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a b s t r a c t 

Background and objectives Automated segmentation and tracking of surgical instruments and catheters 

under X-ray fluoroscopy hold the potential for enhanced image guidance in catheter-based endovascular 

procedures. This article presents a novel method for real-time segmentation of catheters and guidewires 

in 2d X-ray images. We employ Convolutional Neural Networks (CNNs) and propose a transfer learning 

approach, using synthetic fluoroscopic images, to develop a lightweight version of the U-Net architecture. 

Our strategy, requiring a small amount of manually annotated data, streamlines the training process and 

results in a U-Net model, which achieves comparable performance to the state-of-the-art segmentation, 

with a decreased number of trainable parameters. 

Methods The proposed transfer learning approach exploits high-fidelity synthetic images generated from 

real fluroscopic backgrounds. We implement a two-stage process, initial end-to-end training and fine- 

tuning, to develop two versions of our model, using synthetic and phantom fluoroscopic images inde- 

pendently. A small number of manually annotated in-vivo images is employed to fine-tune the deepest 7 

layers of the U-Net architecture, producing a network specialized for pixel-wise catheter/guidewire seg- 

mentation. The network takes as input a single grayscale image and outputs the segmentation result as 

a binary mask against the background. 

Results Evaluation is carried out with images from in-vivo fluoroscopic video sequences from six endovas- 

cular procedures, with different surgical setups. We validate the effectiveness of developing the U-Net 

models using synthetic data, in tests where fine-tuning and testing in-vivo takes place both by divid- 

ing data from all procedures into independent fine-tuning/testing subsets as well as by using different 

in-vivo sequences. Accurate catheter/guidewire segmentation (average Dice coefficient of ~ 0.55, ~ 0.26 

and ~ 0.17) is obtained with both U-Net models. Compared to the state-of-the-art CNN models, the pro- 

posed U-Net achieves comparable performance ( ± 5% average Dice coefficients) in terms of segmentation 

accuracy, while yielding a 84% reduction of the testing time. This adds flexibility for real-time operation 

and makes our network adaptable to increased input resolution. 

Conclusions This work presents a new approach in the development of CNN models for pixel-wise seg- 

mentation of surgical catheters in X-ray fluoroscopy, exploiting synthetic images and transfer learning. 

Our methodology reduces the need for manually annotating large volumes of data for training. This rep- 

resents an important advantage, given that manual pixel-wise annotations is a key bottleneck in devel- 

oping CNN segmentation models. Combined with a simplified U-Net model, our work yields significant 

advantages compared to current state-of-the-art solutions. 

© 2020 The Authors. Published by Elsevier B.V. 
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. Introduction 

The projections of the World Health Organization indicate that

ardiovascular diseases (CVDs) will remain, in the near future,

he leading cause of death worldwide [1] . Treatment of CVDs
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often requires surgical intervention and advances in flexible in-

strumentation and imaging led to the development and applica-

tion of minimally invasive surgery (MIS) for cardiac and vascular

procedures. MIS offers many advantages, including decreased blood

loss, reduced post-operative pain and shorter recovery times, and

is nowadays the preferred method for CVD interventions [2] . 

In MIS endovascular procedures, flexible catheters are navigated

inside the patient’s vasculature for delivering therapeutic actions

under real-time, image-based guidance. Predominately fluoroscopy

is used, while echocardiography is also carried out for heamo-

dynamic management. X-ray fluoroscopy involves harmful ioniz-

ing radiation and toxic contrast dye injections for vessel visual-

ization and catheter localization. Subsequently, significant research

is focused on alternative imaging modalities, without such ad-

verse effects, both pre- and intra-operatively for complementing

or even replacing fluoroscopy. Ultrasound (US) imaging presents

many advantages, such as the absence of ionizing radiation and

richness in soft-tissue information, however it is not suitable for

catheter guidance because of acoustic artefacts and limited field

of view that hinder catheter visualization in US images. Other

imaging modalities with potential to improve endovascular guid-

ance are magnetic resonance imaging (MRI), computed tomogra-

phy (CT) and 3d rotational X-ray angiography, typically performed

pre-operatively. Fusing multiple imaging modalities and developing

computer vision techniques to enhance tool visualization can lead

to accurate and robust localization of the catheter, with reduced

use of fluoroscopy [3–10] . In many situations this requires regis-

tration of 3d pre-operative data to 2d intra-operative fluoroscopy

images, of which a key aspect is the ability to accurately localize

and segment the catheter in the X-ray fluoroscopic images. 

