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Abstract

We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of

parameters are selected on the basis of a loss function involving a distance between model-derived structural

coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-

Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model

confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation

by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex

macroeconomic simulation model that studies the link between climate change and economic growth.

Keywords: Model evaluation; Identification; Independent component analysis; Causal inference; Model

confidence set; Minimum distance index

JEL classification: C32; C52; E37

1. Introduction

Policy evaluation in macroeconomics is traditionally carried out within the framework of formal models.

Such models serve as surrogates of laboratories in which, through simulation, counterfactual questions can

be addressed. Questions may concern the effects of systematic changes in fiscal or monetary policy, but also

the economic consequences of climate change. It is evident that the results of simulations are reliable and

useful insofar as the models are empirically plausible; namely to the extent that they are taken to the data
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through estimation, calibration or validation (see, e.g., Ireland, 2004; Christiano et al., 2018). In this paper,

we propose a general procedure to both calibrate and (at a subsequent stage) validate macroeconomic models

that are sufficiently complex that they must be analysed through simulations.

Calibration has a long tradition in empirical macroeconomics (Kydland and Prescott, 1996; Hansen and

Heckman, 1996; Cooley, 1997; Gomme and Rupert, 2007). Its scope is to restrict the parameters of a model

so that the latter is made consistent with empirical properties of the data (e.g., stylized facts about long-run

growth, or moments of selected time series) or microeconomic observations. We follow in part this tradition

but introduce the novel idea that, when the scope of the model is policy analysis, parameters’ values should

be selected so that the model reflects key properties of the causal structure underlying the data, where such

properties are identified via a statistical identification approach, that is, under a minimal set of assumptions,

not related to economic theory.

Our idea of calibration has some overlapping with the strand of literature on estimation of dynamic

stochastic general equilibrium (DSGE) models that involves the minimization of the distance between the

impulse response functions of the models and the empirical impulse response functions (see, in particular,

Christiano et al., 2005; Del Negro et al., 2007; Dridi et al., 2007; Hall et al., 2012; Guerron-Quintana et al.,

2017). At odds with these studies, however, we do not rely on indirect inference or simulated minimum-

distance. In fact, the method we propose should be classified as calibration, rather than an estimation. The

key difference between the two notions lies in the fact that a model can be consistently estimated only when

the model is identified, whereas calibration, which can be seen as a complementary tool, can be applied to

non-identified (and misspecified) models.

Having discussed the term calibration, we now need to introduce validation. Validation is a notion that is

used to address the following question: How good is your model? The assessment is relative when model’s

goodness is relative to other models and absolute when the model’s performance is measured by fixing a unit

of measure. The literature on DSGE modelling has devised important tools for comparing different models

and evaluating the model’s capacity of fitting data, mainly adopting a Bayesian approach. Comparisons

of posterior marginal likelihoods and comparisons of the model’s implied characteristics with a benchmark

DSGE-Vector Autoregressive (VAR) model are prominent examples of relative and absolute validation tools,

respectively (Del Negro et al., 2006; Cantore et al., 2013). The literature on agent-based models (ABMs)

has also duly discussed the question of validation (see Windrum et al., 2007; Fagiolo et al., 2019), as the

inherent complexity of these models poses a challenge in empirically validating them against observed data

(Delli Gatti and Grazzini, 2020). Here, the emphasis has been posed on the idea that validation is about

measuring the extent to which the data generating process (DGP) associated to the calibrated theoretical
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model is a good representative of the actual (“real-world”) DGP.

In the last decades, a large literature has emerged on calibration and estimation of complex simulation

models, where key notions useful for validation have been discussed. We have mentioned above indirect

inference (Gouriéroux et al., 1993; Smith, 1993) and simulated minimum-distance (Altissimo and Mele,

2009). Related approaches are the method of simulated moments (McFadden, 1989; Pakes and Pollard,

1989; Zila and Kukacka, 2023), simulated maximum likelihood method (Lee, 1992; Kristensen and Shin,

2012; Kukacka and Sacht, 2023), and approximate Bayesian computation (Grazzini et al., 2017; Frazier

et al., 2018). Frameworks based on surrogate meta-models have also been developed (Lamperti et al., 2018),

which can address computational issues emerging from simulation and improve the performance of the above-

mentioned methods.

In the present work, in the spirit of Guerini and Moneta (2017), we claim that not only calibration, but

also validation should be designed by taking into account the adequacy for purpose of model building (Parker,

2020). If the objective is policy analysis, and, specifically, the prediction of the effect of a policy intervention

on some variables of interest, a model should be considered “valid” by the extent of which the causal structure

associated to the model’s DGP matches the causal structure underlying the “real-world” DGP.

Therefore, our general approach necessarily hinges on tools for causal inference. Causal inference

in macro-econometrics is intertwined with the discussion of identification of structural equation models

(Hoover, 2012), which most economists see as plagued by the the two famous critiques of Lucas (1976)

and Sims (1980) (see Favero, 2001). We tackle here causal inference from a very “agnostic” perspective,

in tune with the discussion of identification in structural vector autoregressive (SVAR) analysis (Kilian and

Lütkepohl, 2017). For the sake of calibration and validation, we do not need, indeed, to identify a fully-

fledged structural equation model. Nor is our scope to uncover the entire network of causal relationships

among time series variables. We aim at identifying a set of structural shocks and how they impact a set of

variables of interests.

We do this both for the model’s and the “real-world” DGP: we estimate VAR models both from synthetic

(i.e., generated by the model) and actual data and we identify the corresponding SVAR model by adopting

a statistical identification approach. Specifically, local identification of the impact matrix is achieved by

exploiting non-Gaussianity in the data, i.e., by applying independent component analysis (ICA) to SVAR

modelling, as proposed by Moneta et al. (2013), Lanne et al. (2017), Gouriéroux et al. (2017), Herwartz

(2018). Our identification strategy is agnostic because, not only we do not rely on economic-theoretic restric-

tions, but also, differently from Guerini and Moneta (2017), we do not impose a recursive causal structure on

the variables, which can be difficult to justify from an economic point of view. This comes, however, with a
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price, since we cannot perform shock labelling: an identified shock cannot be directly attributed to a specific

variable (e.g., output). Nevertheless, by calculating a minimum distance index (MDI) between impact matri-

ces, we show that it is possible to match shocks between the SVAR models derived from synthetic data and

the ones derived from actual data.

This result is suited to our objective because, on the basis of the MDI, we can build a model confidence

set (MCS) procedure (Hansen et al., 2011; Seri et al., 2021; Barde, 2020) that selects a set of model’s config-

urations of parameters containing the most appropriate (best) one with a given level of confidence. In other

words, MDI enters as loss function in MCS. This step allows us to achieve calibration of model’s parameters

that is consistent with causal analysis. Furthermore, by comparing the causal links between shocks and vari-

ables — the shocks-variables structure — associated with the calibrated configurations of parameters with

the one derived by the actual data, we can propose an absolute measure of validation.

The proposed approach can be applied to any macroeconomic numerical simulation model, including,

e.g., DSGE models, heterogeneous agent (HA) models and ABMs. The only requirements are that the theo-

retical model under scrutiny can be represented or adequately approximated by a state-space model and that

both the data generated from the model and the actual data have non-Gaussian features (see full details be-

low). We use our protocol to validate the “Dystopian Schumpeter meeting Keynes” (DSK) model by Lamperti

et al. (2019), which can be considered the first agent-based large-scale integrated-assessment model (IAM).

IAMs try to formalize key processes at the intersection of the socio-economic and environmental system,

with the aim of providing policy-relevant insights for decision-making. Indeed, the DSK model features a

consumption-good, a capital-good and an energy sector which jointly contribute to the Carbon Dioxide emis-

sions process accounting for climate-induced damages. ABMs are interesting candidates for our approach as

it hinges on non-Gaussianity, which is a common feature in data generated by these models.1

The contributions of this paper can be summarised as follows: first, we introduce a general protocol that,

in subsequent steps, can perform both calibration and validation. We spell out its theoretical underpinnings

based on SVAR-ICA, MDI, and MCS. The proposed method turns out to be faster than other procedures based

on optimization or the exploration of the parameter space and reduces the risk to deviate from the (pseudo-

)true values (e.g., the probability of incurring in multiple local minima, tipping points or flat regions of the

objective function). Second, we propose a novel employment of a statistical (i.e. data-driven) identification

procedure in the context of calibration and validation. We show that in such context, differently from other

settings, lack of global identification does not create any hurdle. Furthermore, the fact that the proposed

1Examples of DSGE models characterized by non-Gaussian shocks can be found in An and Schorfheide (2007) and Cúrdia et al.
(2014).
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procedure allows recovering the shocks-variable structure — attempting to open the causality black box

— constitutes an advantage with respect to approaches based on predictive ability. Third, we present an

implementation of MCS which allows the possibility of ranking model’s causal structures from the most

to the least plausible. Notice that MCS is also in tune with the data-driven approach, as it focuses on the

informativeness of the real-world data (Hansen et al., 2011; Seri et al., 2021). Moreover, our empirical

application contributes to the literature that attempts at calibrating and validating IAMs. Agent-based IAMs,

in particular, seem to offer a new paradigm for the assessment of climate-induced outcomes and climate policy

(Lamperti et al., 2019; Castro et al., 2020; Lamperti and Roventini, 2022). However, a unified protocol for

calibration and validation is still missing. It is worth noting that our application identifies, in the model, a set

of shocks that hit energy and investment and match quite accurately the empirical counterpart found in U.S.

data.

