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Abstract—Next-Generation Radio Access Networks (NG-RANs)
aim to facilitate high data rates, low-latency applications, and
dense mobile connectivity — benefit from the integration of
Artificial Intelligence and Machine Learning (AI/ML) to enhance
performance and efficiency. Nevertheless, the dynamic service
demands within NG-RAN (namely Open RAN) lead to AI/ML
performance degradation known as drift, resulting in violations of
Service Level Agreements (SLA) and issues like over- or under-
provisioning of resources. Detecting and adapting to drift becomes
crucial to meet the diverse requirements of intelligent networks.
Due to frequent retraining, the existing threshold and classifier-
based approaches have potential disadvantages such as SLA
violations and resource inefficiency. This paper introduces a novel
approach that exploits the Generative Adversarial Network (GAN)
architecture to determine the drift and anomaly. The proposed
approach is evaluated for a throughput prediction use case over
a real-time dataset and compared to the threshold and classifier-
based approaches. The results show that the proposed approach
outperforms the threshold and classifier-based approaches.

Index Terms—AI/ML Model, Open RAN, Generative Adversar-
ial Networks (GANs).

I. INTRODUCTION

Mobile Network Operators (MNOs) are incorporating Arti-
ficial Intelligence / Machine Learning (AI/ML) techniques to
meet various use cases of Beyond 5G (B5G) networks. AI/ML
capabilities are increasingly becoming a pivotal component in
mobile networks, driving efficiency and introducing intelligence
and automation across various domains of Open Radio Ac-
cess Networks (Open RANs) — Management Data Analytics
(MDA) in orchestration, Network Data Analytics Function
(NWDAF) in the 5G core network, and Next Generation RAN
(NG-RAN), including RAN intelligence as defined in 3rd
Generation Partnership Project Technical Specification (3GPP
TS) 38.300 and 3GPP TS 38.401 [1].

The emergence of AI/ML has transformed various aspects
of Open RAN, focusing on Network Planning, Network Di-
agnostics/Insights, and Network Optimization and Control [2].
In Network Planning, AI/ML techniques optimize base station
placement and dimensioning for Centralized RAN clusters. Net-
work Diagnostics utilize AI/ML for forecasting network char-
acteristics, user localization, and identifying security incidents.

Network Optimization and Control includes various RAN com-
ponents, including radio access, transport/fronthaul/backhaul,
virtualization infrastructure, end-to-end network slicing, secu-
rity, and application functions.

Alongside, to enhance intelligence in Open RAN, consortia
like Operator Defined Open and Intelligent Radio Access
Networks (O-RAN), Telecom Infra Project (TIP), and Open
RAN Policy Coalition are actively working [3]. Here, the
O-RAN consortium introduced RAN Intelligence Controllers
(RICs) to improve RAN performance. However, one of the main
challenges in this network is maintaining the AI/ML model
performance consistency. AI/ML model drift is a common issue
in these networks due to dynamic changes in incoming user
data traffic, which impacts AI/ML applications. Model drift can
provide false insights and inaccurate decision-making, poten-
tially leading to severe service interruptions. Moreover, model
drift can result in inefficient resource allocation and utilization
with over/under-provisioning, leading to network performance
degradation and service disruptions. Drift occurrence can also
impact the Service Level Agreements (SLAs) between service
providers and users [4].

In [5], authors focus on anomaly detection, which identifies
the unusual user traffic points (or outliers) that deviate from the
normal (or observed) behavior of the network. [6] focuses on
employing an Auto-Encoder consisting of both encoder and
decoder to determine the anomaly. Anomaly detection with
the above approaches often triggers False Positives (FPs) and
struggles to adapt to dynamic network conditions. Whereas,
determining the drift includes several anomaly points and user
traffic changes over time. Drift detection can reduce FPs, pre-
vent model performance degradation, and efficient resource uti-
lization. In [7], drift detection is based on statistical features —
Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
fisher score. However, determining the appropriate threshold
values for each of the statistical features poses significant
challenges — too low may result in excessive computational
costs due to frequent retraining — too high may lead to poor
model performance and violate SLA.

