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ABSTRACT This paper proposes a new paradigm for control plane in Time Sensitive Networks (TSN). An
SDN controller proactively instructs network elements on the reconfigurations to perform locally if some
specific events occur (e.g., failures, performance degradations). Instructions are given in the form of Finite
State Machines (FSMs), which store information related to the actions that each network element should
execute to react against a specific event. Thus, if such event occurs, the SDN controller is by-passed reducing
reaction (e.g., recovery) time. Such an approach is here implemented for recovery upon failures in TSN.
Experiments of failure recovery are carried out and measurements are presented comparing the FSM-based
solution with a fully-centralized reactive restoration. Moreover, the proposed approach is compared through
simulations against Frame Replication and Elimination for Reliability. Results will show how proactive
FSM manipulation can strongly reduce recovery time in SDN-based TSN networks without overloading the
network with frame replicas.

INDEX TERMS TSN, Time Sensitive Networking, IEEE 802.1, SDN, NETCONF, YANG, recovery,
restoration, FRER.

I. INTRODUCTION

Emerging services supported by a number of challenging
applications like industrial automation, or autonomous driv-
ing, require efficient control and management of network re-
sources to assure requirements not only by means of through-
put but also by means of delay and jitter. Time Sensitive
Networks (TSNs) like the ones defined by IEEE TSN Work-
ing Group [1], are able to satisfy stringent requirements by
means of reliability, delay and jitter. However, still there is no
consensus within the industry on which control plane (fully
centralized or fully distributed) is ideal for TSN. Regarding
a fully centralized scenario, following the Software Defined
Networking (SDN) paradigm [2], a number of benefits like
rapid service deployment and global network optimization
can be achieved. However, several issues are still open, e.g.
concerning scalability and dynamic restoration [3], espe-
cially in TSN. For example, for large networks, in the pres-
ence of failures, fast network recovery is not easy to achieve.

The reason is that a huge number of restoration requests may
need to be processed by the SDN controller, thus greatly
affecting recovery time [4]. In order to avoid such problems
and thus to enhance network reliability in TSN, more robust
mechanisms can be also adopted, as Frame Replication and
Elimination for Reliability (FRER) [5]. FRER is based on
redundant transmissions along alternative routes of each flow.
Although using FRER indisputably increases reliability, the
drawback is the increased network load due to replicas and
an higher scheduling complexity especially in the presence of
time critical flows. Moreover, in general, in SDN networks,
several recovery mechanisms – like Fast Failover [6] – have
been implemented improving responsiveness in OpenFlow-
based networks [4], [6], [7]. However, there is a lack of
methods which are compliant with the NETCONF proto-
col [8] and YANG data modelling [9], that are considered
and already supported in TSN networks [10]–[12], especially
to offer open and vendor-independent network configura-
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tion [10], [12].
Recently, within the Internet Engineering Task Force

(IETF), a NETCONF/YANG method [8], [9] has been pro-
posed to describe and manage events, operations, and states
related to a network [13]. Such method is based on Finite
State Machines (FSMs), which store information related to
events, network states, operations and network reconfigu-
ration. FSM can be installed by an SDN controller in a
device agent which is responsible to autonomously perform
operations associated to a specific network state. According
to [13], the dynamic FSM loading mechanism can be used in
a variety of use cases and applications, including: i) recovery
and transmission adaptation in optical networks [14], [15];
ii) network telemetry to define and embed custom data probes
into data plane devices; iii) monitoring optimization of packet
loss and delay for real time systems.

In this work, in a context of an SDN scenario, we propose
to transfer – through the NETCONF protocol [8] and FSM –
control logics into the agents of TSN devices. Thus, the SDN
controller proactively instructs the agents deployed at each
network element, while the network is properly operating,
on the actions to perform in case of specific events. This
way, devices’ agents are able to autonomously take the proper
actions without the SDN controller intervention, thus reduc-
ing control plane closed-loop delays due to signaling and
also due to processing at the SDN controller. We showcase
the FSM technique in TSN networks for a reliability use
case, proposing a recovery mechanism named Delegated
Restoration for TSN (DRTSN).

The contributions of this paper are the following. DRTSN
based on FSM is presented for recovery in TSN. The im-
plementation of agent modules and of the data plane is
detailed. An experimental testbed is set up and the pro-
posed method analyzed through measurements (e.g., recov-
ery delay) against a fully centralized reactive restoration. The
analysis of time contributions to perform agent functions is
shown. After the observation of measurements, an optimiza-
tion of the whole procedure is provided showing a further
reduction in recovery delay achieved with DRTSN. Then,
DRTSN is compared with FRER by means of simulations.
Measurements and simulations show that DRTSN permits
to achieve faster recovery time than the reactive restoration,
without overloading the network as FRER.

The paper is organized as follows. We present background
information and related work in section II. In section III,
we present the system architecture and the adopted FSM
YANG model. In section IV, DRTSN for recovery in TSN
is detailed. In section V we present the implementation in
Linux. In section VI we evaluate the performance of the
proposed solution. We conclude our study and present future
research directions in section VII.

II. BACKGROUND INFORMATION AND RELATED WORK
TSN Data Plane: Techniques used to provide delay guar-
antees are Scheduled Traffic (IEEE 802.1Qbv [16]), Frame
Preemption (IEEE 802.3br [17], IEEE 802.1Qbu [18]), Asyn-

chronous Traffic Shaping (802.1Qcr [19]) and Cyclic Queu-
ing and forwarding (802.1Qch [20]). These standards define
how frames belonging to a particular traffic class or having a
particular priority are handled by TSN-enabled bridges. We
focus on IEEE 802.1Qbv [16] which introduces a transmis-
sion gate operation for each traffic class queue. The transmis-
sion gates are in open or close state and controlled by a Gate
Control List (GCL). For each output port a GCL consists of
multiple schedule entries. For the open gates, selected traffic
is allowed to pass through to the transmission selection block,
which provides access to the medium. Frame Preemption,
allows the ongoing transmission of a lower priority frame
to be preempted by a higher priority frame (express traffic)
and thus ensures lower latency for high priority frames.
Express frames can preempt preemptable frames by either
interrupting the frame transmission or by preventing the
start of a pMAC frame transmission. The queueing model
is different in case that ATS scheduling is applied (802.1Qcr
specification [19]).