The rest of the paper is structured as follows. In Section 2, we summarize the different steps involved

in our calibration and validation technique. In Section 3, we introduce the statistical framework and we

provide the SVAR representation for both the model and the actual data. In Section 4, we present our general

protocol of calibration and validation. In particular: in Subsection 4.1, we describe the SVAR-ICA approach

to identification; in Subsection 4.2, we discuss the MDI used as loss function in the MCS; in Subsection

4.3, we describe the MCS-based calibration procedure; in Subsection 4.4, we discuss the validation step. In

Section 5, we briefly illustrate the DSK model. This model is calibrated and validated by applying our general

protocol in Section 6. Section 7 concludes.

2. Sketch of the protocol

In Table 2.1, we report the different acronyms with their meaning, alongside the main notation, used

throughout the paper. Below, we summarize our general protocol for calibration and validation. Two steps

(1-2) can be seen as preliminary:

1. Select a discrete setM0 := {1, . . . ,m0} of configurations of parameters (henceforth, CoPs) from the

parameter space of the theoretical model object of the study. A vector of parameters θi (i = 1, . . . ,m0)

is associated to each CoP. From the same model, for each CoP i, simulate n Monte Carlo runs, denoted

by zjt (θi), with j = 1, . . . , n and t = 1, . . . , T . The vector zjt (θi) is K−dimensional.

2. Select a K × 1 vector yt of observed time-series macroeconomic data, with t = 1, . . . , τ . We refer to

yt as the real-world or actual data. Estimate a reduced-form VAR model both from zjt (θi) (for each i

and j) and yt.
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The next 3 steps (3-5) refer to calibration:

3. For each estimated VAR model, estimate the impact matrix, i.e., the matrix that describes the con-

temporaneous impact of the shock on the variable of interest. This matrix, which we refer to as the

mixing matrix, is locally identified by ICA applied to the VAR residuals. We call Ψ̂0 the mixing matrix

estimated from yt, and Ψ̂j,0(θi) the one estimated from zjt (θi).

4. Calculate the MDI between Ψ̂j,0(θi) and Ψ̂0 and record the unique signed-permutation matrix Cji

associated to it, for each j and i.

5. Apply the MCS using the MDI as loss function and select the set M? of CoPs that minimizes the

expected loss. The selected CoPs are statistically indistinguishable given a level of confidence.

The last 2 steps (6-7) concern only validation:

6. For each Ψ̂j,0(θi)C
′
ji, with i ∈ M? ⊆M0, test the significance of its entries, exploiting distributions

obtained by Monte Carlo simulations across j. In a similar manner, test the significance of the entries of

Ψ̂0 via bootstrap. For each CoP and the actual data, infer a causal structure (which we call independent

component representation) representing the significant influences from shocks to variables.

7. Compare the shocks-variables structure associated to CoPs i ∈ M? ⊆ M0 to the “real-world”

shocks-variables structure, using a validation measure (VM) based on the Structural Hamming Dis-

tance (SHD). SHD measures how many entries of the matrices representing the two structures do not

coincide.

Table 2.1: Main notation and acronyms

VAR Vector autoregression SHD Structural Hamming Distance
SVAR Structural vector autorogression VM Validation measure
DGP Data generating process ICR Initial Independent component representation
ABM Agent-based model M0 Initial set of CoPs
DSGE Dynamic stochastic general equilibrium i Index of CoPs
IAM Integrated-assessment model j Index of Monte Carlo runs
DSK Dystopian Schumpeter meeting Keynes t Index of time steps
ICA Independent Component Analysis θi Vector of model’s parameters
MDI Minimum distance index yt Vector of observed time series
MCS Model confidence set zjt (θi) Vector of simulated time series
CoPs Configuration of parameters M? Set of selected CoPs

Ψ̂0
Matrix of real-world contemporaneous
shocks (actual mixing matrix)

Ψ̂j,0 (θi)
Matrix of simulated contemporaneous
shocks (simulated mixing matrix)
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3. SVAR representation

Our method moves from the assumption that both the stochastic process underlying a set of observed

macroeconomic data (what we call the “real-world” DGP) and the process underlying a macroeconomic

simulation model (model DGP) can be approximated by a SVAR model.

Example 1. (DSGE representation) A DSGE model can be represented by a reduced-form VAR following

the conditions devised in Fernández-Villaverde et al. (2007) and Ravenna (2007).

Example 2. (ABM representation) Analogously, the relationship between an ABM and a SVAR (see, e.g.,

Guerini and Moneta, 2017 and Delli Gatti and Grazzini, 2020) can be justified by the fact that an ABM can

be approximated by a state-space model (Hinkelmann et al., 2011), and the latter can in turn be approximated

by a finite-order VAR model (Giacomini, 2013).2 Examples of state-space representation are common in

the data assimilation literature (see Ward et al., 2016). Moreover, Gusella and Ricchiuti (2024) introduce a

formal framework for the state-space representation of heterogeneous interacting agents models.

In the following, we consider a set of K time series variables yt = (y1t, . . . , yKt)
′, corresponding to a

set of K observed macroeconomic variables and a set of K time series variables zjt(θi) corresponding to a

set of data generated by a (simulated) theoretical model for vector of parameters θi and Monte Carlo run j

(i = 1, . . . ,m0; j = 1, . . . , n).

The process generating yt is represented by the following SVAR model:

Γ0yt = Γ1yt−1 + · · ·+ ΓPyt−P + εt (3.1)

where Γp (for lag p = 0, . . . , P ) are K ×K matrices denoting the contemporaneous and lagged structural

coefficients, and εt is a K-dimensional vector of i.i.d. structural error terms (or shocks) with covariance ma-

trix Σε, which we assume to be diagonal. Equation (3.1) may also contain a constant (or even a deterministic

trend), which we omit here for convenience, not being relevant for the present discussion. This model can be

rewritten in a form that omits contemporaneous causality. This is the reduced-form VAR model, which turns

out to be more convenient for estimation:

yt = A1yt−1 + · · ·+ APyt−P + ut (3.2)

2Giacomini (2013) specifies that the approximation of a DSGE in terms of a VAR model proceeds in three stages: (i) from DSGE
to state-space model; (ii) from state-space model to VAR(∞); (iii) from VAR(∞) to finite-order VAR. For our purposes, we focus on
the second and third steps: as long as the ABM can be approximated be a state-space representation, the latter can be carved into a
finite-order VAR.
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where Ap = Γ−10 Γp (p = 1, . . . , P ), and ut = Γ−10 εt, i.e. ut is a vector of i.i.d. processes with covariance

matrix Σu = E {utu′t} = Γ−10 ΣεΓ
−1,′
0 . We call the impact matrix Ψ0 = Γ−10 the real-world mixing matrix.

Analogous representation holds for data generated by the simulation model:

Γj,0 (θi) zj,t (θi) =Γj,1 (θi) zj,t−1 (θi) + · · ·+ Γj,P (θi) zj,t−P (θi) + εjt (θi) (3.3)

zjt (θi) =Aj,1 (θi) zj,t−1 (θi) + · · ·+ Aj,P (θi) zj,t−P (θi) + ujt (θi) , (3.4)

where εjt (θi) and ujt (θi) are the model’s shocks and the reduced-form residuals, respectively. We call

the impact matrix Ψj,0 (θi) = Γ−1j,0 (θi) the model mixing matrix associated to the j-th Monte Carlo run of

the i-th CoP of the simulated model. As well known in the SVAR analysis, the mixing matrix is key for

identification.