To address the limitations of statistical measures to detect



both the anomaly and drift, the proposed work employs the
Generative Adversarial Networks (GANs) due to their abil-
ity to capture the underlying distribution of the user traffic
and adaptability to the dynamic network conditions. GANs
are advanced AI/ML models designed to generate new user
data that closely resembles the observed (or trained) data.
The applications of GAN in the RAN include generating
synthetic data, resource optimization, network planning, and
QoS management [8]. More details on GANs can be found
in [9]. The proposed approach determines anomaly and drift to
increase the efficiency of computational resources and network
performance.

The main contributions of this paper are summarized as
follows:

• A novel approach to detect drift using GANs.
• Evaluating the proposed approach by considering the

Throughput prediction use case.
• Performance of the proposed approach is compared with

state-of-the-art approaches such as the classifier approach
[Local Outlier Factor (LOF)] and a threshold approach.

II. SYSTEM MODEL AND PROPOSED APPROACH

This section describes the system model and the proposed
approach to detect the drift using GANs.

A. System Model

Figure 1 illustrates the O-RAN architecture, defining two
RAN intelligent controllers (RIC)– Near-Real Time (Near-RT)
and Non-Real Time (Non-RT), which enables the intelligence.
These RICs enable autonomous optimization of Open RAN by
functioning at different timescales, depending on the AI/ML
model inference position [10].

The O-RAN architecture provides multiple interfaces, in-
cluding O1, A1, and E2, to facilitate data collection and
communication among the RAN components (i.e., central unit
(O-CU), distributed unit (O-DU), and radio unit (O-RU)). The
O1-interface collects input data from all components (O-CU,
O-DU, and O-RU) and transmits model deployment/termination
information from Non-RT to Near-RT RIC. The A1-interface
facilitates policy-based guidance, AI/ML performance feed-
back, verification, and monitoring information exchange be-
tween Non-RT RIC and Near-RT RIC. The E2-interface con-
trols RAN functions via E2 control messages.

The AI/ML model management block within the Non-RT
RIC is crucial in detecting model drift utilizing the proposed
method, which leverages the GANs. In addition, the AI/ML
model management block interfaces with the AI/ML training
block to trigger retraining as needed by ensuring model accu-
racy and effectiveness.

B. Proposed Approach

The proposed approach exploits GANs to determine the
drift. GANs generate data similar to observed data and then
employ the Kolmogorov-Smirnov (KS) test to compare the
generated and Long-Short-Term Memory (LSTM) forecasted
data to determine the drift occurrence. If changes in user traffic

are introduced, then the proposed approach triggers the drift.
Algorithm 1 outlines the proposed approach and Table I shows
the list of variables used in it.

Table I: Description of variables used in Algorithm.

Acronym Referring to / Definition
ds Incoming data stream
LST M LSTM to forecast incoming user traffic
D Discriminator built with multi-layer perceptron

neural network to differentiate between the ob-
served and generated data

G Generator built with the LSTM architecture to
generate data close to the observed data

Pkstest Value determined by Kolmogorov-Smirnov Test
(KS Test) [11] between the generated and ob-
served data during the training of GAN

Dscore Range of discriminator score (i.e., between 0 and
1) obtained for the observed data during training
of GAN

WS Window Size
Noise A source of variability or randomness injected

into the GAN model to generate diverse and
realistic data
Gaussian Noise is used throughout this study

Lead T ime The number of previous incoming user data sam-
ples to use as input variable for LST M to
predict the next sample

LSTMforecast Stores the LST M forecast data in a list
Ypredict Stores the DMLP prediction output in a list
Z Samples from the distribution considered in

Noise
gdata Generated (or new) data from Generator G
G(z) Generator G, taking a vector z of size WS as an

input, which is sampled from Z
KST KS Test — quantifies the distance between two

distributions based on their empirical cumulative
distribution functions (ECDF) and determines
whether the incoming user traffic is following the
observed data distribution or not

Pvalue Value determined by KS Test for each window
of length WS by comparing both generated and
LSTMforecast

Algorithm 1 takes ds, LSTM, D, G, Pkstest, Dscore,
WS, Lead T ime and a Noise as inputs and triggers the
drift. The incoming data stream ds divides into consecutive
chunks of data with a length of WS. The LSTM takes
the chunks of ds and forecasts for a given Lead T ime (i.e.,
LSTMforecast). The discriminator (i.e.,D) determines whether
the LSTMforecast belongs to the observed data or not (see
lines 4-6).