Regarding 802.1Qbv scheduling, we refer interested read-
ers to [21]. In [22], [23], the TSN 802.1Qbv schedul-
ing problem is addressed by exploiting techniques, such
as Satisfiability Modulo Theory (SMT) and Optimization
Modulo Theory (OMT). Delay analysis for AVB traffic in
802.1Qbv is presented in [24], [25]. More recently, Window-
Based Schedule Synthesis [26] has been proposed for indus-
trial IEEE 802.1Qbv TSN Networks with unscheduled end-
systems. In [27] the problem of finding the routes for AVB
flows over TSN-based networks is addressed. The authors
use a K-shortest path heuristic to reduce the search space
of routes and a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) metaheuristic for optimizing the routing.
Authors in [28] explore how the routing of time-triggered
flows affects their schedulability and also propose ILP-based
algorithms for constructive deterministic routes. Various ILP
formulations for the combined routing and scheduling time-
triggered traffic problem, while following the SDN-based
paradigm are presented in [29]. Authors in [30] propose
a joint routing and scheduling approach for both TT and
AVB traffic. An ILP scheduling and routing formulation to
improve the TT traffic schedulability are proposed in [31]. A
List Scheduling-based heuristic and scheduling and routing
are proposed in [32]. The work in [33] has shown how
to reconfigure the GCLs at runtime, e.g., as a reaction to
network changes, which could also be due to failures.

TSN Control plane: three models have been proposed in
the 802.1Qcc amendment. In the fully centralized case, the
flow requirements are conveyed from a Centralized User
Configurator (CUC) to a Centralised Network Configurator
(CNC), using a User Network Information (UNI) described
in 802.1Qdj. The CNC is responsible for the configuration
and control of the TSN switch fabric, while the CUC is
responsible for the end-points (Talkers/Listeners). In the
802.1Qdd amendment, the fully distributed case is inves-
tigated, while in the Centralized Network-Distributed User
Model, the UNI exists between the endpoints and the access
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TSN bridge; however, in the latter, the flow specs are passed
to a CNC which is responsible for the network segment. In
802.1Qdd amendment, the fully distributed case is investi-
gated where the resource allocation and registration is made
in a distributed fashion, while the endpoints only interact with
the access TSN bridge over the UNI.

Failure recovery: Recovery in SDN networks is classified
in two main categories: proactive and reactive [4]. With
the proactive methods, one or more alternative paths are
computed before the failure, while the reactive methods
require that switches send a restoration request to the central
controller. Proactive approaches permit to reduce recovery
time with respect to reactive approaches. Reliable Control
and Data Planes for SDN have been investigated in [34].
A method of handling data packets through a conditional
state transition table for implementing at least one finite state
machine is proposed by [35]. In OpenFlow environments,
Fast Failover has been proposed [6]. It leverages the concept
of Groups, where each group is composed of a series of
flows, all treated in the same way. Fast Failover is a proac-
tive approach that establishes switching rules before failure
with the objective of speeding up recovery time. A similar
approach has been proposed in [4], also managing congested
links. In [7], a segment-based recovery has been proposed for
OpenFlow. Basically, with these approaches, a node detecting
the failure, switches the traffic to another port, i.e. the one
associated to the backup route. In general, such methods may
suffer from the fact that, if the node detecting the failure
does not have any other ports (e.g., as in a ring topology) to
switch traffic, central controller intervention may be required,
thus resulting in a reactive method. In general, previous
approaches in SDN networks have been mainly implemented
with the OpenFlow protocol.

Moreover, hybrid SDN has been investigated. In [36], hy-
brid SDN is referred to networks with sparse SDN switches
in a legacy network or to a network composed of switches
having both SDN switching and legacy switching function-
alities (thus, based on both SDN and distributed protocols).
As an example, in [37], a recovery mechanism is proposed
in an environment where legacy network devices and SDN
switches co-exist. In [38], a centralized controller is used
for long-term optimization relying on OpenFlow to configure
arbitrary forwarding paths during normal operations, while
distributed protocols (e.g., Interior Gateway Protocol) can be
used for short-term reaction to failures. Hybrid SDN may
provide more robustness against failures than classical SDN.
In our paper, the proposed solution does not exploit legacy-
network distributed protocols, while it operates with the only
NETCONF/YANG in both normal and failure conditions.

A different approach in order to enhance reliability is to
rely on redundant transmissions. IEEE 802.1CB specifies
the procedure for FRER in a redundant transmission for
reliability purposes [5]. FRER assumes the existence of a
Talker-Listener (i.e., source/destination) pair per data stream.
A stream is composed of a number of packets transmitted per
time interval. FRER replicates a stream (thus, the packets)

into copies named member streams, which follow alternative
routes along the network. Multiple member streams compose
a compound stream. Components receiving multiple copies
of the same packet proceed with the elimination of the
replicas. As an example, a talker may be the only element
generating two member streams from a stream. In this case,
the listener eliminates replicas of the same packets. Accord-
ing to 802.1CB [5], bridges can replicates the packets of
the stream, splitting the copies into the multiple member
streams, and then rejoins those member streams at one or
more other points, eliminates the replicates, and delivers
the reconstituted stream from those points. FRER requires
the management of the following two main parameters: a)
stream_handle which is an integer identifying the compound
stream to which the packet belongs and b) sequence_number,
an unsigned integer identifying the order in which the packet
was transmitted relative to other packets in the same com-
pound stream.