This work presents a novel approach for performing fully-

automated, real-time catheter and guidewire segmentation in flu-

oroscopy. The proposed method is based on a Convolutional Neu-

ral Network (CNN) encoder-decoder architecture, termed as U-Net

and developed specifically for medical image segmentation tasks

[11] . An important requirement in the development of CNNs for

pixel-level segmentation is the availability of large numbers of an-

notated samples to successfully train the network. Manual pixel-

level labelling is laborious and time-consuming and methods to re-

duce this necessity will greatly facilitate the development of CNN

models for semantic segmentation. This is particularly important

for the surgical imaging domain where annotated medical data are

not always available in large volumes. Although CNN architectures

have been used before for catheter detection and tracking [12,13] ,

we differentiate from previous works by proposing a strategy for

streamlining the training process that exploits synthetic data and

uses only a small amount of annotated images. Specifically, we

follow a transfer learning approach, a technique that adds flexi-

bility in training and developing CNNs [14–19] . In transfer learn-

ing, a randomly initialized base network is first trained on a base

dataset and subsequently the learned features and weights are

transferred to a target network to be refined on a smaller and target

dataset. By using synthetic images with predefined labelled seg-

mentation for the initial training phase, our method requires a re-

duced amount of explicitly annotated samples to be available, only

for the refinement stage. In addition, it has been demonstrated that

transferring features and fine-tuning them with a different dataset

results in network models that generalize better and avoid overfit-

ting than those trained exclusively on the target dataset [20] . The

proposed U-Net architecture is based on the model presented in

[12] ; however, compared to this work, the modifications we apply

decrease the total number of network parameters, thus resulting in

more efficient training and faster run times. Our transfer learning

investigation is carried out on different sets of fluoroscopic images,

where synthetic images, requiring minimum manual effort for an-

notation, and fluoroscopic images from a physical phantom are uti-
ized to train a CNN model that learns to accurately segment en-

ovascular surgical tools in in-vivo images. 

We perform two experiments, for the initial end-to-end training

tage. The first one is carried out with 90 0 0 synthetic fluoroscopic

mages and the second one with 20 0 0 real fluoroscopic images

rom catheterization experiments with a silicon aorta phantom in

n angiography suite. After achieving convergence, we freeze the

etwork parameters and carry out three different tests by fine-

uning only the deepest layers of the architecture on three differ-

nt datasets (S1, S2 and S3) selected from 1207 manually labelled,

n-vivo fluoroscopic images from six different X-ray sequences. For

ach split (240, 493 and 579 fine-tuning frames in S1, S2 and S3,

espectively), the remaining frames were used for testing. High-

uality catheter segmentation results were achieved, with an av-

rage Dice coefficient value of approximately 0.55, 0.26 and 0.17

or each of the three tests, respectively. To illustrate the need and

ffectiveness of using synthetic data for the end-to-end training,

e present a leave-one-out (LOO) 6-fold cross validation experi-

ent with training and testing carried out using only the in-vivo

equences. Due to the limited number of training data, the result-

ng network is not able to effectively learn the catheter segmenta-

ion task (Dice coefficient ~ 0.1). Moreover, we compare our mod-

fied U-Net network, with the one presented in [12] , after reducing

he number of layers to adapt it to our input images, and demon-

trate that the two models achieve comparable segmentation per-

ormance. Our U-Net model has a smaller number of network pa-

ameters, offering several benefits from a practical implementation

erspective [21] . This also results in faster execution times, with

he proposed model requiring an average of 71 ms to segment a

ingle image, instead of 451 ms needed by the model in [12] when

ested in our setup. This is equivalent to an 84% reduction of the

esting time. 

In summary, the main contributions introduced in this work are

he following: 

1. We demonstrate the effectiveness of transfer learning in devel-

oping a CNN model for segmenting surgical catheters in fluo-

roscopy images. In the absence of large annotated real medical

datasets, the end-to-end training of a lightweight U-Net model

is streamlined by using high-fidelity synthetic data with avail-

able ground truth. A small number of explicitly annotated im-

ages is employed to fine-tune the deepest layers of the net-

work, providing a model that is capable to accurately perform

catheter segmentation. 

2. We present an optimized U-Net CNN architecture, trainable

end-to-end to perform fully-automated, real-time catheter seg-

mentation in 2d fluoroscopy images. The proposed model

achieves comparable performance to the state-of-the-art seg-

mentation while the reduced number of trainable network pa-

rameters results in faster execution times. 

. Background 

Automated segmentation of electrodes and catheters in elec-

rophysiology (EP) procedures is a very active topic in the medi-

al image analysis literature. EP electrodes are more visible under

-ray imaging and are generally exploited as a starting point for

atheter segmentation [5,13,22] . In [22] , after a pre-processing step,

parse coding is employed to initially detect candidate catheter tips

nd subsequently perform detection and tracking of the catheters;

u et al. [5] presented a method in which electrodes are first de-

ected using SURF (speeded up robust features) and a Kalman filter

s then employed to extend the detection to the entire catheter.

nother approach was proposed by Baur et al. [13] , in which a

ully convolutional neural network is used to detect catheters tips

nd electrodes; however, full catheter shape segmentation is not
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Table 1 

The three datasets used in this work. 

