following the typical statistics of the left cervical human VN9

(Figure S1). The diameter of the nerve was set to 2 mm, and the number of fas-

cicles was sampled from a uniform distribution defined in the interval [6, 8] and

for their diameter in [0.15, 0.7] mm. The fascicles were packed using the a priori

check for intersections (ACI) packing algorithm presented previously23

(Figure 1A).

The thickness of the perineurial sheath was set to 0.03 times the diameter,

according to Grinberg et al.25 The cross-sectional morphologies were

extruded for 20 mm to obtain 3D nerve segments, and a cuff electrode or a

TIME18 were added to the geometry. The TIME was modeled as in Romeni

et al.23 (14 active sites), and the cuff is composed of a hollow cylinder (the

‘‘shaft’’) and 14 small cylindrical conductive sites (the recording sites) equi-

spaced along the circumference of the internal surface of the shaft so that their

‘‘internal’’ surface was fully in contact with the nerve epineurium. In both elec-

trode types, a height of 30 mm and a radius of 25 mm were used for the size of

the active sites. When a TIME was added, fascicles were automatically dis-

placed so that no recording site was in any fascicle (Figure 1B).

In Figure 1C, we show how each nerve section is divided into different solid

domains modeled as homogeneous (possibly anisotropic) conductivemedium

with electrical properties taken from Romeni et al.23 Following an approach

adopted previously,12 two models with different structure complexity were
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used in this work. We call the ensemble of the ob-

tained 3D nerve segment with the implanted elec-

trode the ‘‘structural model’’ of the nerve and a
derived model obtained by removing all fascicular components (perineurium,

endoneurium) the ‘‘generic model’’ of the nerve (Figure 1D).

Reciprocity theorem and LFM

We used the structural model to compute the signal recorded at the electrode

sites, which was used to determine function localization. We assumed (as is

customary; see, for example, Wodlinger and Durand12 and Jehenne et al.26)

that the modeled media were linear and quasi-static.27 We collected, in a ma-

trix Lij , the so-called LFM of our problem, the values of the potential at a

recording site j because of a unitary membrane current at a fiber node i,

computed through FEM. If the membrane current at a fiber node i is iiðtÞ,
then its contribution at recording site j will be vijðtÞ = ,iiðtÞLij : Using the super-

position principle, the recorded potential at site j (Figure 2C) because of the

joint action of all active fiber nodes is simply

vjðtÞ =
X
i

vijðtÞ =
X
i

iiðtÞLij :

To reduce the computational load of calculating the LFM, it is customary to

employ the so called ‘‘reciprocity theorem.’’ The theorem states that, in a

purely resistive medium, the electric potential at point j because of a current

injected at point i is equal to the electric potential at point i because of the

same current applied in j. Thus, we can compute the potential recorded at

a given electrode site because of a current injected at a given fiber node

by determining the potential at that fiber node because of a current injected

at the recording site. This hugely reduces the computational load of our

problem because it requires a number of FEM runs equal to the number of

recording sites, which is much lower than the number of fiber nodes

(Figure 1E).

Source localization algorithms

As we already anticipated, the signal recorded by an electrode site can be

seen as a linear combination of the neural sources, weighted by the LFM en-

tries corresponding to the specific fiber node locations. When we perform

source localization, we do not know in general the location of each neural

source and, thus, cannot employ the LFM that ‘‘generates the recorded

signals.’’

Here we discretize the nerve section into a M3M square grid and suppose

that each cell grid (called pixel hereafter) is a potential neural source. We indi-

cate the LFM employed in the localization as bL ˛RP3R, where P = M2 is the

number of pixels in the nerve section, and R is the number of recording sites.

The ‘‘theoretical’’ LFM, employed in generation of neural signals from nodal

current, will be instead indicated as above with L˛RS3R, where S is the num-

ber of actual neural sources. Because we assumed that all recording sites

were located on a plane transverse to the nerve path, here we considered

only the reconstruction of the sources in a section of the nerve.

mailto:silvestro.micera@epfl.ch
https://github.com/s-romeni/vagus_nerve_discriminative_beamforming
https://github.com/s-romeni/vagus_nerve_discriminative_beamforming
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Figure 11. Source localization with corre-

lated noise artifacts

(A and B) Discriminative indices without andwith the

multiplicative noise effect, respectively, for the BP

and the RESP localization. It highlights the spatial

proportionality of the interference (experimental

procedures), using the purple and blue waves

outside of the section, as shown by the legend.