The DRTSN method based on FSM proposed in this pa-
per falls within the umbrella of proactive schemes. It does
not require any central controller intervention upon fail-
ure neither packets/frames replica, and it is specifically de-
signed/implemented for the NETCONF protocol and YANG
data modelling language. User-defined FSM enforcement can
be also applied using P4 language and compilers [39]. We
plan to incorporate the concept of FSM with P4 over a
stateless data plane in our future work.

III. TECHNICAL APPROACH
We assume a network composed of multiple forwarding
devices with TSN-aware bridging capabilities and several
talker/listener pairs, generating and receiving traffic, respec-
tively. The solution we will present can be applied in both
pure L2 or L3 operations as long as there is TSN support
on the forwarding plane. During normal operation, the SDN
controller proactively configures the specific FSM in the local
agent deployed at each device. A FSM includes information
related to the set of actions to be locally taken to re-act against
an event. For example, a node detecting a failure triggers
a state transition into its FSM, from a “Stable" state, to
“Failure" state. Then, such new state implies a set of specific
actions to be taken in order to react against the event. FSM
is generic and can model any system characteristic or event.
This paper will be focused on the recovery use case in TSN.
Depending on the state, we assume that the set of actions can
be: a) TSN related configuration, b) L2/L3 forwarding rules.

A. SYSTEM ARCHITECTURE
For each forwarding device, the system architecture we con-
sider is depicted in Fig.1. The proposed solution is thought
for the fully centralized control plane architecture presented
in IEEE 802.1Qcc [40]. Please note that a fully centralized ar-
chitecture may be required since, as reported in the standard,
many TSN use cases require significant user configuration
in the end stations (talkers and listeners), such as in many
automotive and industrial control applications. In such use
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FIGURE 1. System architectureLast login: Fri Oct 23 13:58:17 on ttys000
(base) MacBook-Pro-di-Nico:~ nico$ cd Documents/Ing/Conference/ICC\ 2021/scritti/Fig/
(base) MacBook-Pro-di-Nico:Fig nico$ pyang -f tree finite-state-machine.yang 
finite-state-machine.yang:5: error: module "ietf-inet-types" not found in search path
module: finite-state-machine
   +--rw current-state?   state-id-type
   +--rw states
      +--rw state [id]
         +--rw id             state-id-type
         +--rw description?   string
         +--rw transitions
            +--rw transition [name]
               +--rw name           string
               +--rw type?          string
               +--rw description?   string
               +--rw filters
               |  +--rw filter [filter-id]
               |     +--rw filter-id    uint32
               +--rw actions
               |  +--rw action [id]
               |     +--rw id             transition-id-type
               |     +--rw type           enumeration
               |     +--rw conditional
               |     |  +--rw statement    string
               |     |  +--rw true
               |     |  |  +--rw remote-address?   inet:ip-address
               |     |  |  +--rw execute           
               |     |  |  +--rw next-action?      transition-id-type
               |     |  +--rw false
               |     |     +--rw remote-address?   inet:ip-address
               |     |     +--rw execute           
               |     |     +--rw next-action?      transition-id-type
               |     +--rw simple
               |        +--rw remote-address?   inet:ip-address
               |        +--rw execute           
               |        +--rw next-action?      transition-id-type
               +--rw next-state?    state-id-type
(base) MacBook-Pro-di-Nico:Fig nico$ 

FIGURE 2. Yang tree of FSM

cases, the computational requirements can be complex and
may require a detailed knowledge of the application soft-
ware/hardware within each end station. The fully centralized
architecture includes two main control plane components: the
Centralized User Configuration (CUC) and the Centralized
Network Configuration (CNC). CUC discovers end stations,
retrieves end station capabilities and user requirements, and
configures TSN features in end stations. In this paper, the
implementation of CUC is out of scope and we assume
end station discovery already performed and end stations
configured by CNC. CUC features can be also assumed to

be integrated into CNC. CNC acts as the SDN controller. In
general, CNC uses remote management to discover physical
topology, to retrieve bridge capabilities, and to configure
TSN features/resources in each bridge. Regarding TSN re-
source management, the reader may refer to IEEE802.1Qbv,
which includes the Management Information Base (MIB) for
support of the Scheduled Traffic Enhancements for 802.1Q
Bridges. In the case of our implementation, as it will be de-
scribed in Sec. V, we will refer to TAPRIO which implements
a simplified version of IEEE802.1Qbv. The next subsections
will describe the control modules involved in our proposed
solution and the FSM YANG model.

The main functional building blocks are detailed in the
following.

SDN controller: it is responsible for traditional network
configuration and monitoring. Thus, the SDN controller con-
figures bridges in normal network conditions. Moreover, the
SDN controller installs FSMs as it will be detailed next. The
protocol considered between the SDN controller and the TSN
data plane is NETCONF. The SDN controller configures each
interested device at the data plane. To this purpose, it sends
a NETCONF <edit-config> message towards each device
agent. The content of this message is based on a specific
YANG data model describing the configuration parameters
of the device and includes the values of these parameters
should take. The NETCONF <edit-config> message writes
such values in the local NETCONF Server at the agent. In
our scheme, the SDN controller writes in the NETCONF
Server also the description of the FSM that each agent should
consider for delegation in the case of specific events. We
assume all the control plane messages sent in an out-of-band
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control plane.
Then, each TSN node presents modules for local control:

the agent and the TSN App.
Agent: it is the local controller of each data plane device.

The agent has access to the local NETCONF Server, it parses
configuration parameters and performs device configuration
accordingly. Moreover, the agent is also responsible to parse
and interpret local FSMs and, if requested by network events,
to perform the corresponding set of actions. The agent
handles layer-2 and layer-3 operations and interacts with
the TSN App. With the proposed solution, control plane
messages are exchanged also between different agents. Even
those control plane messages are sent in the out-of-band
control plane. More details on the agent will be provided
next.

