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Abstract—In multiple-input multiple-output (MIMO) radars,
carrier frequency, signal bandwidth and antenna geometry have
a deep impact on the ambiguity function (AF). In particular
for systems employing widely separated antennas, sidelobes and
azimuth ambiguities may appear in the MIMO-AF, potentially
leading to a degradation of the system detection and localization
capabilities.

The aim of this paper is to optimize antenna positions along the
MIMO baseline using genetic algorithms (GAs). Key performance
indicators (KPIs), such as the peak-to-maximum and peak-to-
average sidelobe ratios, as well as the range and cross-range
resolutions are investigated as potential optimization criteria.

As a practical study case, a MIMO radar working the in X-
band is simulated. The system employs two transmitters (TXs)
and four receivers (RXs), with free-located TX-RX antenna pairs.
The analysis is conducted for a point-like target at different
positions. The optimization is carried out by means of the GA-
based function library available in MATLAB©, selecting both
single and multiple KPIs as optimization criteria. In this latter
case, the advantage is the optimization of more KPIs at the same
time, however at the expense of a larger computation time.

Index Terms—MIMO Radar, Ambiguity Function, Antenna
Position Optimization, Genetic Algorithm, Key Performance
Indicators.

I. INTRODUCTION

The ever increasing demand of systems with superior res-
olution, stability and accuracy in high-precision civilian and
industrial applications [1], [2] is pushing radars to become
even more ubiquitous sensors [3].

In this context, the ceaseless progress in the miniaturization
of electronic components, and the advancements in microwave
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photonics (MWP) techniques [4]–[6], are accelerating the
realization of coherent multiple-input multiple-output (MIMO)
radars, which were theorized almost twenty years ago [7] and
that can be categorized in systems with co-located antennas
[8] and systems with widely separated antennas [9].

Focusing on this second type of architecture, several pa-
rameters influence the overall peak-to-sidelobe ratio (PSR) of
the MIMO ambiguity function (AF). As pointed out in [9],
not only increasing the spatial information brings a reduction
of the sidelobe level, but also the fractional bandwidth of the
signal (i.e., the bandwidth used in transmission with respect to
the carrier frequency) and the antenna geometry have a deep
impact on the overall PSR [10], [11].

Thus, the concept of information diversity was introduced
in [12], with the aim of understanding the system effectiveness
in detecting and resolving closely spaced targets, as well as
in suppressing sidelobes in the MIMO-AF at the varying of
system geometry and frequency parameters.

For this reason, performance metrics were proposed and
evaluated to characterize the effects that information diversity
has on MIMO radars with widely separated antennas [13].
Among these, the peak-to-maximum and peak-to-average side-
lobe ratios, as well as the range and cross-range resolutions
were proposed as performance metrics.

On the other hand, these KPIs could reveal precious also for
optimizing the TX and RX antenna positions along the MIMO
baseline. Generalizing the study conducted in [14], this paper
attempts at outlining the most suitable criteria for optimizing
the antenna positions using genetic algorithms (GAs).

Previous works on using GA-based techniques for antenna
position optimization in sparse arrays and MIMO radars were
presented in [15] and [16], respectively. However, in [16], deal-
ing with co-located MIMO radars, and in [14], dealing with
distributed MIMO radars, the optimization criterion consisted
in the minimization of the peak sidelobe level (PSL).

In this paper, the analysis is conducted for a point-like
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static target at different positions. The optimization is carried
out by means of the GA-based function library available
in MATLAB©, selecting both single and multiple KPIs as
potential optimization criteria.

II. MULTIPLE-INPUT MULTIPLE-OUTPUT RADARS

A coherent MIMO radar can employ M TX and N RX
radar front-ends, not necessarily co-located. The front-ends
are denoted with TXm and RXn, being m = 1, . . . ,M and
n = 1, . . . , N , with M ̸= N . For generality, TXm can operate
at L different radio frequencies (RFs).

A. MIMO Signal Model

Let s
(l)
m (t) be the low-pass equivalent of the signal trans-

mitted by TXm at the l-th RF carrier, such that its waveform
envelope has unit energy. The M×N antennas simultaneously
illuminate K scatterers Pk having coordinates (xk, yk), with
k = 1, . . . ,K. These latter can belong to a single target or to
multiple targets.