It is important to notice that the shocks εjt (θi) may have different interpretations and origins, depending

on whether the SVAR model is used for representing an ABM or, rather, a DSGE model. In a DSGE model

there is a close correspondence between the structural shocks referring to the equations of the linearized theo-

retical model and the structural shocks obtained from the VAR model fitted on the simulated data. Instead, if

we fit a VAR model on data generated by an ABM, the SVAR model’s identified shocks represent macro-level

forces resulting from the aggregation of micro-level, idiosyncratic shocks. Examples of micro-level shocks

include idiosyncratic and heterogeneous technological improvements that firms may enjoy, unexpected cuts

in credit supply, unforeseen revisions in investment plans. Moreover, as in Delli Gatti and Grazzini (2020)

and, more generally, in macro ABM standard practice, the modeler can externally introduce unanticipated

policy shocks during the simulation to see how the contemporaneous causal structure embedded in the model

dynamically unfolds in the system. This is rather distinct with respect to DSGE models, where equilibrium

conditions — which theoretically determine the contemporaneous causal structure of the model — are exter-

nally hit by shocks whose correspondence with VAR model’s innovations is close by construction (making

their interpretation easier and straightforward). On this matter, for the purpose of complex-simulation mod-

els’ calibration and validation, it becomes of interest to assess, on the basis of the statistical identification

approach that we pursue, whether there is correspondence between the shocks derived by the SVAR model

that represents the ABM and the shocks identified from the real-world data.

4. Calibration and validation protocol

We now enter the core of our calibration-validation procedure. Moving from the (S)VAR representability

of our DGPs, in this section we provide the theoretical background for the steps 3-7 of Section 2.
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4.1. The SVAR-ICA approach to identification

Our general protocol is based on a comparison between the SVAR models estimated from the synthetic

data (one for each Monte Carlo run) and the one derived from the actual data. Thus, there is a problem of

identification to be faced. We adopt here a data-driven approach to identification, which allows us to avoid

strong a priori restrictions (e.g., theoretical short-run or sign restrictions). Specifically, we use independent

component analysis, which exploits non-Gaussianity. With this approach, we obtain local identification but,

as we will explain in the next subsection, our index of comparison between SVAR models remains invariant

to lack of global identification.

ICA is a statistical method that models a set of observed random variables as a linear combination of inde-

pendent latent random variables, called the independent components (Comon, 1994; Hyvärinen et al., 2001).

In line with the applications of ICA to SVAR analysis (see, for instance, Moneta et al., 2013; Gouriéroux

et al., 2017; Lanne et al., 2017; Herwartz, 2018), the input data are the estimated reduced-form residuals ut

(or ujt(θi)) and the latent independent components are the structural shocks εt (or εjt(θi)).

Given that ut = Ψ0εt, the ICA model recovers (up to some indeterminacy, see below) Ψ0 and εt

from realisations of ut under the assumptions that the components εt are non-Gaussian (with at most one

exception) and that Ψ0 is invertible (see, e.g., Hyvärinen et al., 2001 and Hyvärinen, 2013). Notice that the

same assumptions hold for εjt (θi) and Ψj,0 (θi). The indeterminacy is related to the fact that ICA identifies

Ψ0 up to the post-multiplication of a generalized permutation matrix DP, where D is a diagonal matrix and

P is a permutation matrix.3 This means that the order and scale of the shocks are not identified. Our choice

of the minimum-distance index allows us to tackle this issue.4

In the ICA literature, many methods have been developed to estimate Ψ0 from ut. Some of them are

based on the minimization of a contrast function whose argument is a vector of parameters ω determining

the rotation angles of the orthogonalized input data. The method based on the minimization of the Cramér-

von-Mises statistics proposed by Herwartz and Plödt (2016) and the method based on distance covariance

developed by Matteson and Tsay (2017) use this approach. Another established technique considers semi-

parametric estimators of the pseudo-maximum likelihood function (Gouriéroux et al., 2017). A different

approach exploiting information theory techniques has been developed by Hyvärinen (1999) and Hyvärinen

and Oja (2000). The authors formulate a fixed-point algorithm called fastICA. This technique relies on

3We recall that a generalized permutation matrix is a matrix that has exactly one non-zero element in each row and each column.
4It is customary to normalize SVAR models so that the structural shocks have unit standard deviations, meaning that impulse

response functions refer to one standard-deviation shock. In this manner, the scale problem is resolved (this normalization involves a re-
scaling of the columns of the mixing matrix), but not completely because the sign of shocks (or of their impacts) remains undetermined.
Therefore, one can conclude that Ψ0 is identified up to the post-multiplication of a signed permutation matrix JP (where J is a sign-
change matrix, i.e. a diagonal matrix with only +1 or -1 entries on the main diagonal, and P is a permutation matrix).
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the maximization of the non-Gaussianity of γ′kut, where γ′k is the k-th row of the matrix Γ0, for each

k = 1, . . . ,K. Moneta and Pallante (2022) provide a performance evaluation study comparing fastICA with

other ICA estimators, showing its relative robustness and reliability in a SVAR setting. We therefore choose

to adopt fastICA algorithm to estimate and identify our SVAR-ICA model. In Appendix A, we state the

assumptions underlying the ICA model and the fastICA estimator.

4.2. Minimum distance index

We present here the minimum distance index, which allows us to calculate the distance between impact

matrices identified by ICA, tackling the issue of the scale/order indeterminacy. The MDI is inspired by

Matteson and Tsay (2017), who suggest to measure the error between the estimate Ψ̂0 and the true value Ψ0

exploiting the metric proposed by Ilmonen et al. (2010). Here, instead, we want to measure the discrepancy

between the model mixing matrix and the real-world mixing matrix. The index finds the shortest discrepancy

by searching across all the possible column-signed permutations of the model mixing matrix, by keeping the

real-world mixing matrix as reference matrix.5 In other words, the MDI is invariant to all possible column’s

permutations and changes of sign of the estimated model mixing matrix. To simplify the notation, in the

following we write Dji := D
(
Ψ̂j,0 (θi) , Ψ̂0

)
.

Definition 1. The minimum-distance index for Ψ̂j,0 (θi) is:

Dji :=
1√

K − 1
inf

Cji∈C

∥∥∥CjiΨ̂
−1
j,0 (θi) Ψ̂0 − IK

∥∥∥
F

(4.1)

where

C = {Cji ∈ G : Cji = PjiJji for some Pji and Jji} ,

G is the set of full-rankK×K matrices, Pji is a permutation matrix, Jji is a sign-change matrix, Ψ̂j,0 (θi) is

the estimator of the model mixing matrix Ψj,0 (θi) , Ψ̂0 is the estimator of the real-world mixing matrix Ψ0

(from real data), IK is the identity matrix and ‖·‖F is the Frobenius norm. When the value ofDji approaches

0, we have that Ψ̂j,0 (θi) is close to Ψ̂0.

Since it implies the minimization over all choices Cji ∈ C, Dji seems to require high computational

costs, especially when the number of variables K increases. However, this is not a real drawback in our case.

First, VAR models that are usually treated in the macroeconomic literature considers a limited number of

5In our application of the procedure, for convenience, the columns of the real-world mixing matrix are signed-permuted by applying
the Maxfinder criterion in a hierarchical manner, as proposed by Bruns et al. (2021). However, results are not sensitive to any signed-
permutation of the columns of the matrix Ψ̂0 .
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variables (typically K < 10). Second, we compute the MDI following the two-steps procedure described by

Ilmonen et al. (2010, pp. 234-235), which reduces the optimization problem over all permutation matrices

Pji of equation (4.1) to a linear programming problem that can be solved using specific algorithms (e.g., the

Hungarian method).

4.3. Model Confidence Set

We now present our calibration procedure, which is based on the Model Confidence Set. MCS is a

statistical procedure that allows the researcher to find the best CoPs, with a given level of confidence, among

a discrete set of candidates (Hansen et al., 2011). To perform this selection, the researcher needs to specify

a loss function, a selection criterion, and an elimination rule. Since our purpose is to select the set of CoP(s)

delivering causal structures that match as close as possible the structure underlying the actual data, we use

the MDI as loss function.

From the set of CoPsM0, MCS selects a setM∗ with cardinality greater or equal than one. We recall that

to each CoP is associated a vector of parameters (to be calibrated) θi, for i = 1, . . . ,m0. For each CoP i: (i)

we run n Monte Carlo simulations zjt (θi) (j = 1, . . . , n); (ii) we derive the model mixing matrix Ψ̂j,0 (θi)

(for each Monte Carlo j); and (iii) we compute the MDI between Ψ̂j,0 (θi) and the real-world mixing matrix

Ψ̂0 (for each j).

Let Di := EΨ̂0(θi)
D
(
Ψ̂j,0 (θi) , Ψ̂0

)
be the expected MDI relative to CoP i, where the expectation

term is taken over the values that the estimated model mixing matrix takes across Monte Carlo runs. Let

D := (D1, . . . , Dm0)
′ be the m0-dimensional vector of these expected values for the m0 CoPs. Let D

(n)

i :=

1
n

∑n
j=1Dji and D

(n)
:=
(
D

(n)

1 , . . . , D
(n)

m0

)′
be the sample counterparts ofDi and D respectively. Defining

Dj := (Dj1, . . . , Djm0
)
′, the sample average distance can be rewritten as D

(n)
:= 1

n

∑n
j=1 Dj .