Dataset Data Type Number of Images 

Dataset-1 Synthetic 9000 

Dataset-2 Phantom 2000 

Dataset-3 In-vivo procedures 1207 
mplemented. Due to the nature of the fluoroscopy images,

atheter segmentation is a challenging task, especially in situations

here clearly distinguishable features are not present. A number

f methods use Hessian filters followed by spline fitting [23–28] ,

ut none of these is fully-automated, thus requiring manual ini-

iliazation. Wagner et al. proposed a new approach in which the

uidewire segmentation is performed through a fully-automated

lgorithm that exploits a ridge detection filter, noise reduction for

urvilinear structures as well as an a-priori probability map, but

he complexity of this method makes it unsuitable for real-time

pplications [29] . Ma et al. [30] proposed to use a vessel enhance-

ent filter for centerline extraction followed by object classifica-

ion, to detect different types of catheters. 

In recent years CNNs revolutionized many computer vision ap-

lications achieving state-of-the-art results in tasks such as classi-

cation, segmentation and detection. The core idea is to architect

odels with many interconnected hidden layers, capable of learn-

ng multiple levels of abstract representations by being exposed

o labelled examples. Development of CNNs involves a training

hase during which model parameters are iteratively optimized us-

ng large amounts of labelled data. It has been demonstrated that

nd-to-end training for pixel-to-pixel semantic segmentation tasks

resents many benefits [31] , although a large amount of train-

ng data is typically needed. Following this principle, Ronneberger

t al. introduced a new CNN architecture, named U-Net, that is

rainable in an end-to-end manner and specifically designed to

erform medical image segmentation tasks [11] . In the past years,

he U-Net model has been extensively applied in this field [32,33] .

ktay et al. [32] integrated an attention gate model for medical

maging into a U-Net architecture and applied the resulting model

o a large CT abdominal dataset for multi-class image segmenta-

ion; Matuszewski et al. [33] recently proposed a reduced-sized U-

et architecture for performing virus recognition in electron mi-

roscopy images. 

Several modifications to the original network have been applied

o improve network convergence (batch normalization [34] and

esidual learning [35] ) and performance (max-pooling replaced by

trided convolution [36] ). An adapted U-Net model including the

forementioned improvements was proposed by Ambrosini et al.

12] , for fully automated, real-time catheter segmentation in 2d X-

ay fluoroscopic sequences. The network is applied to video record-

ngs using as inputs the current frame and the three previous ones,

nd it outputs a segmentation map of the catheter/guidewire in

he current image. From the catheter segmentation result, a cen-

erline model of the catheter is then constructed. In comparison

o previous studies, this method doesn’t continuously track the

atheter, but incorporates temporal information as the network’s

nput is a sequence of four frames. The model is developed on a

raining dataset consisting of 182 sequences of four consecutive

rames, extracted from in-vivo fluoroscopy videos, acquired during

3 liver catheterization procedures (728 frames in total); it is then

alidated on in-vivo images consisting of 55 similar sequences (i.e.,

20 frames) from 5 different procedures of the same kind. To pro-

ide the ground truth the catheter was manually segmented in the

our consecutive images by selecting points and fitting a spline

unction. Data augmentation was applied to increase the number

f training samples. 

As mentioned previously, manual pixel-to-pixel annotation is

ime-consuming and laborious. Considering the amount of labelled

mages required for end-to-end training, this becomes an even

ore difficult task. Strategies to reduce the amount of manual

nnotation carry significant potential for a more efficient, time-

aving, end-to-end training of CNN models. In this work we pro-

ose the use of synthetic fluroscopic images for training a CNN

odel to perform catheter segmentation. With this approach we

void the need for excessive manual annotations since the ground
ruth segmentation information of both the catheter and back-

round is readily available. Similar strategies have been success-

ully applied in medical image processing for improving image

lassification in comparison to classic data augmentation approach

37] , as well as in other application fields such as robotics control

38] . 

The remainder of the paper is structured as follows. In

ection 3 we describe the proposed network architecture, de-

ail the generation of the synthetic dataset and the approach

e followed for training and fine-tuning the CNN model.

ection 4 presents the experimentation we carried out alongside

 discussion of the obtained results that justify our strategy and

ethods. Finally, Section 5 draws conclusions and discusses oppor-

unities for future research. 

. Materials and methods 

.1. Proposed CNN model 

Starting from the basic U-Net architecture [11] , we develop an

dapted version, shown in Figure 1 , tailored for catheter segmen-

ation in fluoroscopy images. We structure our model lowering the

umber of convolution operations per layer from two to one. This

implifies the architecture reducing the total number of learnable

arameters. Convolution layers are followed by Batch Normaliza-

ion and a Rectified Linear Unit (ReLU) is used as activation. In the

ast convolution layer, a sigmoid activation function is applied to

rovide a per-pixel classification output in the [0, 1] range. In ad-

ition, by lowering the resolution of input images (256x256 px in-

tead of 1024x1024 px), the total number of layers in our design

s reduced as well. All in all, the proposed model has 55 layers in

otal, compared to the 110 layers of the architecture in [12] . Dif-

erently from [12] , we choose a single grayscale image I i as the in-

ut to our proposed network. The output is given as two comple-

entary full-scale (256x256 px) classification masks ( S i 1 - catheter,

 i 2 - background), from which the accuracy of the output is eval-

ated using the Dice coefficient. In S i 1 and S i 2 the k-th pixel s k 
ssumes complementary probability values between 0 and 1. In S i 1 
and complementary in S i 2 ), each pixel is ultimately classified as

ither catheter (1) or background (0) using thresholding as follows:

 k = 

{
1 , if s p 

k 
is > 0 . 01 

0 , if s p 
k 

is ≤ 0 . 01 

(1) 