(C and D) The physiological signals and neural re-

cordings of the channel more affected by the noise

without (black) and with (gray) the multiplicative

noise effect, respectively, for the BP and the RESP

localization.

(E) the localization error distributions (N = 96) for the

generic model with a cuff electrode. Separate dis-

tributions are shown for each source concurrently

active, according to their function (BP or RESP).

Outliers (1.5 IQR beyond the first or third quartiles)

are depicted as isolated points outside of the box-

plots. The dotted red lines correspond to the first

and third quartiles of the distribution of localization

errors for random localization, and the filled lines

correspond to the median of the same distribution

(experimental procedures). All distribution results

are significantly different from the random (results).
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Depending on the a priori information available about the nerve fascicular

topography, the localization LFM can be built using the structural or the

generic model geometry. To incorporate a priori information, we proceeded

similar to Babiloni et al.28 by computing a weighted pseudo-inverse LFM

bL +

L =
� bLT

LbL�� 1 bLT
L˛RR3P;

whereL˛RP3P is a diagonal matrix whose i-th entry is 1when the correspond-

ing pixel location can contain a source or 0 when it cannot. For example, all

pixels that fall outside of the external boundary of the nerve or in the TIME shaft

are assigned a 0 weight because no neural source can be there. In the case ofbL being the structural LFM, all pixels outside of fascicles are given a 0 weight.

Following Wodlinger and Durand,12 we channel-wise normalized the

pseudo-inverse LFM to reduce the probability to have a solution with pixels

close to the recording site while increasing the probability to find the solution

even far from the recording site; i.e.,

bL +

L ½:; j�)
bL +

L ½:; j�
LbL bL +

L ½:; j�2
;

where
����,��j2 indicates the L2 norm (hereafter we drop the L subscript to avoid

overly complicated notation).

In the BF,12 the localization map was computed as

4BF
p =

X
r

Pr,½bL + �r; p;
where Pr is the total power (computed as the root

mean square) of the signal recorded by recording

site r.

We previously15 introduced the idea of a discrim-

inative index characterizing the ability of the

different recording sites to acquire relevant informa-

tion about a physiological activity cluster. For

example, previously,15 the discriminative index Dc;r

for the activity cluster c and the recording site r

was a measure of the ability of the recording site

to provide information to deduce when activity

cluster cwasmodulated (Figure 1F). The discrimina-

tive index induces an importance ordering of the
recording sites and can be used to weight the ‘‘fields of view’’ of each

recording site in a ‘‘localizationmap’’ (Figure 1G). These considerations helped

to define a localization index, the DFP, as

4DFP
p;c =

P
r ½bL�p;rDr;cP

r ½bL�p;r ;

where Dr;c is the discriminability coefficient corresponding to recording site r

and physiological activity cluster c.

DBF used the localization map

4DBF
c;p =

X
r

Dc;r ½bL + �r;p:

We can see that BF is a subcase of DBF, where Dc;r was set equal to the r-th

channel power for all activity clusters. For this reason, BF can at most detected

activity clusters but cannot discriminated them. DBF can be thought of as

operating ‘‘cluster-wise filtering,’’ because it enhances the components of

the inverse LFM that can better capture relevant information from the source

of interest.

With all source localization methods, the estimated source position was

equal to the spatial position corresponding to the maximum value of the

considered localization map. The localization error was estimated by

computing the Euclidean distance between the original position and the esti-

mated one (Figure 1H). When electrode damage was studied, we first

excluded the signals corresponding to the damaged recording channels in
Patterns 3, 100615, November 11, 2022 13
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the calculation of the discrimination indices, and then it was necessary to re-

define the lead-field matrix as bL ˛RP3A, where P = M2 is the number of pixels

in the nerve section, and A is the number of available recording sites before

calculation of the localization methods.

To spatially visualize the results in the nerve section, on the localization map

matrixwith anoriginal dimensionof 40340pixels (a singlepixel corresponds to

50 mm), we first applied a spatial resampling, generating 1,0003 1,000 pixels,

and then we applied a smoothing spatial filtering (moving average on a 303 30

pixels square kernel), obtaining a smoothed localization map matrix. In the

generic model geometry, we draw a contour plot with 10 isolines increasing

every 10 percentiles of the smoothed localization map matrix, whereas for

the structural model geometry, we plotted the values of the smoothed localiza-

tion mapmatrix. To distinguish those values from the original localization map,

we called this the new quantity localization index (Figure 1H).