We aim at finding the CoPs achieving the minimal MDI. Let

M? :=

{
h ∈M0 : Dh = min

i∈M0
Di

}
(4.2)

be the set of parameters minimizing the distance Di. For i ∈ M0, the estimator î(n) is the value that

minimizes the sample average distance D
(n)

i . Note that î(n) is a singleton whileM∗ is not necessarily so.

To achieve a given level of confidence in the selection procedure, we need to formulate a statistical test.

To this aim, we estimate, via Gaussian quasi-likelihood,Di and σ2
i := VΨ̂0(θi)

D
(
Ψ̂j,0 (θi) , Ψ̂0

)
, following

Seri et al. (2021). To do that, Dj must be independent and identically distributed and, for each i ∈ M0, the

distances Dji must be independent. Moreover, the mean EDji must exists and be finite for each i ∈ M0.

These requirements guarantee the consistency and measurability of î(n). These properties derive directly by
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the fact that each simulation zjt (θi) is independent across Monte Carlo runs. Moreover, fixed i ∈ M0,

zjt (θi) are identically distributed (see also Choirat and Seri, 2012, Proposition 1, p. 280). At last, we need

finite σ2
i . All these requisites are either fulfilled by the construction of the simulation model or verified in the

data. Therefore, we can use standard statistical hypothesis testing to test m0 restrictions of the model at the

same time.

We define the equivalence test δM and the selection rule eM associated to the setM ⊆ M0. The test

has a null H0,M and an alternative hypothesis H1,M:

H0,M :Di = Dh,∀i, h ∈M; (4.3)

H1,M :∃i, h ∈M such that Di 6= Dh. (4.4)

If the test rejects the null hypothesis, then δM = 1, else δM = 0. When δM = 1 we use eM :=

argmaxh∈MD
(n)

h to remove a CoP from M (i.e. we select the index h ∈ M which provides the largest

value D
(n)

h ). Now, we introduce the sequence of subsets ofM0,Mi+1 =Mi \ eMi for i = 1, . . . ,m0 − 1,

and the p-values of the test procedure pH0,Mi
, where we impose that pH0,Mm0

≡ 1. Therefore, the MCS

p-value can be defined as follows:

p̂eMh
:= max

i≤h
pH0,Mi

, (4.5)

for h = 1, . . . ,m0. The algorithm for the implementation of the MCS is reported in Appendix B.

Note that our MCS-based calibration procedure can be easily adapted to a MDI which refers not just to

the mixing matrices, i.e. Ψ0, Ψj,0 (θi), but rather to structural moving-average matrices at different lags, Ψ`,

Ψj,` (θi) (with ` = 1, . . . ,H). However, we focus on the former matrices, since the identification of the latter

depends on the mixing matrices, which ICA is able to locally identify in a data-driven fashion. Therefore, the

comparison of structural matrices at time horizons greater than zero does not provide additional information

about structural identifiability.

4.4. Validation step

Once the MCS-based calibration is performed, it is possible to investigate the behaviour of the causal

structures associated to the CoPs which pass the test. By comparing such behaviour with the causal structure

associated with the real-world DGP, we propose a measure of model validation. Such measure fulfills two

desirable criteria. First, it is a measure that is bounded by construction between zero and one. Thus, it delivers

an absolute assessment and can be used to compare the performance of models of different nature. Second, it

focuses on properties of the causal structures that both are significant from a statistical point of view and can
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be inferred from the data without further theoretical restrictions.

Notice that we have only partial information about the causal structure underlying the real-world DGP,

which is our reference point. From ICA, as already pointed out, we get an estimate of Ψ0 which is underde-

termined by permutations and changes of sign of its columns. Thus, since we do not want to impose further

restrictions, we do not obtain labels of shocks, i.e., we cannot relate shocks with variables. But, by bootstrap,

we can recover the causal structures between the (mutual independent) real-world shocks and variables, by in-

ferring which shocks εks,t (with ks = 1, . . . ,K) have significant impacts on variables yt = (y1,t, . . . , yK,t)
′.

From the simulated data, we get an estimate of Ψj,0 (θi), which contains in principle the same column/sign

indeterminacy. However, the calculation of the MDI Dji has provided a unique matrix Cji for each j and

i. From Ψ̂j,0 (θi)C′ji, we get a one-to-one mapping between the impacts of the simulated shocks and the

impacts of the real-world shocks. This warrants the possibility of comparing the real-world shocks-variables

structures with the model’s shocks-variables structures, which can be inferred by exploiting the Monte Carlo

simulations.

We represent the shocks-variables structure via a matrix called “independent component representation”

(ICR) (see Casini et al., 2021, for a graph-theoretic definition). An ICR is a K × K matrix whose entries

are zeros or ones. The entry < kv, ks > is 1 if and only if there is a significant impact of the shock εks,t (or

εks,t (θi)) on the variable ykv,t (or zkv,t (θi)), for kv, ks = 1, . . . ,K.

Whether an impact is significant or not is based on significance tests on the coefficients which enter in

the matrices Ψ̂0 and Ψ̂j,0 (θi)C′ji, with i ∈ M∗ ⊆ M0. As regards Ψ̂0, the significance tests is based on

the wild bootstrap procedure (see Kilian and Lütkepohl, 2017, Sec. 12.2.3): at each bootstrap iteration n∗

(n∗ = 1, . . . , N∗), the bootstrap-estimated mixing matrix Ψ̂n∗

0 is right-multiplied by a signed permutation

matrix C′n∗ , where Cn∗ corresponds to the arg inf of the MDI between Ψ̂∗0 and Ψ̂0 (consistently to the

scheme we apply to the model mixing matrices).

Once we have obtained ICRs for both synthetic and real data, we calculate the Structural Hamming

Distance to be used in the proposed validation measure. SHD originates from information theory and is

generally used to compare the similarity of blocks of words of equal length. In the field of causal networks,

SHD has been introduced by Acid and de Campos (2003) and Tsamardinos et al. (2006) to confront directed

acyclic graphs.

Let ICRrw be the ICR representing the real-world shocks-variables structure and ICRsim the analogous

structure for the model’s shocks and variables. We adapt SHD such that it counts how many entries of the

two matrices do not coincide. We define our validation measure as follows:
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Definition 2. The validation measure of ICRsim with respect to ICRrw is:

VM := 1− SHD/K2, (4.6)

where K2 is the number of entries in each ICR.

If SHD → 0, then VM → 1. For a given K, the smaller is SHD, the closer is, under this interpretation,

the model’s causal structure to the real-world causal structure. In particular, SHD counts, in a theory-free

fashion, how many edges differ between ICRrw and ICRsim. Even though the resulting validation measure

does not distinguish between matching due to common presence or common absence of edges, it is helpful

in providing a synthetic score of how good is a model in capturing a reference causal structure. Finally,

this measure is alternative to the measures proposed by Guerini and Moneta (2017) (namely, sign-based,

size-based and conjunction measures) as it is both general and more in tune with the literature on causal

search.6

5. The DSK model

In this section, we briefly illustrate the DSK model by Lamperti et al. (2019), which is the object of

our application. The DSK family of models represents the first attempt to provide an agent-based integrated

assessment model, in the spirit of contributions in environmental economics (Weyant, 2017), as it combines

energy, climate and economic modelling to offer an integrated perspective on emission trajectories, decar-

bonization pathways and the corresponding policies to implement. It has been recently used to study scenar-

ios under which green transitions are more likely to occur (Lamperti et al., 2020) and to analyze the public

costs of climate-induced financial instability (Lamperti et al., 2019), as well as to evaluate financial policies

aimed at dealing with increasing climate risks. In particular, DSK models allow tackling several problems

that plague traditional general-equilibrium integrated assessment models, by enhancing the degree of hetero-

geneity, improving the representation of radical uncertainties, refining the technological change process, and

obtaining an accurate assessment of climate scenarios (Stern and Stiglitz, 2021).