.2. Datasets 

Three different datasets, listed in Table 1 , were used for devel-

ping and validating our network. Dataset-1 is composed of 90 0 0

ynthetic fluoroscopic images, generated following the procedure

escribed in the next paragraph. Dataset-2 consists of 20 0 0 images

xtracted from four fluoroscopy videos, recorded in an angiogra-

hy suite, from catheterization experiments carried out on a sili-

on aorta phantom. Example images from both datasets are shown

n Figure 2 . Dataset-3 contains images extracted from six fluo-

oscopy videos obtained during in-vivo endovascular operations.

pecifically, 836 frames were extracted from four Transcatheter

ortic Valve Implantation (TAVI) procedures (datasets T1-T4) and
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Fig. 1. The proposed lightweight U-Net architecture. A single grayscale Image I i is fed into the model, that outputs the predictions S i 1 and S i 2 . Each layer is composed by a 

convolutional-block with a 3x3 kernel. The L-shape at the bottom of the architecture delimits the layers that undergo fine-tuning. 

Fig. 2. Representative examples of synthetic data (a, b, c) and fluoroscopic phantom image (d) with corresponding catheter ground truth masks. 
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371 from two diagnostic catheterization sequences (datasets T5-

6). Segmentation annotations of the catheter and background

were automatically generated for the synthetic images of Dataset-

1 , while for Dataset-2 and datasets T2-T6 of Dataset-3 a semi-

automated tracking method presented by Chang et al. [24] was

employed to obtain the annotations as the 2d coordinates of the

catheter restricted to a manually selected region of interest (ROI).

Our annotation process is similar to the one in [12] , since the al-

gorithm in [24] also employs a b-spline tube model as a prior

for the catheter shape in order to restrict the search space and

deal with potential missing measurements. This is combined with

a probabilistic framework that estimates the pixel-wise posteriors

between the foreground (catheter) and background delimited by

the b-spline tube contour. The method was tested on both phan-

tom and clinical TAVI sequences, achieving an average missing-rate

lower than 4% of the pixels over the entire tracked catheter length.

Given the accuracy and robustness of the algorithm, we consider

the obtained results as the ground truth catheter segmentation

while potential errors will have negligible influence on the de-

velopment and evaluation of our U-Net model. Finally, for dataset
1 the shape of the entire catheter was manually annotated using

rowdsourcing. All annotations consist of full-scale (256x256 px)

inary masks where background pixels have a “0” value, while a

alue equal to “1” denotes the catheter pixels. 

To generate the synthetic images for Dataset-1 , 32 patches (im-

ge sub-areas) containing no catheter part were extracted from

ifferent frames of Dataset-3 . These patches were selected as rep-

esentative backgrounds of X-ray images from endovascular inter-

entions, in which the relevant anatomical structures (e.g. bones,

rgans) and sometimes the US probe used for echocardiography,

re visible. Since our strategy is to investigate the applicability of

ynthetic data for transfer learning, it is important that images in

ataset-1 resemble, as much as possible, the real fluoroscopic im-

ges used in the fine-tuning phase. Indeed, it has been demon-

trated that transferability of features decreases as the dissimi-

arity between the base task (training data) and the target task

fine-tuning data) increases [20] . Extracted background patches

ere resized to the network’s input resolution (256 x 256 px). A

mall number of ground truth catheter masks from Dataset-2 and

ataset-3 ( ~ 20% the available annotations from each dataset) were
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Fig. 3. The process for synthetic data generation. A background patch and a binary mask from Dataset-3 first undergo a random transformation (in this case, rotation). The 

transformed catheter coordinates are then mapped to the new background to generate the synthetic image. 
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elected. The background patch and 2d catheter coordinates were

andomly paired and each pair underwent a random transforma-

ion, among random rotation (rotation, [0, 90 ◦]), scaling (zoom, [-

.6, 1.4]), horizontal/vertical shift (width shift / height shift, [-0.2,

.2]) and horizontal/vertical flip. The transformed ground truth co-

rdinates were subsequently used to overlay the catheter shape

n the background. The intensity of each catheter pixel was set

o the average value of the background intensity plus a random

alue in the [-50, 50] range to simulate the discontinuous appear-

nce of catheters in fluoroscopy. With this method we generated

0 0 0 high-fidelity synthetic fluoroscopic images for which ground

ruth segmentation was directly available. ( Figure 3 ). In our syn-

hetic images the catheter was inserted in different positions and

ith different orientations, as well as having varying pixel values

ompared to the background. This approach provided the neces-

ary variability in catheter shape and appearance, facilitating the

raining of the U-Net network. 