TSN App: it is responsible for the actual configuration of
the TSN parameters in the bridge. TSN configuration can be
made either from a NETCONF call by the SDN controller or
locally by the agent, because of a FSM state transition. No
logic resides on the TSN App, it is only used to execute the
proper configuration.

B. YANG MODEL TO INSTALL FSM
FSMs are described by YANG [13]. The related YANG tree
is depicted in Fig. 2 and here described.

The attribute <current-state> defines the current state of
the FSM. Then, the YANG tree presents a list of states, where
each <state> is associated to an identifier (<id>) and to a
string of description (<description>). Each state presents a
list of transitions to other states, where each <transition>
is associated to a name, a type (taken from a pool of pos-
sible transition types predefined inside the YANG model), a
string of description, and other attributes. Among them, the
attribute<filter> enables to further express a transition (e.g.,
when a transition is triggered by a parameter exceeding a
threshold, as a monitored packet loss exceeding a threshold).

Finally, a list of actions is described. Each <action>
is defined by an identifier (<id>) and a type (<type>).
An action can be <conditional> or <simple>. The former
is executed depending on the check of specific conditions
described through the attribute <statement>, while the latter
is directly executed. An action can be taken locally or toward
a remote node. In the second case, the <remote-address>
attribute is needed to specify which node has to be involved.
The <execute> attribute actually recalls the execution of the
action. If more actions have to be executed, these actions
can be executed sequentially according to the <next-action>
attribute. Finally, the <next-state> attribute defines the new
state of FSM after that transition.

IV. A USE CASE: FAILURE RECOVERY WITH DRTSN
The proposed recovery scheme – DRTSN – is used to realize
recovery after failures without involving the SDN controller.
However, a similar technique can also be applied in the
case of performance degradation. Thus, several “Failure"
states can be considered, each one associated to a specific

failure (e.g., port down) or performance degradation (e.g.,
experienced delay above a given threshold).

The SDN controller pre-installs FSMs at each data plane
device in order to affect data plane operations in the case
of a failure, such as frame rerouting according to a pre-
computed path, buffer activation, scheduling, class of service
redefinition. An illustrative example is depicted in Fig. 3,
where a stream of frames is considered between a talker-
listener pair along the path A-E-D. Our goal is to instruct data
plane devices to perform rerouting without SDN controller
intervention upon fault in order to speed up recovery.

During Normal operation: The NETCONF<edit-config>
message installs FSMs. The content of these messages is
based on the YANG model described in Sec. III-B. Upon
reception of the <edit-config> messages, data plane devices
are instructed on the actions to perform based on the network
state.

FSM can be dynamically updated based on traffic load,
thus, as an example, under stable conditions, the pre-
computed backup path of a stream can be changed by the
SDN controller based on buffers load. For the case of hard
failure, the installed FSMs are abstracted in Fig. 4 and
are composed by two states, “Stable", “Failure", each one
associated to an identifier as reported in the YANG model
of Fig. 2. At the “Stable" state, devices operate according
to the original configurations acted by the SDN controller.
Reconfigurations are taken at the “Failure" state as described
in the following.

Failure event handling: Once a failure is detected by a
node (e.g., through loss of frame), a state transition of the
FSM at this node is taken, moving the state to “Failure", as
shown in Fig. 4. Following the example in Fig. 3, the link
between nodes E and D fails. Assuming D detecting the
failure, the FSM at D moves to “Failure" state. At this state,
some of the actions summarized in Tab. 1 are executed. In
particular, the node detecting the failure performs the follow-
ing main action: an ad-hoc defined <rpc> message is sent to
each node of the pre-computed backup path to trigger its state
transition. Such <rpc> simply changes the FSM <current-
state> value to the “Failure” state at the interested nodes
(A-B-C-D in Fig. 3). The content of the <rpc> is shown in
Fig. 5 and consists of an XML including the new value of
the <current-state> attribute in the FSM YANG model. If
the node detecting the failure is the destination node, further
actions must be taken. In this work, layer-3 rerouting is
assumed. The following actions are then considered: update
the local routing table in order to receive frames from the
backup path; reconfigure TSN buffers. Finally, to address
synchronization issues, the node may inform, through a NET-
CONF <notification> message, the SDN controller that the
recovery action has been taken.

Each node receiving the <rpc> message (from the node
that detected the failure) changes its FSM state and takes ac-
tions at the data plane according to the information stored in
its local FSM. Actions involve: updating of the local routing
table and TSN buffers reconfiguration. This second operation
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TABLE 1. Actions for DRTSN

Action
Send <rpc> to the nodes along the backup route

to trigger FSM state transition
Send <notification> to the SDN controller

to inform it about the failure
Update routing table

Configure TSN buffers
Change traffic priority

consists in calling the TSN app with proper configuration
parameters. The FSM could also encompass other actions
such as the change of traffic priority.

Finally, it has to be mentioned that after the traffic is
rerouted along a backup path, the SDN controller may pre-
compute another backup path (together with TSN configu-
rations) and install the related FSMs to provide robustness
against several failures. If a failure occurs while FSMs are
not installed – and thus DRTSN cannot be applied – the
agent of the node detecting the failure should inform the
SDN controller. Then, it sends an alarm (implemented with a
NETCONF <notification> message) to the SDN controller,
which will perform classical reactive restoration.