The DSK model by Lamperti et al. (2019) features a manufacturing sector, populated by heterogeneous

and interacting firms, devoted to the production of either capital or consumption goods and receiving inputs

6It may be argued that using the same empirical data both to calibrate and to validate the model can yield a sort of “double-counting”
and can raise issues of circularity. Steele and Werndl (2013) show that in fact double-counting is not problematic, building on a Bayesian
theory of confirmation, but also showing its legitimacy in a frequentist approach. Note that Steele and Werndl (2013) develope their
argument for the calibration-confirmation problem, but that this holds a fortiori for calibration-validation, since our validation step is
merely based on a distance between causal structures.
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from an energy sector. The financial system is represented by a banking sector in which banks — heteroge-

neous in number of clients, balance-sheet structure, and lending conditions — decide the amount of credit

to provide to their clients subject to a capital requirement and leverage conditions. The energy sector is

populated by heterogeneous plants embracing different energy generation technologies (“clean” and “dirty”)

which possess diverse cost structures and emission intensities. Moreover, it is characterized by an exoge-

nous fossil fuel sector which provides dynamics and boundary conditions (reflecting scarcity) on the price

of an undifferentiated fossil fuel. The production activities of energy and manufacturing firms lead to CO2

(equivalent) emissions, which increase temperature in a nonlinear way. Technical change occurs both in the

manufacturing and energy sectors. Capital-good firms develop new vintages of machines that are both more

productive and more “green”. The energy sector can improve both the “brown” and “green” energy genera-

tion technologies. Innovation determines the cost of energy produced by dirty and green technologies, which,

in turn, affect the energy-technology production mix and the total amount of CO2 emissions. Finally, the

government sector collects taxes on profits and pays unemployment benefits. A detailed description of the

model is provided in Section 1 of the Supplementary Material.

Our approach to calibration and validation puts emphasis on the ability of the model to deliver empiri-

cally reliable causal structures concerning the real side of the economy, the energy sector, and climate-related

outcomes. The DSK model (Lamperti et al., 2019), as well as its two-sector predecessor, the “Schumpeter

meeting Keynes” (K+S) model (Dosi et al., 2010, 2013, 2015), have undertaken a wide, yet manual, ex-

ploration of the parameter space that ensures, at a macro level, reasonable and stable long-run economic

trajectories, along with endogenous business cycle dynamics. In particular, the DSK version that we analyze

in this paper (Lamperti et al., 2019) has been indirectly calibrated by the authors to reproduce stylized facts

such as energy demand and CO2 emission patterns that are consistent with the shared socioeconomic pathway

5 (SSP5, see Riahi et al., 2017)

For this reason, the K variables of interest are: aggregate output (GDP ), consumption (Cons), invest-

ments (Inv), unemployment rate (UR), a price index (CPI), demand of energy (Ener), and total emissions

of Carbon Dioxide (Emiss).

6. Application of the general protocol

In this section, we show the results of the application of the general protocol for calibration and validation,

presented in Section 4, to the DSK model illustrated in Section 5.

The starting point is the choice of the discrete set of parameters to be calibrated. This choice hinges on

the detection of those features that have the highest influence on the behaviour of the macroeconomic output
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(see Lamperti et al., 2019). In Table 6.1, we summarize the selected parameters and the intervals in which

they vary.

Table 6.1: Parameter notations and interval values

Description Parameter Values

Beta distribution support (innovation)
x [−0.15,−0.05]
x [0.05, 0.15]

Beta distribution support (energy)
xen [−0.1,−0.01]
xen [0.01, 0.1]

Firm search capabilities parameters ζ1,2 [0.3, 1]

Payback period (industrial) b [2, 3.75]

Consumption-good firm initial mark-up µ0 [0.2, 0.3]

Mark-down for bank deposits µdep [0.75, 1]

Mark-down on the bank reserves at Central Bank µres [0.5, 0.9]

The range of variation of the parameters is defined considering previous experiments (see Lamperti et al.,

2019, and references therein). We refer to Section 1 of the Supplementary Material (SM) for details regarding

the description and the main equations of the model.

In the spirit of Dosi et al. (2010) and Lamperti et al. (2018), the support of the Beta distribution (x and

x) models the notional possibilities of technological advance and the relative frequency of (un)successful

innovations. This translates into the technological opportunities for capital-good firms to improve upon the

productivity, energy efficiency and environmental friendliness of the machineries produced. The parameter x

is the lower bound of the support of the Beta distribution and it varies between −0.15 and −0.05, while x is

the upper bound of the support and it ranges between 0.05 and 0.15. The parameters x and x are symmetric,

hence when x = −0.15, x = 0.15 (SM, Section 1.1). Similarly, in the energy sector the support of the

Beta distribution (xen, xen) dictates the likelihood of building a new green or dirty plant. Differently from

previous indirect calibration procedures, we allow for the possibility for the capital-good and energy sector

to have different access to innovation opportunities. Accordingly, xen varies between −0.1 and −0.01, while

xen varies between 0.01 and 0.1 (SM, Section 1.3). To a similar extent, the search capabilities parameters

(ζ1,2) influence the growth engine of the model by enlarging (or restricting) the possibilities of accessing “in-

novations”, regardless they constitute an improvement or not. In particular, higher values of these parameters

imply a lower degree of technological asymmetry, as all firm access more easily to innovations, thus easing

the effects of the Schumpeterian “creative destruction” (Dosi et al., 2010). The firm search capabilities pa-

rameters ζ1,2 vary between 0.3 and 1 (SM, Section 1.1). Finally, the process of technical change transmits to

downstream consumption-good firms when they invest in more productive machineries. Thus, the frequency

at which consumption-good firms replace machinery equipment, matters for both growth and business cycle

16



dynamics. This choice is determined following a payback period routine. The parameter b influence this

decision as firms compare newly available machineries to the set of the existing ones in terms of prices and

costs. The range of variation of the payback period parameter b for the industrial sector, goes from 2 to 3.75

(SM, Section 1.2).

The price of consumption-good firms is determined as a mark-up on the unit production cost that changes

over time. The initial level of mark-up µ0 is crucial in governing the dynamics of growth and investment. In

the model, mark-up level influences firm profitability and, correspondingly, the propensity of the firm to rely

on external source of financing for production and investment. Moreover, higher mark-ups over unit cost of

productions also influence income distribution by favouring profits over wages. As aggregate consumption

in the model is directly linked to total wages, higher mark-ups can dampen demand for final goods (Dosi

et al., 2013). We let the initial mark-up µ0 vary between 0.2 and 0.3 (SM, Section 1.2). As higher (lower)

mark-ups determine less (more) dependence of external finance, the well-functioning and the profitability

of the banking sector can play a prominent role in fuelling investments and by smoothing the volatility of

internal flows of funds. This motivates calibration upon bank margins, i.e. the mark-down for bank deposits

µdep and the mark-down on bank reserves deposited at the Central Bank µres. We vary µdep between 0.75

and 1 and µres between 0.5 and 0.9 (SM, Section 1.4).

Although we keep fixed some parameters, the strategic relevance of the chosen parameters in affecting

the properties of the model is proved by the substantial number of experiments that have been conducted for

exploring the relationship between economic growth and business cycle fluctuations.

Once the parameters are defined, we draw m0 = 200 CoPs using Quasi Monte Carlo with sampling

based on Sobol’ sequence (QMCS). Although other sampling methods are possible (e.g., Monte Carlo with

pseudo-random numbers and Latin Hypercube Sampling), we decide to exploit QMCS as it gives a better

way of arranging points in high-dimensional spaces than standard Monte Carlo methods and standard Latin

Hypercube Sampling, having the advantage of a safer rate of convergence (Kucherenko et al., 2015, p. 10).

According to Sobol’ (1967), QMCS is convenient for many reasons: (i) it allows to reach the best uniformity

of distribution as the number of points in the parameter space N → ∞; (ii) it has a good distribution also

for small initial sets; (iii) it is very fast in terms of computation time, as its rate of convergence is close to

O
(
N−1

)
, as opposed to Monte Carlo techniques, where the convergence rate is of O

(
N−1/2

)
.7

The appropriate number of Monte Carlo runs for each CoP can be determined following the power anal-

ysis for ANOVA described in Secchi and Seri (2017) and Seri and Secchi (2017). To proceed with the power

7In Section 3 of the Supplementary Material we investigate the space-filling and orthogonality properties of the initial set of CoPs
M0.
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analysis, we must consider two features: the number of CoPs and the effect size f . Given m0 = 200, we

choose the values of the significance level α (the probability of rejecting the null hypothesis when it is true)

and the power of test 1− β (the probability of rejecting the null when it is false). The value of 1− β depends

on f , which measures the ability to discern between the null and the alternative hypothesis (see, e.g., Cohen,

1988). Generally, the effect size can have different impacts: small= 0.1, medium= 0.25 and large= 0.4. In

order to be conservative, and in line with the literature (see Secchi and Seri, 2017), we consider α = 0.01,

1− β = 0.95 and f = 0.1. These values lead to an optimal number of Monte Carlo runs n = 46 per config-

uration, for a total of n×m0 = 9200 runs. However, to reduce as much as possible the effect of the model’s

stochasticity, we simulate the ABM n = 200 times for each CoP. Therefore, the total number of Monte Carlo

runs considered in the exercise is n×m0 = 40000.