.3. Training strategy 

We train our CNN model using two different cost functions and

ompare the obtained segmentation accuracy. In the first case, the

ice coefficient is used as both the accuracy metric and loss func-

ion. Objective functions based on the Dice coefficient were first

ntroduced by Milletari et al. [36] and its value ranges between

0,1], representing the overlap between the output mask of the

etwork and the annotated segmentation. Using the Dice coeffi-

ient, the loss function is defined as: 

 dice (S i , S 
p 
i 
) = − 2 

∑ 

k S ik S 
p 

ik 
+ c ∑ 

k S ik + 

∑ 

k S 
p 

ik 
+ c 

(2)

here, S 
p 

ik 
is the network prediction for the k th pixel, with values

n the range [0,1], S ik is the corresponding binary label and c is a

onstant smoothing term to avoid division by zero. In the second

ase, the accuracy is again evaluated with the Dice coefficient, but

he categorical-cross-entropy is used as the loss function. Consid-

ring that each pixel belongs to exactly one class (i.e. catheter or

ackground), the second cost function is given as: 

 c−e (C, S ik ) = − 1 

N 

∑ 

k 

log p k [ S ik ∈ C S ik ] (3)

here, N is the total number of pixels in the image and p k is the

robability of the k th pixel belonging to the C S ik class. Since the

umber of catheter pixels is significantly smaller compared to the
ackground (i.e., the catheter class is under-represented), both loss

unctions were assigned a 1/10 ratio between the background and

he foreground (catheter) pixel weights during training. The Adam

lgorithm (learning rate lr = 0 . 001 , exponential decay rate for the

rst moment estimates β1 = 0 . 9 and exponential decay rate for

he second-moment estimates β2 = 0 . 999 ) was used for network

eights optimization. For the initial end-to-end training, a batch

ize of 30 frames was used, and the training process was ended

fter 12 epochs. 

Training images were randomly shuffled and normalized using:

p N kh = 

p kh − m h 

s h 
(4) 

here p kh is the k th pixel of the h th channel of the input image, m h 

s the average pixel intensity and s h is the intensity standard devi-

tion, both computed for each channel on the entire training set.

e train our U-Net model in an end-to-end manner for perform-

ng catheter segmentation on a single fluoroscopy image. With this

pproach and by employing transfer learning using synthetic data,

e provide a lighter CNN for catheter segmentation and a more

fficient training strategy that effectively differentiates our work

rom the one in [12] , where successive frames from the same flu-

roscopy video sequence were used to train the U-Net model. 

. Experiments and results 

The CNN model was built using the Keras and Tensorflow

rameworks in Python and experimentation was carried out in a

ingle NVidia GeForce GTX 1080 GPU. Our investigation focuses on

eveloping an efficient CNN model for real-time catheter segmen-

ation and validating the core contributions of our work, listed in

ection 1 . Focusing on four directions we performed the following

xperiments: 

1. For determining the optimum training setup and demonstrat-

ing the potential of synthetic data, two experiments are dis-

cussed in Section 4.1 . In Experiment-1 the network was trained

on synthetic data ( Dataset-1 ), while in Experiment-2 , training

was performed with the phantom fluoroscopy images ( Dataset-

2 ). In both situations fine-tuning takes place with in-vivo im-

ages ( Dataset-3 ). 

2. For validating the efficiency of the transfer learning and fine-

tuning techniques, accuracy results on a test dataset compris-

ing of in-vivo fluoroscopy images ( Dataset-3 ) and a comparison
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Table 3 

Number of frames respectively used in the fine- 

tuning (S1) and in the testing phase for each 

group of data. 

Dataset Fine-Tuning Data Testing Data 

T1 55 231 

T2 30 120 

T3 40 160 

T4 40 160 

T5 30 113 

T6 45 183 
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with and without fine-tuning, for both experiments, are pre-

sented in Section 4.2 . 

3. For illustrating the usefulness of the synthetic data for the ini-

tial end-to-end training, we provide a 6-fold cross validation

LOO experiment using only the 6 in-vivo sequences and com-

pare the results to our transfer learning approach. 

4. Finally, in Section 4.3 , we show that the proposed lightweight

CNN and the more complex state-of-the-art model in

[12] achieve comparable performance. 

The usefulness of employing a large synthetic dataset for the

initial end-to-end training is validated in a LOO validation experi-

ment where only Dataset-3 is used for training and testing the U-

Net model, without fine-tuning. With the available six in-vivo se-

quences, we follow a LOO strategy for training the network on five

of them and testing on the remaining one. The number of images

used for training ranged between 921 and 1064, and for testing be-

tween 143 and 286. The training set-up was the one discussed in

Section 3.3 . The average Dice coefficient was ~ 0.1 (range: 1 × 10 −4 

- 0.29), listed in Table 4 , indicating that due to the limited training

set in each fold, the U-Net model is not able to learn the necessary

features for the catheter segmentation task. To overcome this, we

perform the initial end-to-end training using the large number of

synthetic images and, following a fine-tuning step on a small num-

ber of in-vivo images, develop a model that can effectively segment

the catheter. 

4.1. Training and fine-tuning 

To identify the optimum number of layers for fine-tuning, we

perform end-to-end training using the synthetic dataset ( Dataset-

1 ), as discussed in Section 3.3 and with the U-Net model having

converged to a set of weights, test three fine-tuning configurations.