In silico experiments and discriminative index definitions

Single deterministic sinusoidal source inBrowniannoise localization

As a first in silico experiment, we tried to localize a single informative source

immersed in a Brownian (1=f2) background noise. Specifically, we located a si-

nusoidal source with a frequency f0 = 4 Hz and amplitude of 1 mA in the most

central pixel of a selected fascicle and noise sources in the remaining pixels of

the fascicles. Fiveminutes of sinusoidal signal was generated using a sampling

frequency of 100 Hz. We generated Brownian noise time series using the

MATLAB function dsp.ColoredNoise, and then we scaled them so that the

average SNR across recording sites had value 1. Specifically, let us indicate

the array of informative signals as

SðtÞ = ½0; .0; sðtÞ; 0; .; 0�˛ RP3T ;

where sðtÞ is a time series of duration equal to T so that recording site r records

the informative signal

SrðtÞ = bLrSðtÞ;

where bLr ˛R13P.

Let us also indicate the noise time series obtained through MATLAB as

½R1ðtÞ;.; 0; .; RnðtÞ�, where 0 is in the location corresponding to the informa-

tive source. These noise signals are scaled with a constant a so that the noise

signal is

Rðt;aÞ = ½aR1ðtÞ;.; 0; .; aRnðtÞ�˛ RP3T

and the contribution of the noise signal to the r-th site recording is

Rr = bLrR:

We fixed the parameter a so that

SNR =
1

Nr

X
r

P½SrðtÞ�
P½Rrðt;aÞ� = 1:

We computed the discrimination coefficient for a given recording site as the

power of the signal recorded by the given site in a band with a half-width df =

0:1 Hz around the sinusoid frequency f0 = 4 Hz .

Df0 ;r = PðSrðtÞ; ½f0 � df ; f0 + df �Þ

In this way, recording sites closest to the informative source have a higher

discriminative coefficient value because the contribution of the informative

source is higher, whereas the contribution of the noisy background is compa-

rable at all sites. We performed one set of simulations for each electrode (TIME

and cuff), model of the nerve (generic and structural), and nerve fascicular

topography (10 topographies; Figure S1), placing the source, in turn, in each

fascicle of the section. For each set of simulations, we placed the single infor-

mative source in the center of each fascicle in turn, obtaining a number of sim-

ulations equal to the number of fascicles in all nerve topographies.

Multiple deterministic sinusoidal sources in Brownian noise

localization

As a second in silico experiment, we considered the localization of concur-

rently active informative sources. Background noise was obtained by locating
14 Patterns 3, 100615, November 11, 2022
Brownian noise sources in all pixels free of informative sources. The same

scaling factor a was employed for noise time series so that the SNR for each

source is indeed lower than 1 because of the presence of the other informative

sources, which have the same amplitude.

We considered the case of three sinusoidal sources with frequencies equal

to 2 Hz, 4 Hz, and 16 Hz. The employed discrimination coefficient was the

same as in the case of single source localization, namely

Dfi ;r = P
�
SðiÞ

r ðtÞ; ½fi � df ; fi + df �
�
;

with S
ðiÞ
r being the contribution to the recording from site r of the signal from

informative source i, and fi = f2; 4; 16g Hz.

We performed one set of simulations for each electrode (TIME and cuff),

model of the nerve (generic and structural), and nerve fascicular topography

(10 topographies; Figure S1) by testing all partial permutations of the three

sources for any choice of three fascicles in a given section, which correspond

to a number of simulations equal to Nfasc!=ðNfasc � NsourcesÞ!.
Multiple biophysical source localization

We tested the capabilities of our algorithms in a more realistic setting where

signals from informative sources were generated through biophysical

modeling. Specifically, we simulated neural fiber activity generating ENG sig-

nals, XENG, and two macroscopic physiological signals, XBP and XRESP, which

represent the BP and RESP signals during spontaneous activity, respectively

(see ‘‘macroscopic physiological signal generation’’ for details).