We generate T = 500 synthetic observations for each Monte Carlo run and we delete the first 105

observations to remove the transients. Therefore, the final sample size is T = 395. We then inspect the

parameter space to check whether some simulated time series provide unexpected values (e.g., “N/A”, “NaN”,

“-Inf”, “Inf”, etc.). However, we do not encounter such cases.

The actual data we use for calibration and validation are U.S. data. We rely on two different sources.

We draw the macroeconomic variables (i.e., GDP, consumption, investments, unemployment rate, and CPI)

from the FRED-QD Database of the Federal Reserve Bank of St. Louis (McCracken and Ng, 2020), and the

energy variables (i.e. total energy consumption and total Carbon Dioxide emissions) from the U.S. Energy

Information Administration.8 We take logs of all variables except for the unemployment rate. A description

of the empirical dataset is provided in Table 6.2.

Table 6.2: Empirical dataset

Variable Unity of measure Description
GDP Billions of chained 2012 Dollars Real Gross Domestic Product
Consumption Billions of chained 2012 Dollars Real personal consumption expenditures
Investment Billions of chained 2012 Dollars Real Gross Private Domestic Investment
Unemp rate Percent Civilian Unemployment Rate
CPI Index 1982− 84 = 100 Consumer Price Index for all consumers
Energy Trillion Btu Total energy consumption
Emissions Milion Metric Tons of CO2 Total Carbon Dioxide emissions

All the variables are on quarterly basis and the time series go from 1973:Q1 to 2021:Q1, for a total of

8Macroeconomic variables are downloaded from: https://research.stlouisfed.org/econ/mccracken/
fred-databases/, total energy consumption are downloaded from: https://www.eia.gov/totalenergy/
data/monthly/index.php, and total Carbon Dioxide emissions from energy consumption are downloaded from:
https://www.eia.gov/environment/.

18

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.eia.gov/environment/


τ = 193 observations.9

We start by fitting a reduced-form VAR model on the actual data, selecting the number of lags with

the Akaike Information Criteria (AIC). Then, we perform the Ljung-Box test to check whether the VAR

residuals are uncorrelated. For all the variables considered in the empirical application, we cannot reject the

null hypothesis of uncorrelatedness. In light of this, we fit a VAR(2) model in levels on both the actual data

and the simulated time series. Imposing the same number of lags on both VAR models guarantees coherence

in the calibration step.

As explained in Section 4.1, the estimation of the matrices Ψ̂0 and Ψ̂j,0 (θi) is achieved via fastICA from

the estimated reduced-form residuals ût and ûjt(θi). On these residuals, we perform the Jarque-Bera test.

The hypothesis of normality is rejected both for actual data and (in the vast majority of cases) for simulated

data. Hence, we conclude in favour of non-Gaussianity. We then compute MDI for each Monte Carlo run of

each CoP and we take the mean across Monte Carlo runs:

D
(200)

i =
1

200

200∑
j=1

√
tr

[(
CjiΨ̂

−1
j,0 (θi) Ψ̂0 − IK

)(
CjiΨ̂

−1
j,0 (θi) Ψ̂0 − IK

)′]
, (6.1)

for i = 1, . . . , 200.

We then use the MDI as input for the MCS. We select only CoPs that pass the testing procedure, so we

discard CoPs with p-value< 0.05. In Table 6.3, we report the order of elimination of the CoPs, the p-values

of the test procedure, the MCS p-values and the sample average distances D
(200)

i for the contemporaneous

causal structures. CoPs are ranked according to their p-values; these p-values measure the likelihood of the

simulated causal structures with respect to the ones embodied in the real-world data. For readability, we

report only the first ten (the last ten) eliminated CoPs. The only configuration selected for the validation

procedure is CoP 35. The fact that the MCS procedure selects a single CoP (the “best” model) suggests that,

as pointed out by Hansen et al. (2011, p. 454), the actual data used in our application are very informative.

This warrants the reliability of our data-driven approach. The values of the parameters associated to CoP

35 are reported in Table 6.4. If compared with the baseline parametrization in Lamperti et al. (2019), CoP

35 suggests that, in order to better match the contemporaneous causal structure embedded in the model: (i)

bank profitability margins should be tighter (µdep, µres);10 (ii) firms’ capabilities in innovative activities are

9Energy variables are available either on yearly or monthly basis, therefore we compute the quarterly data summing up the monthly
values in each quarter.

10Lamperti et al. (2019) do not report a baseline value for the parameters affecting bank margins (see Supplementary Information,
Section D, Table 2 therein). We retrieved the parameters from the original code. These two parameters play an important role on the
banks profitability margins and thus on the capacity of the banking sector to steadily fuel investments. Accordingly, we decided a range
for µres and µdep that we think is more representative of the interest rate structure.
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Table 6.3: Order of elimination of the different CoPs with p-values and sample average distances.

k eMk p-value of δMk (pH0,Mk
) MCS p-value (p̂eMk

) D
(200)
i

1 108 0.0000 0.00000 0.5037
2 44 0.0000 0.00000 0.4993
3 112 0.0000 0.00000 0.4960
4 166 0.0000 0.00000 0.4945
5 188 0.0000 0.00000 0.4922
6 48 0.0000 0.00000 0.4857
7 199 0.0000 0.00000 0.4851
8 129 0.0000 0.00000 0.4816
9 13 0.0000 0.00000 0.4732
10 20 0.0000 0.00000 0.4652
...

...
...

...
...

191 159 0.00000 0.00000 0.0313
192 63 0.00000 0.00000 0.0312
193 65 0.00000 0.00000 0.0311
194 195 0.00000 0.00000 0.0310
195 133 0.00000 0.00000 0.0302
196 27 0.00011 4.69e-05 0.0301
197 179 0.00012 0.00011 0.0286
198 99 4.69e-05 0.00012 0.0284
199 139 0.00015 0.00015 0.0275
200 35 1.00000 1.00000 0.0268

The shaded area identifies the selected CoP.
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stronger because ζ1,2 are higher and the support upon which innovation-driven productivity shocks are drawn

(x and x) is larger; (iii) on the other hand, in the energy sector the same support is very close to the baseline

specification (xen, xen); (iv) finally, the payback parameter b seems to be slightly lower than for the baseline

calibration, suggesting that firms are willing to replace their old machineries more often.

Table 6.4: CoP 35 values compared to baseline in Lamperti et al. (2019).

Empirical calibration

Parameter CoP 35 Baseline

µ0 0.2875 0.28

µdep 0.8669 1

µres 0.5525 0.33

ζ1,2 0.7597 0.3

x −0.1417 −0.08
x 0.1417 0.08

xen −0.0566 −0.058
xen 0.0566 0.058

b 2.59 3

In the validation step of our protocol (steps 6 and 7 in Section 2), we measure the goodness-of-match of

the shocks-variables structure embodied in CoP 35, with respect to the actual shocks-variables structure. In

so doing, we test the significance of the coefficients of the matrix Ψ̂0, using bootstrap, and the significance

of the entries of the matrix Ψ̂j,0 (θ35), relying on the distributions of the Monte Carlo runs. Then, we infer

ICR for both the simulated and the actual causal structures. The ICRrw and ICRsim are reported in Table 6.5.

To simplify the notation, we write εks,t = εks , with ks = 1, . . . , 7.

Table 6.5: Independent Component Representation from actual data (left) and simulated data associated to CoP 35 (right).

ICRrw ICRsim

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε1 ε2 ε3 ε4 ε5 ε6 ε7

GDP 0 1 1 0 0 0 0 GDP 0 0 0 0 0 0 0
Cons 0 1 0 0 0 0 0 Cons 0 0 1 0 0 0 0
Inv 1 1 1 1 1 0 0 Inv 1 1 1 0 0 1 1
UR 0 1 1 0 0 0 0 UR 0 0 1 0 0 0 0
CPI 0 0 0 0 0 0 0 CPI 0 0 0 0 0 0 0
Ener 0 1 1 0 0 0 1 Ener 0 0 0 0 0 0 1
Emiss 0 1 1 0 0 0 1 Emiss 0 0 0 0 0 0 0

The analysis of the ICRs provides the following outcomes: (i) as regards the ICRrw, ε1 has a significant

(contemporaneous) impact on investment, ε2 has an impact on GDP, consumption, investment, unemploy-

ment rate, demand of energy and emissions, ε3 on GDP, investment, unemployment rate, demand of energy

and emissions, ε4 and ε5 impact only on investment, and ε7 has an impact on the demand of energy and
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emissions; (ii) as regards the ICRsim, ε1 influences investment, ε2 has an impact on investment, ε3 impacts

consumption, investment and unemployment rate, ε6 hits investment and ε7 has an impact on investment and

demand of energy emissions; (iii) the validation measure VM = 1− 14/49 = 0.714, therefore, the simulated

model is able to recover the 71.4% of the real-world shocks-variables structures.11

It is worth noting that CoP 35 is the “best” configuration across different SVAR specifications, confirming

the robustness of the calibration exercise (see Appendix D, Table D.3). When focusing on the identified

and statistically significant causal relationships, the model delivers a lower performance in matching the

emerging shocks-variable structure regarding GDP, CPI and Emissions at the macro-level. However, a set of

shocks hitting energy and investment is consistently identified in both the simulated model and its empirical

counterpart. As summarized in Appendix D, Table D.3, the same common shocks-variable structure is also

identified in lower-dimensional SVARs. This finding partially aligns with the modeling purpose of Lamperti

et al. (2019), more precisely in replicating stylized facts on energy demand and CO2 emissions patterns that

are consistent with the the Shared Socioeconomic Pathway 5 (SSP5, Riahi et al., 2017).