We use Dataset-2 of phantom fluroscopic images for this investiga-

tion and compare Dice coefficient results, shown in Table 2 , from

three experiments where 19-layers, 13-layers and 7-layers were

symmetrically chosen for fine-tuning with respect to the encod-

ing and decoding part of the network. The deepest layers of the

encoder/decoder U-Net model were chosen because they encode

characteristics specifically related to the presented data and ulti-

mately learn the most distinctive features for the catheter segmen-

tation task. The Adam algorithm (learning rate lr = 0 . 001 , expo-

nential decay rate for the first moment estimates β1 = 0 . 9 and ex-

ponential decay rate for the second-moment estimates β2 = 0 . 999 )

was again used to optimize the weights of the selected layers. A

batch size of 10 samples was used and the final weights were de-

rived after 50 epochs of training. Since the three configurations re-

sulted in comparable accuracy, the one with the smaller number of

trainable layers (7) was selected. To avoid overfitting, the weights

of the layers not selected for fine-tuning were left unchanged. 

Having identified the optimum set of layers for finetuning (lay-

ers 22th to 29th), we develop two U-Net models ( Experiment-1

- training on Dataset-1, Experiment-2 - training on Dataset-2 ) and
Table 2 

Training accuracy for different fine- 

tuning configurations. The network 

is first trained on Dataset-1 and 

Dataset-2 is used to fine-tune the se- 

lected layers. The 7-layer configura- 

tion with the minimum number of 

trainable parameters is selected. 

Configuration Dice Coefficient 

19-layers 0.875 

13-layers 0.873 

7-layers 0.863 

t  
valuate the segmentation performance of the network by divid-

ng Dataset-3 , containing fluoroscopic sequences from endovascular

urgical procedures, into three different splits of fine-tuning/testing

ets. In split S1, fine-tuning is performed on 240 randomly selected

mages, obtained from each subset (T1-T6) of Dataset-3 , as listed in

able 3 . In splits S2 and S3, subsets T1, T4 and T6 (714 images) and

ubsets T1, T2 and T5 (579 images) are used for fine-tuning respec-

ively. In all splits the remaining images, 967(S1), 493(S2), 628(S3),

re used for testing. 

As discussed in Section 3.3 we evaluated two cost functions

n the development of our U-Net model. Training loss and accu-

acy values before and after fine-tuning using the S1 split for both

xperiment-1 and Experiment-2 are illustrated in Fig. 4 . It is evi-

ent that the two cost functions produce different training out-

omes. Indeed, although the end-to-end training proved effective

sing both cost functions, better performance is achieved with the

ice overlap metric. Specifically, 0.97 (0.85) accuracy on the val-

dation set was derived in Experiment-1 ( Experiment-2 ) when the

ice overlap metric was used, against the 0.87 (0.80) obtained

ith the cross-entropy loss. More importantly, in the fine-tuning

hase, the cross-entropy loss function showed a dramatic drop

n performance, with an accuracy on the validation set of about

.14 (0.02) in Experiment-1 ( Experiment-2 ), as opposed to the 0.58

0.61) achieved with the Dice overlap metric. These results high-

ight the importance of selecting the proper cost function in or-

er to develop a model able to generalize in unseen data. For this

eason, only the CNN model trained with the Dice overlap met-

ic is used for further experimentation (evaluation on the testing

ataset, comparison with the state-of-the-art). 

.2. Lightweight U-Net accuracy results 

Segmentation accuracy results for both Experiment-1 and

xperiment-2 of the lightweight U-Net model are reported in

able 5 for S1, and Table 4 for S2 and S3. Fig. 5 also shows the

etwork prediction for two representative frames from T2 and T5,

espectively, when the network is fine-tuned on S1 ( Experiment-1 ).

n both Experiment-1 and Experiment-2 , the segmentation is more

ccurate in split S1 (average Dice coefficient of 0.55) than in S2 and

3 (average Dice coefficient 0.25 and 0.17, respectively). In all fine-

uning/testing configurations the accuracy values obtained in the
Table 4 

Segmentation accuracy on the leave-one-out (LOO) experiment and on the net- 

work fine-tuned on splits S2 and S3, for both Experiment-1 and Experiment-2 . Each 

row reports the Dice coefficient separately for each testing dataset, as well as the 

average Dice for each test. 

Test T1 T2 T3 T4 T5 T6 Avg. 

LOO 0.03 0.29 0.20 1 × 10 −4 1 × 10 −4 0.10 0.10 

S1 - Exp. 1 - 0.31 0.31 - 0.16 - 0.26 

S2 - Exp. 1 - - 0.36 0.02 - 0.11 0.15 

S1 - Exp. 2 - 0.28 0.33 - 0.15 - 0.25 

S2 - Exp. 2 - - 0.36 0.07 - 0.13 0.19 
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Fig. 4. Loss and accuracy values, using Dice coefficient (blue) and categorical-cross-entropy (orange) losses, against the number of epochs for training (a,b) and fine-tuning 

on S1 (c,d) on synthetic data (a, c - Experiment-1 ) and phantom data (b, d - Experiment-2 ). 