The simulated ENG signals are processed using the following pipeline:

band-pass filtering ([1,000, 6,000] Hz, elliptic filter, fourth order), squaring,

moving average (150-ms window), square root extraction, low-pass filtering

(Butterworth filters, fourth order, with a cutoff frequency of 10 Hz and 4 Hz cor-

responding to BP- and RESP-related source localization).

The discriminability coefficients, for a specific recording site r and macro-

scopic physiological signal c = fBP; RESPg, are defined here as the coeffi-

cients for the regressors Dc;r in the linear problem

XpENG
t;r = Xphysio

t;c Dc;r + εt;r ;

where XpENG is the processed ENG signal matrix; Xphysio
c = ½XBP;XRESP� repre-

sents the BP and RESP signals, respectively; and εt;r is a zero mean, unknown

variance Gaussian noise.

The discriminability coefficients are computed using the ordinary least

squares estimator

D =
�
Xphysio

�+
XENG;

where we indicate with the subscript (+) the Moore-Penrose pseudo-inverse

matrix.

We performed one set of simulations for each electrode (TIME and cuff),

model of the nerve (generic and structural), and nerve fascicular topography

(10 topographies; Figure S1) by testing all partial permutations of the

two physiological sources for any set of two afferent fascicles in a given

section, which correspond to a number of simulations equal to ðNfasc �
floorðNfasc =2ÞÞ!=ððNfasc � floorðNfasc =2ÞÞ � NsourcesÞ! .
Multiple biophysical source localization in the presence of motion-

related BP and RESP activity artifacts

Motion-related BP and RESP activity artifacts are present in real data experi-

ment affecting the quality of the recordings. For this reason, we tested the

robustness of the source localization algorithms in the presence of these mo-

tion-related artifacts. considering an additional ENG model signals containing

a BP- andRESP-correlatedmultiplicative noise causing a time-varying contact

impedance with location dependence.

The additional ENG model, including multiplicative noise, reads

~X
ENG

r = XENG
r ðtÞ,�1 + bRESP;r ,gRESPðtÞ + bBP;r ,gBPðtÞ

�
;

whereXENG
r represents the previous ENGmodel recorded from a channel r (see

‘‘multiple biophysical source localization’’) without multiplicative noise and

gaðtÞ =
XaðtÞ � minXaðtÞ

maxXaðtÞ � minXaðtÞ+ sn; a = BP; RESP
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are stochastic time-dependent modulation factors simulating movement arti-

facts related to BP and RESP profiles, XaðtÞ: The deterministic numerical

values of these modulation factors gaðtÞ range from 0–1. We thus added a

Gaussian noise sn � Nð0; 0:1Þ with variance equal to 10% of the maximal

values of the deterministic part of gaðtÞ.
We added a spatial dependence of the motion-related artifacts by modeling

a heterogenous effect on different channels. We considered a Lorentzian

spatial distribution by means of the coefficients

bba;r =
1

1+d2
ka;r

; where dka;r = ðqka � qrÞpR;

where ka is the index of the site where the contact impedance modulation

correlated to function a = fBP;RESPg is maximal, qr is the angle expressed

in radians of the channel r related to polar coordinates with origin in the center

of the nerve section, and R is the radius of the nerve.

To limit the coefficient bb in the interval [0.1,1], we normalized them bymeans

of the equation

ba;j =
bba;j � minbba

maxbba � minbba

,ðbmax � bminÞ+ bmin;

where

bmax = 1
bmin = 0:1:

We performed the same set of simulation as in multiple biophysical source

localization.

Macroscopic physiological signal generation

To simulatemacroscopic physiological signals like BP andRESP, we assumed

tomeasure vital signals of a healthy individual in a resting state with a sampling

frequency equal to 40 kHz to be consistent with neural signal frequency sam-

pling (‘‘generation of physiologically plausible neural recordings’’).

BP signal

The synthetic BP signal XBP was generated using the dynamical system pre-

sented previously,29 which we report in the supplemental experimental proced-

ures. The heart rate (HR) was imposed equal to 75 beats per minute (bpm)

because it is the average value for a healthy subject at rest.30 We hypothesized

that, during rest, the sympathetic and parasympathetic activities modulating the

HR equilibrated, which is reflected in the choice of setting s21=s
2
2 = 0:5 (see sup-

plemental experimental procedures for further information).