TX=10.255.255.2
RX=10.255.255.3
WSS1(TX)=10.255.255.4
WSS2(RX)=10.255.255.5
WSS3(backup)=10.255.255.6

FSM del nodo WSS3(backup)
<finite-state-machine xmlns="http://sssup.it/fsm">
  <current-state>1</current-state>
  <states>
    <state>
      <id>1</id>
      <description>stable</description>
    </state>
    <state>
      <id>2</id>
      <description>reconf</description>
      <reaction>
        <operation>
          <id>1</id>
          <type>SIMPLE_OP</type>
          <simple>
            <local-address>10.255.255.6</local-address>
            <remote-address>10.255.255.4</remote-address>
            <execute-local><![CDATA[
              <filter xmlns="http://sssup.it/filter"
               xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
                 <connections>
                   <connection-id>1</connection-id>
                   <input-port-id>1</input-port-id>
                   <output-port-id>2</output-port-id>
                   <n>-96</n>
                   <m>4</m>
                 </connections>
              </filter>]]>
            </execute-local>
            <execute-remote><![CDATA[
                  <finite-state-machine xmlns="http://sssup.it/fsm">
                     <current-state>2</current-state>
                  </finite-state-machine>]]>
            </execute-remote>
           </simple>
        </operation>
      </reaction>
      <events xmlns:ev="http://sssup.it/events">
        <event>
          <name>monitored-power-ok</name>
          <type>ev:RESTORED</type>

  <next-state>1</next-state>
        </event>
      </events>
    </state>
  </states>

Tx WSS1

WSS2 Rx

WSS310.255.255.2

10.255.255.310.255.255.4

10.255.255.5

10.255.255.6

f0=194.5THz

f0=192.5THz
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(b)
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(e)

TX=10.255.255.2
RX=10.255.255.3
WSS1(TX)=10.255.255.4
WSS2(RX)=10.255.255.5
WSS3(backup)=10.255.255.6

FSM del nodo WSS3(backup)
<finite-state-machine xmlns="http://sssup.it/fsm">
  <current-state>1</current-state>
  <states>
    <state>
      <id>1</id>
      <description>stable</description>
    </state>
    <state>
      <id>2</id>
      <description>reconf</description>
      <reaction>
        <operation>
          <id>1</id>
          <type>SIMPLE_OP</type>
          <simple>
            <local-address>10.255.255.6</local-address>
            <remote-address>10.255.255.4</remote-address>
            <execute-local><![CDATA[
              <filter xmlns="http://sssup.it/filter"
               xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
                 <connections>
                   <connection-id>1</connection-id>
                   <input-port-id>1</input-port-id>
                   <output-port-id>2</output-port-id>
                   <n>-96</n>
                   <m>4</m>
                 </connections>
              </filter>]]>
            </execute-local>
            <execute-remote><![CDATA[
                  <finite-state-machine xmlns="http://sssup.it/fsm">
                     <current-state>2</current-state>
                  </finite-state-machine>]]>
            </execute-remote>
           </simple>
        </operation>
      </reaction>
      <events xmlns:ev="http://sssup.it/events">
        <event>
          <name>monitored-power-ok</name>
          <type>ev:RESTORED</type>

  <next-state>1</next-state>
        </event>
      </events>
    </state>
  </states>

(d)

WSS  
reconfiguration

settings

Body of DR msg  
to be sent  

to WSS1

FIGURE 5. <rpc> triggering state transition

V. IMPLEMENTATION IN LINUX
In this subsection the implementation of the main control
modules and data plane involved during delegated restoration
is presented.

A. DATA PLANE
The data plane has been realized by connecting different
Ubuntu 20.04 machines (from 2 to 4 physical PCs). Each
machine has been configured to act as a router by enabling
the IP forwarding and installing the routes to let the traffic
flowing along the primary paths. TSN has been exploited
through TAPRIO qdisc, implementing a simplified version
of the scheduling defined by IEEE 802.1Qbv [16]. TAPRIO
has been configured on the egress interface of each machine
and iptables classifier rules have been installed. Referring to
Fig. 6, as a configuration example, in Switch-1 we configured
the interface enp4s0f1 to use TAPRIO. Such configuration is
acted by the TSN app, whose implementation is described
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FIGURE 6. Data plane and control plane with 4 nodes

module: tsn-taprio 
  +--rw tsn-taprio-structure 
     +--rw interface* [dev] 
        +--rw dev              string 
        +--rw parent?          string 
        +--rw handle?          uint32 
        +--rw num-tc?          uint8 
        +--rw map?             string 
        +--rw queues 
        |  +--rw queue* [id] 
        |     +--rw id      uint32 
        |     +--rw elem?   string 
        +--rw base-time?       uint64 
        +--rw clockid?         string 
        +--rw sched-entries 
           +--rw sched-entry* [id] 
              +--rw id          uint32 
              +--rw command?    string 
              +--rw gatemask?   string 
              +--rw interval?   uint64 
  rpcs: 
    +---x taprio-set 
       +---w input 
       |  +---w command?   string 
       +--ro output 
          +--ro result?   boolean 
 
  notifications: 
    +---n taprio-set-notif 
       +--ro command    string 
 
And	an	example	of	xml	to	configure	the	tsn-taprio	module	is	available	at		
/root/config/example-taprio.xml	
	
And	can	be	configured	at	the	running	NETCONF	agent	using		
netconf-console --port 830 -u root -p root --edit-config /root/config/example-taprio.xml 
 
In	order	to	run	the	NETCONF	agent	use	the	following	command:	
/root/script/launch.sh	

General description of the container (to be updated based on the latest 
development details) 
NETCONF	agent	is	composed	by	different	frameworks	used	by	the	netopeer	software	to	implement	
the	agent.	

In	order	interact	with	the	NETCONF	server	we	have	developed	a	new	sysrepo	plugin	that	implements	
the	actions	related	to	RPC	change-state	in	the	finite-state-machine	YANG	model	(Figure	1).	

rpc change-state { 
    description 
      "Start the Turing Machine operation and let it run until it is halted 
       or ALL the defined break-point conditions are satisfied.";	
    input { 
      leaf new-state { 
        type uint32; 
        description 
          "The new state to be configured in the FSM."; 
      } 
    } 
    output { 
      leaf result { 
        type boolean; 

FIGURE 7. TAPRIO module

next. The iptables command is launched to set the priority
field to the forwarded traffic according to the traffic class
defined by TAPRIO. The following command assigns an
highest priority to the UDP traffic that has as destination port
6666:

iptables -t mangle -A POSTROUTING
-p udp --dport 6666 -j CLASSIFY
--set-class 0:1

Lowest priority is assigned to the traffic that has as UDP
destination port 7777:

iptables -t mangle -A POSTROUTING
-p udp --dport 7777 -j CLASSIFY
--set-class 0:0

Each data plane node is locally controlled through an
agent. The implementation of the following control modules
is described: TSN app, FSM in the NETCONF Server, and
the FSM agent.