The D evaluates each data sample from the LSTMforecast,
assigning a score between 0 and 1 (i.e., Ypredict[j]). If
Ypredict[j] falls within the pre-defined range of Dscore, no
action is taken (see lines 7-9). However, if Ypredict[j] exceeds
Dscore, the proposed approach triggers an alert zone (i.e.,
anomaly), signaling that changes in user data have been de-
tected in the incoming traffic (see lines 10-11). Data collection
for model retraining begins from the onset of the alert zone
until the actual initiation of model retraining.

The generator (i.e., G) utilizes Noise as input to generate
data gdata of a specified length WS (see line 14-15). The



Data Collec�on

Near-RT RIC

E2

O1

AI/ML Training
Information

O1/A1/E2

SMO: Service Management and Orchestration
RT-RIC: Real Time RAN Intelligent Controller
O-CU: O-RAN Central Unit
O-DU: O-RAN Distribution Unit
O-RU: O-RAN Radio Unit

feedbackModel Certification
/ On-boarding

Fronthaul

O
-DU

 Control loop

O-DUO-DUO-DU

O-DUO-DUO-RU

F1

O-CU

Data Prepara�on

AI/ML Inference

Data Collec�on

Data Prepara�on

AI/ML Training

AI/ML Model
Management

AI/ML Con�nuous
Opera�on A1

AI/ML Online
Information

AI/ML model performance
feedback/ Verification/ 

Monitoring

Model Deployment / Termination

SMO

O1/E2

Non-RT RIC Cloud
Edge

N
ear-RT RIC Control

loop

Figure 1: O-RAN architecture.

Algorithm 1 Drift and Anomaly Detection using GANs.

1: Input : ds,LSTM,D,G, Pkstest,Dscore,WS,
Lead T ime,Noise

2: Output : Drift or not
3: while data available do
4: for i← 0 to ⌊ length(ds)WS ⌋ do
5: LSTMforecast ← LSTM(ds[i ∗WS to (i+ 1) ∗

WS + Lead T ime])
6: Ypredict ← D(LSTMforecast)
7: for j ← 0 to WS do
8: if Ypredict[j] is in Dscore then
9: Do Nothing

10: else
11: Alert Zone to collect the data

for drift adaptation
12: end if
13: end for
14: Z ← Noise
15: gdata ← G(z)
16: Pvalue ← KST [gdata, LSTMforecast]
17: if Pvalue < Pkstest then
18: Drift
19: end if
20: end for
21: end while

KS Test is performed over both gdata and LSTMforecast

to determine drift occurrence. Here, the KS Test determines
the maximum difference between the cumulative distribution
functions (CDFs) of gdata and LSTMforecast and yields a
Pvalue, which signifies the likelihood that LSTMforecast and
gdata belong to the same distribution as the observed data.
A lower Pvalue indicates significant deviations between both
LSTMforecast and gdata. If the Pvalue lies within Pkstest, then
the proposed approach triggers drift which indicates that the
incoming user traffic differs from the observed data distribution
(see 16-19). The previously deployed AI/ML model weights are
updated during the retraining and deployed as an xApp (i.e.,
AI/ML model deployed at the Near-RT RIC) to predict further.

Also, Figure 2 depicts the proposed approach to determine
the drift. Initially, forecasts the incoming user traffic with an
LSTM network. On the other hand, the G produces the data
closer to the observed. A KS Test is performed over both LSTM
predicted traffic and data generated from G, to determine the
drift occurrence.

III. EXPERIMENTAL SETUP AND RESULTS

We evaluate the proposed approach for throughput prediction
using a real-time dataset.

A. Throughput Prediction Use Case

The increasing user traffic and evolving service requirements
in B5G networks are expected to influence traffic patterns
and bandwidth needs [12]. MNOs must manage this complex
architecture to meet user expectations. Utilizing AI/ML to
predict network conditions enables MNOs to implement user-
centric strategies, facilitating network service management and
adaptable policy configurations. However, AI/ML implementa-
tion introduces challenges, such as drift caused by dynamic user
traffic demands, which can result in resource allocation issues
and SLA violations. To address these challenges, the proposed
approach detects drift and adapts to changes in incoming user
traffic.