7. Conclusions

In this paper, we propose a new general protocol for calibration and validation of complex simulation

models by searching causal structures both from synthetic and actual data. The emphasis on causal search is

linked to the importance that policy analysis, specifically, the prediction of the effects of policy interventions,

plays in macroeconomic simulation models. Our procedure combines MCS and causal inference: first, we

estimate reduced-form VAR models from both the data generated by a macroeconomic simulation model

and a set of observed data, and we identify, through ICA, a vector of structural shocks and a mixing matrix;

then, we compute the MDI between, on the one hand, the mixing matrix associated to each CoP and Monte

Carlo run and, on the other hand, the mixing matrix estimated from real data, and we apply the MCS to the

distribution of the MDIs to select the set of CoPs that best approximate actual data; finally, for the selected

CoP(s), we infer an ICR describing which shocks have a significant impact on the variables, and we compare

such ICR with the analogous ICR derived from the actual data.

We apply our method to the DSK model of Lamperti et al. (2019). The results show that the MCS proce-

dure based on the MDI discriminates well among different CoPs (only CoP 35 passes the test). According to

11Inference conducted on ICRrw and ICRsim reveals that many coefficients are not statistically different from zero, leading to a
contemporaneous impact matrix that is sparse. Despite the relatively high score of the validation measure is driven by the “common
absence” of statistically relevant causal ties, the validation measure VM provides, in a theory-agnostic manner, a relevant informational
content.
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our validation measure, the best CoP turns out to mimic the 71.4% of the shocks-variables structure underly-

ing the actual data.

Our protocol can be seen as a complement and a generalization of other existing calibration and validation

methods, for at least three reasons: (i) it allows the researcher to rank causal structures associated to different

CoPs of a simulation model from the most to the least plausible according to a statistical measure; (ii) it

is faster than other procedures based on the optimization of an objective function or the exploration of the

parameter space; (iii) it applies both to calibration and validation.

Further developments are possible. First, one can replace the minimum-distance index with another

metric which accounts for the long-run dynamics of the macroeconomic variables. Second, SVARs can be

estimated through Vector Error Correction Models to account for potential cointegration among the variables.

More in general, causal structures between shocks and variables can be estimated by econometric time series

models that relax many features of the standard linear VAR model.
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Appendix A The ICA model and fastICA

In this section, we detail the assumptions and theoretical background underlying the ICA model and the

fastICA estimator.

Given that ut = Ψ0εt ⇐⇒ εt = Γ0ut (with Γ−10 = Ψ0), the ICA model recovers, up to scale

and order indeterminacy, Γ0 (Ψ0) and εt from realisations of ut under the following assumptions (see, e.g.,

Hyvärinen et al., 2001 and Hyvärinen, 2013):

Assumption 1. (i) The components εt are statistically independent;

(ii) The components εt are non-Gaussian with at most one exception;

(iii) The matrix Ψ0 is invertible.

The fastICA estimator is a fixed-point algorithm that relies on the maximization of the non-Gaussianity

of γ′kut, for each k = 1, . . . ,K, where γ′k is the k-th row of the matrix Γ0 (see Hyvärinen, 1999). Without

loss of generality, in the following we will write γ′ instead of γ′k.

The non-Gaussianity is measured using negentropy, which relies on the notion of entropy. In statistics

and social sciences, entropy represents the amount of uncertainty associated with a probability distribution or,

simpler, the loss of information deriving by using a model to approximate reality. More in general, entropy

is a measure of disorder or uncertainty (see, e.g., Seri and Martinoli, 2021). Let y be a continuous random

vector, the differential entropy (Shannon, 1948) is defined as follows:

H (y) = −
ˆ
f (y) log f (y) dy, (A.1)

where f (·) is the probability density function. The differential entropy can be used to quantify the degree of

non-Gaussianity. This comes from the fact that a Gaussian variable has the largest entropy among all random

variables of equal variance (see, e.g., Cover and Thomas, 1991).

Given a Gaussian vector x with the same covariance matrix of y, we can define negentropy as follows:

J (y) = H (x)−H (y) . (A.2)

If both H (x) and H (y) are Gaussian, it follows that J (y) = 0. Moreover, according to the fact that H (x)

has the maximum entropy, J (y) is always positive. For these reasons, negentropy is one of the most natural

index to measure non-Gaussianity.

Since estimation of (neg)entropy from the data can be difficult, as it involves the nonparametric estimation
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of f (·), the fastICA algorithm exploits the following approximation:

J (y) ≈ [E (G (y))− E (G (z))]
2
, (A.3)

where G (·) is a specific nonquadratic function of a random variable, i.e. G (z) = − exp
(
z2/2
)

with z ∼

N (0, 1). The approximation devised in Equation (A.3) drastically reduces the computational time to find

ICA projections (see Issoglio et al., 2021, for a discussion).

Finally, we have the following estimator:

γ̂ = argmax
γ

E [J (γ′ut)] . (A.4)

According to Hyvärinen et al. (2001), Equation (A.4) is equivalent to the following maximization problem:

γ̂ = argmax
γ

E [G (γ′ut)] , (A.5)

as both Equation (A.4) and Equation (A.5) have the same solution γ. Let g (·) be the first derivative of G (·),

the statistical properties of the fastICA estimator hold under the following assumptions:

Assumption 2. (i) E [ut] = 0 and ut has all moments up to the fourth;

(ii) ġ (·) and g̈ (·), i.e. the first and second derivatives of g (·), satisfy Lipschitz continuity, which means

that ∃δ1, δ2 <∞ such that ‖ġ (y1)− ġ (y2) ‖ ≤ δ1‖y1 − y2‖ and ‖g̈ (y1)− g̈ (y2) ‖ ≤ δ2‖y1 − y2‖;

(iii) g̈ (·) is bounded.

Assumption 2(i) is related to the fact that negentropy can be approximated by using higher-order mo-

ments, i.e. kurtosis (see Hyvärinen, 1999). Assumptions 2(ii) and 2(iii) are regularity conditions on the

function g (·) and its derivatives to perform the maximization problem.

Therefore, it can be shown that, under Assumptions 1-2 and given the first-order conditions E (utg (γ
′ut)) =

0 of the maximization problem (A.5), the estimator γ̂ = {γ : E (utg (γ
′ut) = 0)} is consistent and asymp-

totically normal (see Reyhani et al., 2012), that is:

γ̂ →Pr γ, (A.6)

√
T (γ̂ − γ)→D N (0,Ω) , (A.7)
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where Ω is the positive-definite covariance matrix.

Notice that maximizing non-Gaussianity is strictly related to minimizing mutual statistical independence.

This connection has been shown by Hyvärinen and Oja (2000) who demonstrate that the most non-Gaussian

directions γ′ut can be found by minimizing the Kullback-Leibler divergence between the joint density

f (γ′1ut, . . . ,γ
′
Kut) and the product of the marginals f (γ′1ut) ·. . . ·f (γ′Kut).

Appendix B MCS algorithm

The implementation of the MCS procedure follows the algorithm below:

1. start from the set M0 := {1, . . . ,m0} and test, with level 1 − α, that all the average distances are

equal: if p̂eM1
> α, do not reject H0,M and the procedure is over; if p̂eM1

≤ α, reject H0,M and go to

step 2;

2. use the elimination rule eM = eM0 to remove one CoP fromM0, gettingM1 := {1, . . . ,m0 − 1};

3. test, with level 1 − α, that all the average distances associated with i ∈ M1 are equal; again, if the

p̂eM2
> α, do not reject the null hypothesis and the procedure is over; if the p̂eM2

≤ α reject the null

hypothesis, use again the elimination rule, and perform the test with i ∈ {1, . . . ,m0 − 2};

4. the procedure continues until the null hypothesis is not rejected. The final set of CoPs is defined as

M̂∗.