RESP signal

The synthetic RESP signal XRESP (Figure 7A) was generated using a simple

resistive-capacitive (RC) model31 (see supplemental experimental procedures

for more information). The RESP cycle duration was imposed to be 3.75 s

(1.00 s inspiration, 2.75 s expiration), whereas other parameters have been

set to have a tidal volume (TV) of around 0.45 L during the inspiration peaks,

corresponding to the average standard rest condition. The phase of the signal

was adjusted to align the inspiratory peaks with the oscillations due to RESP

sinus arrhythmia.

Generation of physiologically plausible neural recordings

For each nerve section, we populated half of the fascicles with Ab fibers and the

remaining fascicles with Aa fibers (Figure S2), this approximately respects the

proportion between afferent and efferent fascicles observed in functional vago-

topy.8,11 To respect the proportion of fibers from the two populations observed

physiologically, but limiting computational effort, we imposed the average num-

ber of fibers per fascicle equal to a quarter of the true value (766 fibers/fascicle

afferently and 335 fibers/fascicle efferently11), resulting in a fiber density equal to

1,367 fibers/mm2 in the afferent fascicles and 598 fibers/mm2 in the efferent

ones. Fiber models were implemented in NEURON using Python. Aa motor

and Ab sensory fibers were modelled with Gaines’ implementation32 of the

classic McIntyre-Richardson-Grill (MRG) fiber33 (Figure 2A).

The MRGmodel of a myelinated fiber consists of a multi-compartment dou-

ble cable in which each internodal section is composed of 2 paranodal myelin
attachment segments (MYSA), 2 paranodal main segments (FLUT), and 6

internodal segments (STIN). In Figure S3A, the Gaines’ implementation

lumped-parameter equivalent circuit of internodal and nodal sections is

reported.

For each node of each fiber, the membrane current density corresponding

to a single action potential was recorded virtually using a time resolution

equal to 5 ms, and then each signal was converted in a current scaling for

the node’s area and finally downsampled, achieving a sampling frequency

of 40 kHz. A fiber segment with a length of 2 cm (Figure S3B) was modeled

for each different value of the fiber diameter, which was sampled from a

normal distribution Nð11:5 mm; 2:2 mmÞ truncated at [10,13] mm for Aa fibers

and from a normal distribution Nð9 mm;2:8 mmÞ for an Ab fiber truncated at

[6,12] mm for Ab fibers. As in Smets et al.,34 we modeled only myelinated fi-

bers, and unmyelinated fibers (C fibers) were not considered. This is because

the amplitude of an action potential (AP) is proportional to the square of the

fiber diameter,35 and because the diameter of the myelinated fibers is larger

than that of the unmyelinated fibers, the amplitude of the APs of the myelin-

ated fibers turns out to be larger, causing the unmyelinated fibers to have a

less predominant contribution in an in vivo recording. To generate the syn-

thetic ENG signal, we followed what has been done, for example, by Wodlin-

ger and Durand12 and Jehenne et al.26 We determined the shapes wf;rðtÞ of
the f-th fiber single-unit AP (SUAP) recorded by recording site r using the

theoretical LFM and summing the contributions of the different nodes in

each single fiber; i.e.,

wf ;rðtÞ =
X
n˛ f

wnðtÞLn;r :

We determined the spike times tf ðtÞ˛ f0; 1g (where the ones correspond

to the peak of an AP) for each fiber f in the section (Figures 6B and 7B)

and produced the signals at a given site because of any single fiber by

convolving the array of its spike times with the SUAP recorded by that

site; i.e.,

XENG
f ;r ðtÞ = wf;rðtÞ5 tf ðtÞ:

The signals recorded by the same site were finally summed up to produce

the ENG recorded by that site,

XENG
r ðtÞ =

X
f

XENG
f ;r ðtÞ:

The shape of the characteristic SUAPs wf;rðtÞ was determined by adding up

themembrane current from each fiber node, obtained after a short intracellular

stimulation pulse with amplitude sufficient to elicit a single AP, scaled accord-

ing to the resistance between the node and the recording site (Figure S3C). In

this way, a different template for each recording channel and for each fiber was

obtained (Figure S3D).