The proposed approach utilized a real-time dataset from the
Colosseum testbed [13] to evaluate the proposed approach and
state-of-the-art. The Colosseum dataset comprises a mixed-
slice, containing three slices: enhanced Mobile Broadband
(eMBB), Machine-type Communications (MTC), and ultra-
reliable and low-latency communication (URLLC). Among the
three slices, multiple user equipment (UEs) are distributed
randomly across static and moving conditions (with a speed
of 3m/s). The eMBB slice user traffic under static and slow
conditions are considered to evaluate the proposed approach
along with other approaches. The AI/ML model is trained with
the eMBB slice user traffic (static) and employed to forecast
for the given Lead T ime. To introduce the drift scenario,
an eMBB slice user traffic with moving conditions is used.
The proposed approach and other approaches are employed to
determine drift and retrain the model to adapt to user traffic
changes.
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Figure 2: Proposed approach architecture.

Table II: GAN and LSTM Model Description

LSTM

Architecture 3 LSTM layers with 100 hidden units
Activation function Rectified Linear Unit (ReLU)
Loss Function RMSE
Learning Rate 0.001

GAN

Generator

Architecture LSTM layer with 10 hidden units + 3 Fully Connected (FC) layers
Activation function ReLU
Loss Function Binary Cross-Entropy
Learning Rate 0.001

Discriminator

Architecture 3 FC layers
Activation function ReLU
Loss Function Binary Cross-Entropy
Learning Rate 0.001

B. Performance Comparison

The performance of the proposed approach is evaluated by
comparing with the other two approaches. The working of the
approaches considered for comparison are as follows:

• Classifier Approach [LOF] [14]: Uses an unsupervised
classifier to determine the drift. LOF is one of the
unsupervised classifiers that calculates the local density
deviation for each incoming user data sample, distinguish-
ing between observed and new data. Suppose new user
data arrive over a certain number of windows of WS
size, which can be calculated as a function of both the
time taken to transmit the considered data samples from
the data stream (i.e., Tds) and the end-to-end delay of
the application under consideration (i.e., Te2e). Classifier-
based approach triggers drift whenever newly arrived user
traffic is observed for Tds

Te2e
number of windows.

• Threshold Approach [10]: Triggers the drift occurrence
whenever the considered AI/ML model performance met-
ric exceeds the pre-defined threshold. The RMSE over
each data chunk of size WS serves as the performance
metric for the threshold approach.

The performance metric considered to evaluate these ap-
proaches is how promptly they can determine drift occurrence
and adapt to the user traffic changes by triggering model
retraining [15]. TP Ratio, FP Ratio, FN Ratio, Accuracy,

Precision, and F1-score are also considered for performance
evaluation of the considered approaches [4].

C. Results

We considered a real-time dataset from the Colosseum
testbed to train LSTM models for each approach under consid-
eration. The architectural specifications for LSTM and GAN are
provided in Table II. The parameters for LSTM and GAN archi-
tectures are carefully selected for dynamic network conditions
and effective drift adaptation. With three LSTM layers of 100
hidden units, the model captures complex data dependencies
crucial for drift detection. ReLU activation accelerates training
and captures nonlinear relationships. RMSE serves as a vital
metric for accurate drift detection. A moderate learning rate of
0.001 balances convergence and stability during training. The
GAN integrates LSTM and fully connected layers to generate
realistic data samples. ReLU activation fosters variation, while
binary cross-entropy loss aligns generated data with trained
data. A learning rate of 0.001 ensures stable convergence.
These parameter choices are rooted in both application specific
considerations and established practices in the Open RAN
environment [2].

Also, the input parameters for all the approaches considered
are outlined in Table III to assess throughput prediction. The
Pkstest value was determined during the training phase. Other
parameters like Tds and Te2e are specific to use case [16], while
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Table III: Input Parameters List

Approach Parameter Value

Threshold Approach RMSE 5

Classifier Approach [LOF] Tds 20 ms
Te2e 5 ms

Proposed Approach WS 10
Pkstest 0.0016

WS can be changed according to operator requirements. Here,
the larger WS value provides more stability by handling short-
term drift in user traffic, whereas a smaller WS value increases
sensitivity to immediate drift in user traffic, allowing for a
prompt response but potentially leading to frequent retraining.