Table 5 

Segmentation results for the network fine-tuned on S1. Dice coefficient 

and percentage of misclassified pixels in terms of False Positives (FPs) 

for Experiment 1 (CNN trained on synthetic data) and Experiment 2 (CNN 

trained on phantom data), after fine-tuning on S1. 

Dataset Dice Exp.1 Dice Exp.2 FPs (%) Exp.1 FPs (%) Exp.2 

T1 0.58 0.57 0.98 1.18 

T2 0.78 0.76 2.35 2.85 

T3 0.72 0.77 1.08 1.14 

T4 0.71 0.73 1.82 2.55 

T5 0.29 0.29 1.48 1.97 

T6 0.13 0.18 1.33 2.10 
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a  
esting phase is comparable for the two experiments. We therefore

rgue that a similar training outcome is produced with both the

ynthetic and the fluoroscopic phantom images. Fig. 6 illustrates

he average Dice coefficient computed on the six test subsets (T1-

6) of Dataset-3 , for both experiments, before and after fine-tuning

ith the S1 split. The observed net improvement in the segmen-

ation accuracy ( ~ 81% and ~ 60% increase in Experiment-1 and

xperiment-2 , respectively) highlights the efficiency of combining

ransfer learning, using synthetic images, with a fine-tuning step

n specializing a network on the target testing set. Example seg-
entation results on images from Dataset-3 and the U-Net model

eveloped with the S1 split, are illustrated in Fig. 8 . From these we

rgue that the network learns to discriminate the catheter from

ther tools (such as the ultrasound probes or surgical screws) as

ell as from anatomical osseous structures (e.g. ribs, spinal cord),

ith only a small number of pixels (see Table 5 ) misclassified as

alse positives (FPs). For dataset T1, in which all catheters are man-

ally annotated, the network is also capable of segmenting multi-

le catheters present in the same image (first row in Fig. 8 ). In-

erestingly, in dataset T2, the network segments parts of catheters

hich are outside of the labelled ROI, indicating the model’s ability

o generalize. From Table 5 we observe that segmentation perfor-

ance decreases on T5 and T6 for both experiments. Fig. 8 shows

xamples from T5 and T6 where the catheter shape is not com-

letely segmented. This is attributed to the low contrast of se-

uences T5 and T6, making the catheter segmentation challenging,

nd also to the presence of black borders in T6 that further affects

he segmentation result. Despite this, only a small number of FPs

xists in T6 (see Table 5 ). 

.3. Comparison with state-of-the-art model 

In order to further demonstrate the effectiveness of our

pproach, we compare the proposed U-Net architecture with



8 M. Gherardini, E. Mazomenos and A. Menciassi et al. / Computer Methods and Programs in Biomedicine 192 (2020) 105420 

Fig. 5. Segmentation results on two representative frames from T2 (upper panel) 

and T5 (lower panel), with the network fine-tuned on S1 ( Experiment-1) . The figure 

shows: (a) the network prediction, (b) the ground truth mask, (c) the corresponding 

X-ray image. 

Fig. 6. Testing accuracy (average Dice coefficient) before (grey) and after (blue) 

fine-tuning on S1 for Experiment-1 and Experiment-2 . Accuracy increased by ~ 0.81 

and ~ 0.60, respectively in Experiment-1 and Experiment-2 , after fine-tuning. 
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Fig. 7. Testing accuracy (Dice coefficient) between the proposed lightweight U-Net 

architecture and the one in [12] for Experiment-1 (top) and Experiment-2 (bottom). 

Table 6 

Number of trainable parameters and average testing time for 

the proposed lightweight U-Net and the one in [12] . 

CNN architecture #Parameters Average Time 

Ambrosini et al. [12] 14,133,154 451 ± 12 ms 

Light U-Net 687,634 71 ± 2 ms 
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the state-of-the-art model for catheter segmentation. Using our

datasets, Experiment-1 and Experiment-2 are also performed with

the model introduced in [12] , adapted to our input resolution.

Training was followed by refinement of the deepest 7 layers on

the S1 split (240 images, ~ 25% of Dataset-3 ), while the remaining

samples (967 images, ~ 75%) were used for testing. Fig. 7 shows

the average Dice coefficient computed on the testing data from T1-

6, for both architectures and both experiments. 

In Experiment-1 our lightweight U-Net architecture showed an

average Dice coefficient of 0.58, which is higher than the 0.53 ob-

tained with the state-of-the-art model. In Experiment-2 , a 0.53 av-

erage Dice coefficient was derived from the proposed model, com-

pared to the 0.55 of the state-of-the-art. On average, there is a

difference in terms of accuracy of 5% for Experiment-1 and 4% for

Experiment-2 . 

Overall, the two models give comparable results and both have

high variability in the accuracy on different datasets (see error bars

in Fig. 7 ). We therefore argue that it is possible to reduce the num-

ber of trainable parameters of the U-Net model while preserving

the same accuracy level, with the additional advantage of a simpli-

fied CNN architecture that leads to faster execution times. When

tested in our setup, the testing time needed by our simplified U-

Net model (reported in Table 6 ) is reduced by 84% compared to

that required by the model presented in [12] . This makes our pro-

posed architecture ideal for real-time operation and more scalable
o possible future modifications of the input (e.g. increased image

esolution). 