B. TSN APP
The TSN app is implemented in Python and applies con-
figuration to TAPRIO qdisc. The TSN app has access to
the NETCONF server (whose implementation is based on
Netopeer). The TSN app parses the TAPRIO configuration
XML stored in the NETCONF Server and issues the related
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Actions to be executed at the “Failure” state  
according to “rdnt” digits = 1101

r digit = 1: <rpc> sent to the agents with the 
following <remote-address>: 192.168.255.129,  and 
192.168.255.4 changing local FSM state to 002 value

d digit = 1: Change of local routing table to accept 
interrupted traffic from the backup path port

n digit = 0: no <notification> message to the SDN 
controller

t digit = 1: reconfigure local TSN buffers on the 
ens4 interface with parameters as in Fig. 9

<description>Failure</description>
<transitions>

<transition>
<name>DLPN</name>
<type>Start</type>
<actions>
   <action>

  <id>1</id>
  <type>SIMPLE_OP</type>
  <simple>

<remote-
address>192.168.255.129:192.168.255.4</remote-address>

<execute>1101:002:
.
.
.
.
.

</execute>
      </simple>
   </action>
</actions>

</transition>
</transitions>

(a) (b)

FIGURE 8. Installed FSM (a); Summary of the actions to be executed (b)

<tsn-taprio-structure xmlns="http://sssa.it/yang/tsn-taprio">
     <interface>
       <dev>ens4</dev>
       <parent>root</parent>
       <handle>10</handle>
       <num-tc>2</num-tc>
       <map>1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1</map>
       <queues>
        <queue>
          <id>0</id>
          <elem>1@0</elem>
        </queue>
        <queue>
         <id>1</id>
         <elem>1@1</elem>
        </queue>
       </queues>
       <base-time>1528743495910289987</base-time>
       <clockid>CLOCK_TAI</clockid>
       <sched-entries>
         <sched-entry>
             <id>0</id>
             <command>S</command>
             <gatemask>01</gatemask>
             <interval>800000</interval>
         </sched-entry>
         <sched-entry>
             <id>1</id>
             <command>S</command>
             <gatemask>02</gatemask>
             <interval>200000</interval>
         </sched-entry>
       </sched-entries>
     </interface>
   </tsn-taprio-structure>

FIGURE 9. TAPRIO configuration XML
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command. In this case, the TSN app reads the TAPRIO
configuration parameters set by the SDN controller through
the <edit-config> message, as it happens during normal
operation on the primary path. Alternatively, the TSN app
can be invoked to read the TAPRIO configuration from the
specific FSM state. In the latter case, the TSN app also
updates the NETCONF Server based on the new TAPRIO
configuration.

The view of the TAPRIO module is shown in Fig. 7. The
parameters described by the YANG model of Fig. 7 are:

• interface: it represents the list of interfaces at the node,
each one identified by the string dev

• dev: the name of the interface
• parent: class id. Default: root
• handle: unique handle identifier for qdisc
• num-tc: number of traffic classes. Max 16;
• maps: list to map priority to traffic classes;
• queues: identifies a list of queues, where each element

is identified by id
• elem: mapping. The format is queue_countqueue_offset;
• base-time: reference time in nanoseconds to start the

schedule;
• clock-id: reference clock. Default: CLOCK_TAI
• sched-entries: list of sched-entries
• id: to identify the element in the sched-entries list;
• command: the only supported <command> is “S",

which means “SetGateStates";
• gatemask: a bitmask where each bit is associated with a

traffic class;
• interval: time duration in nanoseconds specifying for

how long the sched-entry should be held before moving
to the next one.

C. FSM INSTALLED IN THE NETCONF SERVER
The NETCONF server is based on Netopeer and stores
current configuration parameters (e.g., running TSN configu-
ration) and FSMs. Fig. 8(a) shows part of the FSM installed at
a destination node when it identifies a failure in an incoming
port, while Fig. 8(b) summarizes the actions to be locally
executed based on the XML at the “Failure" state. The actions
are stored in the <execute> attribute, which includes the
following fields spaced by ‘:": i) a mask; ii) the state to be
configured in remote nodes. Then, the <execute> attribute
also includes the XML configuration of TAPRIO reflexing
the YANG model of Fig. 7 (for simplicity an example is
shown in a separate figure, Fig. 9). The mask appears as a
set of rdnt digits, as follows:

• “r": if equal to 1, an <rpc> has to be sent to at least a
remote node; 0 otherwise

• “d": if equal to 1, the communication with the data
plane node in order to change the local routing table is
enabled; 0 otherwise

• “n": if equal to 1, the <notification> message to the
SDN controller is enabled; 0 otherwise

• “t": if equal to 1, TSN buffers reconfiguration is locally
enabled; 0 otherwise

Thus, in the reported XML, the considered agent should
perform the following actions, as summarized in Fig. 8(b).
The digit r set to 1 implies that<rpc>messages must be sent
to agents with address identified by the <remote-address>
attribute, thus to the following agents: 192.168.255.129 and
192.168.255.4. The remote state set by the <rpc> in the
current example has identifier 002, i.e., “Failure" state. The
digit d set to 1 drives a reconfiguration of the local routing
table on the pre-installed entry associated to the backup
path. Considering L3 forwarding, the SDN controller pre-
installed in the routing table the backup route with an high-
metric value (30 in our implementation). This way only the
primary route (which has a lower metric value of 20) is
exploited before the failure. At the moment of the failure,
the metric of the backup route is set to a low value (10 in
our implementation) in order to preempt the primary route.
Then, the TSN app is called with TAPRIO configuration
XML parameters, as shown in Fig. 9, with values associated
to the attributes of the YANG model in Fig. 7.