To compute the array of spike times tf ðtÞ for each fiber, we assumed that

two of the fascicles containing Ab fibers were related to BP and RESP, respec-

tively, and that all remaining fascicles were supposed to provide neural back-

ground noise. Refractory periods for all fibers were imposed equal to 1.5ms by

removing events with a smaller interspike interval.

The fiber spike times for the informative neural components (BP, RESP) were

generated by an inhomogeneous Poisson processes with time-varying rates

proportional to the values of simulated BP and ventilation airflow, obtained

from the dynamic system from Clifford and McSharry29 and the lumped pa-

rameters model,31 respectively.

In particular, the two time series were rescaled between 2.5 and 25 Hz ac-

cording to microneurographic signals from human VN,21

lBPðtÞ = XrBPðtÞ; lRESPðtÞ = XrRESPðtÞ;

where XrBP and XrRESP are the rescaled physiological signals. The spike trains

for the noisy neural component were generated by homogeneous Poisson pro-

cesses with randomly chosen rates between 2.5 and 25 Hz (one rate for

one fiber).

The neural signal components modulating BP and RESP were generated

by Ab fibers,19,20 as were the noisy neural signals from all fascicles except

one, which was populated by Aa fibers, to respect a naturalistic proportion
Patterns 3, 100615, November 11, 2022 15
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of afferent versus efferent fibers in the nerve.36 Finally, to have a direct compar-

ison with real-data experiments, we estimated SNR measures following previ-

ous procedures19,20 to extract BP and RESP profiles. The SNR was computed

as the ratio between themaximum of BP and RESP and the baseline amplitude

of the respective signals.

Statistical analysis

Comparisons between source localization error distributions and

random localization

To determine the chance level for the localization errors, we computed the

distribution of localization errors obtained by localization algorithm

randomly placing the source inside the admissible subset of the nerve sec-

tions (the whole section excluding the electrode bodies for generic models,

and the fascicular regions for structural models). We thus computed the

distribution of localization errors by considering surrogate data generated

using the corresponding synthetic data simulation setting. To compare

the performance of random versus source localization algorithms, we

used a Kolmogorov-Smirnov test followed by Bonferroni correction for mul-

tiple comparisons.

Comparisons between source localization algorithms, electrode

types, and geometrical models

We employed GLMs for localization errors to estimate the effects of consid-

ering different localization algorithms, electrode types, and geometrical

models.

We considered the three synthetic data simulation settings described above

(‘‘in silico experiments via discriminative indices’’). We considered possible

random effects because of multiple simulations for each nerve section and

for each source distribution in the nerve fascicles.

The fixed effects common in all three synthetic data simulation settings were

d source localization algorithm: for deterministic sources (single and mul-

tiple sinusoidal sources) DFP, DBF and BF (reference level); for neural

sources DBF and DFP (reference level);

d electrode type: cuff (reference level) or TIME;

d geometrical model: generic (reference level) or structural.

In the case of multiple deterministic sources, the frequency of the source of

interest was added to the fixed effects. In the case of multiple neural sources,

the physiological function related to the source is added to the fixed effects

(BP or RESP, with BP reference level).

The random effects were the identifiers of nerve section and fascicle con-

taining the informative source. Because fascicles in different sections have

different sets of identifiers, fascicles and section identifiers are nested random

effects.

Because localization errors are positive definite, we employed a gamma dis-

tribution with link function x� 1. Namely, the errors for a given choice of the

fixed effect factors are distributed according to a gamma distribution

GðlerrorÞ; i.e.,

ðlerrorÞ� 1 � bDBFXDBF + ðbDFPXDFPÞ+ bTIMEXTIME + bstructXstruct +
�
bfreqXfreq

�
+ ðbRESPXRESPÞ+ ε+bsect +bfasc j sect ;

where we put in parentheses the terms that can be omitted depending on the

experimental settings. The random terms are ε � Nð0; sεÞ, bsect � Nð0; ssectÞ,
and bfasc j sect � Nð0; sfasc j sectÞ.
When a factor is categorical, a reference level is established, and a term of

the above expansion is added for each different level [. The corresponding X[

is 1 when the factor occurs at level [ and 0 otherwise. At the reference level, all

X[ corresponding to a factor are 0.

Because the fixed effects determine the reciprocal of the average localiza-

tion error, positive values fixed effects bX decrease the characteristic error,

and negative fixed effects increase it. High absolute value fixed effects have

a stronger effect on the error in both directions.
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