Appendix C Behaviour of the validated simulated variables

Figure C.1 represents the behaviour of the real-world (upper plots) and the simulated variables (bottom

plots) considered in the analysis, obtained with the validated configuration.

Appendix D Robustness checks

We compute the MCS at 95% for different SVAR models, to investigate whether the calibration proce-

dure is robust across different specifications. To do that, we estimate four different SVAR models, for both

simulated and actual data, which we call SVAR1, SVAR2, SVAR3 and SVAR4. The composition of these

SVAR models is reported in Table D.1.

The outcomes of the MCS at 95% (the order of elimination of the CoPs, the MCS p-values and the

sample average distances) for SVAR1, SVAR2, SVAR3 and SVAR4 are reported in Table D.2 (for readability,

we show only the first ten and the last ten eliminated CoPs).
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Figure C.1: Plots of the real-world vs simulated variables obtained with CoP 35.

Table D.1: SVARs specifications

Model Variables

SVAR1 GDP , Inv, Ener
SVAR2 GDP , Inv, Ener, Emiss
SVAR3 GDP , Inv, CPI , Ener
SVAR4 GDP , Cons, Inv, CPI , Ener

All these SVAR specifications highlight a common finding; the theoretical model identifies the same set

of common shocks hitting the investment and energy variable. To this extent, the model seems to match quite

accurately the empirical structure found in U.S data that link energy demand to investment dynamics. In

Table D.3, we report the validation measures and the shocks-variables structures common to both simulated

and actual data, for all the SVAR specifications.

Table D.3: Validation measures and common shocks-variables structures for different SVAR specifications

Model VM Shocks-variables structures

SVAR1 0.56 ε1 → Inv, ε2 → Inv, ε3 → Ener

SVAR2 0.63 ε1 → Inv, ε2 → Inv

SVAR3 0.75 ε1 → Inv, ε2 → Inv

SVAR4 0.76 ε1 → Inv, ε2 → Inv, ε3 → Inv

34



Ta
bl

e
D

.2
:O

rd
er

of
el

im
in

at
io

n
of

th
e

C
oP

s
of

th
e

di
ff

er
en

tS
VA

R
m

od
el

s
w

ith
M

C
S
p

-v
al

ue
s

an
d

sa
m

pl
e

av
er

ag
e

di
st

an
ce

s.

SV
A

R
1

SV
A

R
2

SV
A

R
3

SV
A

R
4

k
e M

k
p̂
e
M

k
D

(2
0
0
)

i
e M

k
p̂
e
M

k
D

(2
0
0
)

i
e M

k
p̂
e
M

k
D

(2
0
0
)

i
e M

k
p̂
e
M

k
D

(2
0
0
)

i

1
10

8
0.

00
00

1.
21

74
10

8
0.

00
00

0.
89

69
10

8
0.

00
00

0.
89

22
10

8
0.

00
00

0.
71

43
2

44
0.

00
00

1.
21

19
44

0.
00

00
0.

89
22

44
0.

00
00

0.
88

74
44

0.
00

00
0.

70
95

3
11

2
0.

00
00

1.
20

30
11

2
0.

00
00

0.
88

67
11

2
0.

00
00

0.
88

23
11

2
0.

00
00

0.
70

53
4

16
6

0.
00

00
1.

20
19

18
8

0.
00

00
0.

88
58

16
6

0.
00

00
0.

88
06

16
6

0.
00

00
0.

70
30

5
18

8
0.

00
00

1.
20

14
16

6
0.

00
00

0.
88

43
18

8
0.

00
00

0.
87

87
18

8
0.

00
00

0.
69

92
6

19
9

0.
00

00
1.

18
21

19
9

0.
00

00
0.

87
14

19
9

0.
00

00
0.

86
55

48
0.

00
00

0.
69

04
7

48
0.

00
00

1.
17

54
48

0.
00

00
0.

86
71

48
0.

00
00

0.
86

33
19

9
0.

00
00

0.
68

91
8

12
9

0.
00

00
1.

16
59

12
9

0.
00

00
0.

85
97

12
9

0.
00

00
0.

85
49

12
9

0.
00

00
0.

68
41

9
13

0.
00

00
1.

15
79

13
0.

00
00

0.
85

29
13

0.
00

00
0.

84
74

13
0.

00
00

0.
67

24
10

20
0.

00
00

1.
13

28
20

0.
00

00
0.

83
38

20
0.

00
00

0.
82

88
20

0.
00

00
0.

66
11

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

19
1

15
9

0.
00

00
0.

08
09

15
9

0.
00

00
0.

05
54

15
9

0.
00

00
0.

05
41

65
0.

00
00

0.
04

58
19

2
63

0.
00

00
0.

08
06

65
0.

00
00

0.
05

48
65

0.
00

00
0.

05
36

63
0.

00
00

0.
04

57
19

3
65

0.
00

00
0.

07
96

19
5

0.
00

00
0.

05
46

19
5

0.
00

00
0.

05
33

15
9

0.
00

00
0.

04
53

19
4

19
5

0.
00

00
0.

07
79

13
3

0.
00

00
0.

05
43

13
3

0.
00

00
0.

05
30

19
5

0.
00

00
0.

04
44

19
5

13
3

0.
00

00
0.

07
76

63
0.

00
00

0.
05

39
63

0.
00

00
0.

05
29

13
3

0.
00

00
0.

04
41

19
6

27
0.

00
04

0.
07

56
27

1.
6e

-0
8

0.
05

33
27

2.
5e

-0
6

0.
05

21
27

5.
9e

-0
6

0.
04

32
19

7
99

0.
00

05
0.

07
36

99
5.

7e
-0

8
0.

04
99

99
2.

8e
-0

6
0.

04
89

99
6.

8e
-0

6
0.

04
10

19
8

17
9

0.
00

27
0.

07
16

17
9

5.
9e

-0
8

0.
04

98
17

9
3.

1e
-0

6
0.

04
86

17
9

6.
8e

-0
6

0.
04

08
19

9
13

9
0.

00
98

0.
07

08
13

9
1.

6e
-0

7
0.

04
88

13
9

1.
5e

-0
5

0.
04

75
13

9
3.

1e
-0

5
0.

03
99

20
0

35
1.

00
00

0.
06

90
35

1.
00

00
0.

04
70

35
1.

00
00

0.
04

59
35

1.
00

00
0.

03
86

T
he

sh
ad

ed
ar

ea
hi

gh
lig

ht
s

th
e

se
le

ct
ed

co
nfi

gu
ra

tio
ns

,f
or

ea
ch

SV
A

R
m

od
el

,w
ith

th
ei

rc
or

re
sp

on
di

ng
M

C
S
p

-v
al

ue
s

an
d

sa
m

pl
e

av
er

ag
e

di
st

an
ce

s.

35



Appendix E Moving-average representation and impulse response functions

Suppose to compare the structural impulse response matrices at different time horizons ` = 0, . . . ,H ,

then yt and zjt (θi) must be represented as a moving-average process.

If the process yt is stable (i.e., det(IK −A1z − . . .−AP z
P ) 6= 0 ∀z ∈ C, |z| ≤ 1), then yt admits a

Wold moving-average (MA) representation:

yt =

∞∑
`=0

Φ`ut−`, (E.1)

where Φ0 = IK and Φ` =
∑`
d=1 Φ`−dAd. We can also write:

yt =

∞∑
`=0

Ψ`εt−`, (E.2)

where Ψ` = Φ`Γ
−1
0 and, in particular, Ψ0 = Γ−10 . The entries of the matrices Ψ`, for ` = 0, . . . ,H , are

referred in the literature as the impulse response functions since ψdk,` =
∂yd,t+`

∂εkt
, where ψdk,` is the (d, k)

entry of Ψ`.

If yt contains processes with unit roots, although the VAR model does not admit a Wold representation,

the matrices Φ`Γ
−1
0 = (

∑`
d=1 Φ`−dAd)Γ

−1
0 still represent impulse response functions, which, however,

may not approach zero for `→∞ (see Kilian and Lütkepohl, 2017).

Analogous representations hold for data generated by the simulation model, therefore we can write:

zjt (θi) =

∞∑
`=0

Ψj,` (θi) εjt−` (θi) . (E.3)

The impulse response functions for SVAR2, obtained using real-world data, are displayed in Figure E.1,

while the impulse response functions for SVAR2, estimated using the data simulated from the model, are

shown in Figure E.2.
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Figure E.1: Plots of the real-world IRFs of SVAR2.
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Figure E.2: Plots of the simulated IRFs of SVAR2 obtained with CoP 35.
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