D. FSM AGENT
The node agent is implemented in a docker container and it
is composed of different frameworks used by the Netopeer
software to implement the agent. In order interact with the
NETCONF server we have developed a Sysrepo plugin that
implements the actions related to the state change in the
FSM YANG model. The implemented agent is shown in
Fig. 10, connected with the TSN switch at the data plane.
At the data plane, once a failure is detected, a Python script
(Failure Detector in the figure) sends a message over a socket
to notify the local agent about the failure. At the agent, a
Listener implemented in Python is responsible to receive and
process the failure notification. Once the Listener is notified
about the failure, it invokes the Sysrepo rpc_fsm caller to
trigger the FSM parsing based on the failure. A Sysrepo
rpc_fsm handler receives the RPC request, parses it, and
retrieves the information associated to the new state in the
configured FSM. The information in the FSM is described
in the previous subsection including <rpc> messages sent to
remote nodes and local data plane reconfiguration. Regarding
the latter action, a Sender implemented in Python may invoke
the TSN app and may update the local routing table.

VI. PERFORMANCE EVALUATION
Performance of DRTSN is compared with a fully centralized
recovery (CR) in an experimental testbed. According to
CR, once a failure is detected, a NETCONF <notification>
message (used as an alarm) is sent to the SDN controller
(implemented based on ONOS [41]). The SDN controller
processes the received alarm and then acts the reconfiguration
of the traffic interested in the failure. Several experiments
have been carried out for performance evaluation. Three
network topologies have been tested: a 2-nodes ring, a 3-
nodes ring, and a 4-nodes meshed network (represented in
Fig. 6). The characteristics of each PCs are reported in
Table 2. Each network node is a physical machine emulating

VOLUME 4, 2016 9



N. Sambo et al.: Enabling Delegation of Control Plane functionalities for Time Sensitive Networks

TSN Switch
(VM)

Failure  
Detector

Agent (docker)
sysrepo rpc_fsm

Listener.pySender.py

Socket for  
failure notification

RPC caller to trigger  
FSM parsing

FSM parsing

RPC to remote nodes

Socket for  
data plane 
configuration, including 
TSN app invocation

NETCONF  
Server

FIGURE 10. Agent implementation

TABLE 2. Characteristics of the switches

Switch Linux kernel Num of Cores RAM [GB]
Switch-1 5.8.0-48-generic 20 80
Switch-2 5.8.0-48-generic 8 8
Switch-3 5.4.0-70-generic 8 16
Switch-4 5.4.0-70-generic 8 32

a TSN switch with TAPRIO enabled at each Ethernet port.
Moreover, each physical machine runs the dockerized node
agent. Control plane communications between node agents,
and between node agents and SDN controller are done in an
out-of-band control plane network. Thus, exchanged control
plane messages (e.g., <rpc> messages during recovery with
DRTSN) do not affect the traffic in the data plane. Traffic
is injected in the network through a Spirent traffic genera-
tor/analyzer [42] enabling time performance measurements.
Each constant bit rate stream is composed of frames of
128 Bytes generated with a rate of 10000 frames/second.
Single-link failures are generated forcing a node port down.
Recovery delay is measured, defined as the time between the
failure and the traffic is rerouted on the recovery path.

Finally, DRTSN is also compared with FRER in terms of
the average number of frames per queue.

A. DATA PLANE PERFORMANCE
This section presents the performed measurements at the data
plane.

1) Experiment 0: the proof of concept is demonstrated with
the higher- and the lower-priority streams (as described
in Sec. V-A) on the 4-nodes mesh topology (Fig. 6).
The failure is generated on port enp4s0f1 of Switch-
1, then the streams are recovered with DRTSN and
CR. In average, with DRTSN, traffic is recovered in
823 ms, while with CR in 5171 ms. DRTSN permits
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TABLE 3. Intra-node time contributions upon failure at the node detecting the
failure

Operation Required time [ms]
FSM parsing 1

<rpc> generation 325
TSN app execution 20

Routing table update 6.32

to reduce recovery delay with respect to CR because
DRTSN enables a direct communication between the
node detecting the failure and the nodes involved in
the recovery path, without involving a communication
also with the SDN controller. Time contributions to the
recovery delay in the case of DRTSN will be detailed in
Sec. VI-B.

2) Experiment 1: recovery delay is measured at varying
the number of network nodes. 2-nodes and 3-nodes
ring topologies, and the 4-nodes meshed topology have
been tested, with higher and lower priority streams (as
in Sec. V-A) present in the network. Routing for the
primary path is performed on the shortest path in terms
of hops, while for the backup path on the shortest path
which is link-disjoint from the primary. Fig. 11 shows
the recovery delay versus the number of network nodes.
The behavior of DRTSN and CR is confirmed with
the former reducing the recovery delay. With DRTSN,
the recovery delay increases with the number of nodes.
In particular, with two nodes, DRTSN requires around
520 ms, while with three and four nodes 846 ms and
823 ms, respectively. Thus, with 3 and 4 nodes, the
recovery delay is comparable. This is due to the fact
that<rpc>messages triggering FSM state transition are
sent sequentially and not in parallel. Indeed, in the case
of 2-nodes topology, the recovery path is composed of
one hop and the node detecting the failure has to send
only one remote <rpc> message. In the case of the 3-
and 4-nodes topologies, the backup route is always of
two hops, thus the node detecting the failure sends two
remote <rpc> messages. This sentence is supported
also by the intra-node time contributions analysis pre-
sented in Sec. VI-B.