Similarly to the evaluation performed in [12] , we also test the

odel from Experiment-1 on fluroscopic video sequences from in-

ivo TAVI operations (subset T1). We demonstrate that our pro-

osed simplified U-Net architecture, trained on a collection of syn-

hetic images, is able to accurately segment the catheter in se-

uential frames from endovascular procedures (please see supple-

entary material for visualizing the original TAVI video and corre-

ponding output segmentation results). 

. Discussion and conclusion 

The proposed lightweight U-Net architecture trained end-to-

nd with 90 0 0 synthetic fluoroscopic images ( Experiment-1 ), and

ubsequently fine-tuned on a small number of manually annotated

ata achieves accurate segmentation performance in most exper-

mental splits. The superior performance (average Dice coefficient

 0.50) is achieved in S1 when a small number (25%) from each

vailable fluoroscopic sequence is used for fine-tuning and the re-

aining (75%) for testing. Given the reduced size of the in-vivo

ataset and the fact that fine-tuning may not be very efficient (i.e.

ransferability of features) if the fine-tuning and testing data differ

ignificantly, this experimental split (S1) provides a benchmark of

erformance for our network and allows a direct comparison with
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Fig. 8. Segmentation results on example images from all test subsets (T1-T6) after fine-tuning on the S1 split: (A) Input grayscale image; (B) Output of Experiment-1 

(CNN trained on synthetic data); (C) Output of Experiment-2 (CNN trained on phantom data); (D) Ground truth mask: Model’s ability to generalize indicated by accurate 

segmentation in presence of additional tools (T2), the ultrasound probe (T4), surgical screws (T1) and osseous structures (T3, T5). In T1, the network successfully segments 

multiple catheters present in the same image and in T2, the network segments catheter parts outside of the labelled ROI. 

t  

t

 

S  

t  

m  

c  

w  

c  

t  

f  

t  

o

 

t  

t  

t  

i  

f  

o  

c

 

f  

3  

m  

t  

s  

m  

c  

t  

i  

t  
he state-of-the-art network in [12] , developed with images from

he same procedure. 

Varying segmentation performance is observed in splits S2 and

3 for the different sequences (T1-T6). Good segmentation is ob-

ained for T2 and T3 (Dice coefficient > 0.30), whereas in the re-

aining cases and particularly in T4 (Dice coefficient < 0.1) the ac-

uracy diminishes. We attribute this to the fact that data in T1-T6

ere not only acquired from different types of endovascular pro-

edures, but also from different medical setups (different surgical

ools and imaging devices), thus the fluoroscopic images have dif-

erent characteristics. Particularly evident is the case in T4 where

he image contrast is characteristically different than that of the

ther sequences. 

The benefit of the proposed transfer-learning approach using

he synthetic dataset is confirmed by the inability of the model

o learn the segmentation task as illustrated with the cross valida-
ion LOO experiment, where training is performed using only the

n-vivo fluoroscopic images ( Dataset-3 ). The need for large datasets

or end-to-end training of deep networks is confirmed, and with

ur proposed approach we provide an effective strategy for over-

oming limitations on data availability. 

As discussed in Section 3.2 , synthetic data were generated

rom annotations and background patches extracted from Dataset-

 . In a small number of situations, the semi-automated tracking

ethod of [24] , which employs a ROI for performing catheter

racking, is restricted to a portion of the catheter. The T4 re-

ult of Fig. 8 presents one such example, where the ground truth

ask annotates a significant, but not complete part of the entire

atheter. Nevertheless, in the majority of the available annotations,

he obtained masks include the entire visible part of the catheter

n the fluoroscopic image. We therefore consider the ground

ruth masks we obtained to be accurate and suitable for our
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investigation. This article presents a novel approach for perform-

ing pixel-wise segmentation of surgical catheters in 2d X-ray flu-

oroscopy images. We demonstrate the applicability of using syn-

thetic data and a streamlined training strategy for deep CNN net-

works intended for performing focused tasks. With the proposed

transfer learning approach the amount of manually annotated data

for training CNNs can be significantly reduced (only 240, 493 and

579 images were used for fine-tuning). We also show that our sim-

plified U-Net architecture trained on randomly-presented samples

achieves comparable accuracy to the state-of-the-art CNN models

for catheter segmentation, with an average Dice coefficient differ-

ence within 4%-5%, and can adequately segment the catheter on

fluoroscopic videos from real endovascular procedures (results pro-

vided in the supplementary material). 

Potential areas of future work include further investigation

into the use of synthetic data for training and the application

of more complex CNN architectures. In addition, post-processing

techniques applied to the output segmentation mask, like extract-

ing the catheter’s centerline, can be exploited to improve the seg-

mentation outcome and robustness of the method, particularly in

challenging situations with low-contrast fluoroscopic imaging. 
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