Figure 3 depicts the performance of the considered ap-
proaches in predicting downlink tx brate. Initially, from 0 ms
to 150 ms UEs are static, and from 150 ms onwards UEs are
moving under slow conditions (i.e., moving with 3 m/s). The
threshold approach detected changes in user traffic between
290 ms and 300 ms, and determines drift at 300 ms when
its RMSE exceeded the defined threshold. The replacement of
the retrained LSTM is completed at 460 ms. In the case of
the Classifier approach [LOF], it detects drift at 200 ms after
identifying changes in user traffic over four consecutive data
chunks between 160 ms and 200 ms and retrained LSTM
model replaced at 350 ms. On the other hand, the proposed
approach detects drift at 160 ms after determining changes
in user traffic. The retrained LSTM model was replaced at
305 ms.

Table 1

Drift Detection 
Time [ms]

Threshold 
Approach 150
Classifier Approach 
[LOF] 50
Proposed 
Approach 10

10
50

150

0

50

100

150
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1

Figure 4: Performance comparison of the proposed predictive
approach with the other approaches.

Figure 4 shows the drift detection time of considered ap-
proaches. The proposed approach exhibits a shorter drift detec-
tion time than other methods. This can be due to the following
factors: (i) GANs have a high capability to adjust to evolving
network conditions, changing traffic patterns, and dynamic user
behavior; (ii) The Proposed method used the KS Test to assess
distribution similarities, allowing for quickly detecting drift in
user traffic.

In the threshold approach, the initial stage of forecasting the
incoming new user traffic, the RMSE values are lower than the
pre-defined threshold. While the RMSE values surpass the pre-
defined thresholds, in the later stages of forecast. Thus, when
compared with other approaches, the threshold approach ex-



hibits a higher Drift detection time consistently. As previously
mentioned, the Classifier approach [LOF] relies primarily on
the number of windows with size WS that are determined. As
a result, the approach must wait for the number of windows that
are taken into consideration before drift detection, which results
in a longer Drift detection time than the proposed approach.
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Figure 5: TP Ratio, FP Ratio and FN Ratio of the considered
approaches.

Figure 5 depicts the True Positive (TP), False Positive (FP),
and False Negative (FN) ratios of the proposed approach, clas-
sifier approach [LOF] and threshold approach. The proposed
approach and classifier approach [LOF] have very close TP
Ratios of 98.33% and 98.3% respectively, as shown in Figure 5.
Whereas, the threshold approach has a slightly lower TP Ratio
of 96.7% compared to other approaches. A higher TP ratio
suggests the approach effectively detects drift while minimizing
false alarms. The FP Ratio of the threshold approach, classifier
approach [LOF], and proposed approach are 1.6%, 0%, and
1.6% respectively. The FN Ratio of the threshold approach,
classifier approach [LOF], and proposed approach are 3.3%,
3.4%, and 1.6% respectively.

Other performance metrics such as accuracy, precision and
F1score of the proposed approach, classifier approach [LOF],
and threshold approach are listed in Table IV. As shown in the
table IV the threshold approach has low accuracy, precision,
and F1score compared to other approaches. Classifier approach
[LOF] has a precision of 100% because, during training of LOF,
it considers data distribution belongs to one class and during
the testing phase it classifies unseen data as new user data.
The classifier approach [LOF] and the proposed approach have
very close accuracy and F1-score, but the drift detection time
is less for the proposed approach than the classifier approach
[LOF]. Hence, the proposed approach outperforms the classifier
approach [LOF] and Threshold approaches.
Table IV: Drift detection performance comparison of each
approach

Approach Accuracy (%) Precision (%) F1-score (%)
Threshold Approach 97 96.7 97.47
Classifier Approach
[LOF]

98 100 98.3

Proposed Approach 98 98.33 98.33

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented an approach to determine the drift
occurrence that can prevent severe SLA violations and facil-

itate efficient resource provisioning. The proposed approach
leverages the GANs to determine the drift. We compared the
proposed approach with the throughput prediction use case
with the existing Classifier approach [LOF] and a threshold
approach. Future work will explore reinforcement learning (RL)
approaches to predicting when to retrain an AI/ML model.
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