3) Experiment 2: recovery delay is measured at varying
the number of streams present in the 4-nodes meshed
network. Streams are generated by the Spirent and are
routed randomly in the network following available
paths. Then, the failure is generated and the affected
streams are recovered. Fig. 12 shows the recovery delay
versus the number of streams in the network. Again, the
behavior of DRTSN and CR is confirmed with DRTSN
reducing the recovery delay. The number of streams in
the network does not impact the performance of the
recovery schemes.

TABLE 4. Recovery delay after DRTSN optimization

DRTSN w/o open DRTSN with open
NETCONF sessions NETCONF sessions

<rpc> generation 325 7
time [ms]

Recovery delay [ms] 823 254
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B. INTRA-NODE TIME CONTRIBUTIONS AND CONTROL
PLANE OVERHEAD
The time contributions to perform the agent operations with
DRTSN – which also have an impact on the recovery delay
– have been analyzed and summarized in Tab. 3. After a
failure, the node agent requires around 1 ms to parse FSM.
The main time contribution is required by the generation
of <rpc> message to a remote node, which is around 325
ms. This delay includes the following contributions: i) the
time to establish an ssh session between the agent and the
agent at the remote node; ii) the time to establish NETCONF
over ssh; iii) the time for transmitting the <rpc> message.
The <rpc> generation time is also comparable with the
difference between the recovery delay achieved in the 2-
nodes (520 ms) and in the 3-nodes (846 ms) topologies,
where one <rpc> and two <rpc> messages are sent to
remote nodes, respectively. The TSN app execution requires
20 ms. This time contribution includes the reconfiguration
of TAPRIO and also the updating of the NETCONF server
based on the new TAPRIO configuration. Finally, the local
routing table update takes around 6.32 ms.

With DRTSN, upon failure, <rpc> messages to remote
nodes are exchanged. In particular, an <rpc> is generated
for each remote node of the pre-computed backup path,
excluding the node detecting the failure if present in the
backup path. With CR, more control plane messages are
exchanged. First, a NETCONF <notification> messages is
sent from the node detecting the failure to the SDN controller
to inform it about the failure. Then, the NETCONF <edit-
config>messages are sent to each node in the backup path to
reconfigure it upon failure.
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C. OPTIMIZATION OF DRTSN

By observing Tab. 3, the main bottleneck is due to the<rpc>
generation time contribution, which includes the time to open
a ssh session, a NETCONF session, and finally the time to
generate the <rpc>. Thus, we made other tests on recovery
delay by having already open NETCONF sessions (and ssh as
well) between the node detecting the failure and the remote
agents. Then, at the time of recovery, the <rpc> to change
FSM state on remote agents can be directly sent because the
ssh session and NETCONF over ssh are already open. Results
are shown in Table 4 in comparison with the DRTSN as in
Sec. VI-B (requiring to open ssh and NETCONF sessions
before sending <rpc> messages). The considered topology
is the 4-nodes meshed one as in Fig. 6.

This optimization of DRTSN permits to reduce the <rpc>
generation time from 325 ms to 7 ms. This results in an
overall recovery delay decreased by a factor higher than three
(from 823 ms to 254 ms), which includes the generation of
two <rpc> messages.

D. COMPARISON BETWEEN DRTSN AND FRER

To compare DRTSN, CR, and FRER a custom-built simulator
has been utilized, given that current TAPRIO implementation
does not support FRER. The simulator is event driven and
it is written in C++. The events are organized in a Binary
Heap Tree [43] and the flow of the simulation is driven by
events such as traffic streams arrival, frame transmission,
link failures, control packet generation and transmission. A
ring-topology with ten nodes and 100-Mb/s interfaces has
been assumed. Traffic streams arrive following a Poisson
distribution with an average inter-arrival time of 1/λ. Bursts
of 100 frames per stream are considered. Single-link failures
are randomly generated among the network links. We con-
sidered that queues are long enough to avoid packet loss in
the buffers. For FRER, we considered the implementation
where two Member Streams are generated following two
disjoint routes. For FRER, the secondary path is computed
as the shortest path that is link disjoint from the primary
one. DRTSN, CR, and FRER are compared in terms of the
average number of frames per queue during normal network
operations. Results are plotted with a confidence interval of
95% at varying 1/λ.

Fig. 13 shows the average number of frames in a queue
versus the mean inter-arrival time of streams for all the three
schemes: DRTSN, FRER, and CR. The figure shows that
FRER may create a very high load in the network due to
the redundant transmission with respect to DRTSN and CR.
Moreover, note that the slope of the curve associated to FRER
is much larger than the ones associated to DRTSN and CR.
This is due to the fact that, in a ring topology, with FRER, a
stream (considering the two member streams of a compound
stream) always use all the nodes, thus highly loading the
network.

VII. CONCLUSIONS AND FUTURE WORK
The paper proposed a new mechanism for managing reliabil-
ity in SDN-controlled TSN networks with NETCONF. Finite
State Machines (FSMs) permit to proactively instruct the
nodes on the actions to perform in case of specific events such
as failures or performance degradation. If an event occurs, the
SDN controller is by-passed thus reducing recovery time. A
failure recovery use case has been analyzed providing details
of the implementation and of the performance evaluation.
Measurements in an experimental testbed have shown that
the proposed method strongly reduces recovery time with
respect to a reactive restoration. Simulations have shown that
the proposed method avoids to overload the network with
respect to FRER. However, our method is not proposed to
replace FRER: the FSM-based delegation can coexist in the
network with FRER, e.g. for specific service classes.

Future works will further investigate the optimization of
the proposed method. Based on the observations in the exper-
imental testbed we have seen that a relevant time contribution
to the recovery delay may be the generation of <rpc> mes-
sages. Then, future works will investigate the potentials of
integrating FSM and P4. Other possible studies may investi-
gate the trade off between the number of pre-installed backup
routes (and related TSN features) and calculations/memory
needed, with the objective of guaranteeing robustness against
multiple faults.
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