The time delay τ
(k)
m,n associated to the distance of Pk with

respect to TXm and RXn is evaluated as follows:

τ (k)m,n =
1

c
[d (TXm, Pk) + d (Pk, RXn)] , (1)

where c is the speed of light, and d (A,B) represents the
Euclidean distance between the generic points A ≡ (xa, ya)
and B ≡ (xb, yb) in the 2D space:

d (A,B) =
√
(xa − xb)2 + (ya − yb)2. (2)

In reception, the resulting M × N × L individual virtual
channels are separated for data processing. Thus, the low-pass
equivalent of the signal received by RXn can be written as in
[9]:

r(l)m,n(t) =

K∑
k=1

ζ(k,l)m,n s(l)m

[
t− τ (k)m,n

]
ejφ

(l)
m,n(t) + w(l)

m,n(t). (3)

Here, ζ(k,l)m,n denotes the complex amplitude of the received
signal contribution due to the k-th scatterer, whereas φ

(l)
m,n(t)

accounts for the overall phase shift of the virtual channel.
It is worth noticing that the analysis of such shifts is out

of the scope of this work. However, a model of phase noise
induced by RF signal distribution through optical fiber links
was presented and its impact evaluated in [17]. Additional
considerations about the total angular jitter introduced by the
system architecture can be found in [18]. Moreover, phase
terms due to Doppler shifts are to be considered yet.

In eq. (3), the term w
(l)
n (t) represents the overall clutter-

plus-noise contribution to the received signal, and, for simplic-
ity, it is modelled as additive white Gaussian noise (AWGN)
stochastic process. Finally, the terms ζ(k,l)m,n and τ

(k)
m,n, with this

latter described in eq. (1), depend on the bistatic geometry
underlying the radar front-ends TXm and RXn, and the
scatterer Pk over the l-th frequency channel f (l)

RF :

ζ(k,l)m,n =
1

DTX
m,kD

RX
n,k

√√√√P
(l)
m G

(l)
m A

(l)
n σ

(k,l)
m,n

(4π)
3
kBB

(l)
n T

(l)
n

, (4)

where DTX
m,k = d (TXm, Pk) and DRX

n,k = d (Pk, RXn).
In eq. (4), P

(l)
m and G

(l)
m are respectively the transmitted

power and antenna gain at TXm for the l-th waveform, A(l)
n

is the effective area of the RXn antenna for the l-th RF carrier
f
(l)
RF , σ(k,l)

m,n is the bistatic radar cross section (RCS) of scatterer
Pk observed by TXm and RXn, kB is the Boltzmann’s
constant, B(l)

n is the noise bandwidth (BW), T (l)
n is the noise

temperature at RXn.

B. MIMO Radar Ambiguity Function

Let Θk be the k-th vector of parameters to be estimated.
Under the assumption that scatterers do not interfere with each
other, Θk, which for simplicity consists in the generic target
position (xk, yk) in the 2D space, can be the determined from
the maximum likelihood (ML) estimate evaluated from all the
M×N×L available virtual channels. As described in [9], the
ML estimate can be obtained in two ways via the MIMO-AF.

The first way of calculating the MIMO-AF is based on a
non-coherent MIMO processing approach, involving only the
amplitude of the received signals. Instead, the second way is
based on a coherent MIMO processing approach, taking into
account also the phase of the received signals:

MIMO-AFc (Θk) ∝

∣∣∣∣∣
M∑

m=1

N∑
n=1

L∑
l=1

ε(k,l)m,n ·Ψ(k,l)
m,n

[
t, τ (k,l)m,n

]∣∣∣∣∣
2

,

(5)
where:

Ψ(k,l)
m,n

[
t, τ (k,l)m,n

]
=

∫ +∞

−∞
r(k,l)m,n (t)s

(l)∗
m

[
t− τ (k,l)m,n

]
dt (6)

represents the cross-correlation between r
(k,l)
m,n (t) and s

(l)
m (t).

To obtain an overall picture of the monitored area, the MIMO-
AF in eq. (5) is evaluated for each point (x, y) in the
observation space. Finally, the exponential term:

ε(k,l)m,n = e−j2πf
(l)
RF τ(k,l)

m,n (7)

depends on the l-th RF carrier and on the underlying bistatic
geometry among TXm, RXn and the scattering element
Pk. After this phase compensation, the complex correlation
contributions in eq. (6) can be summed together coherently,
as described by eq. (5).

C. Key Performance Indicators

In technical terms, KPIs are parameters that quantify the
performance of a system. In this paper, the relevant KPIs
proposed in [12], identified for evaluating the performance
of a MIMO radar with widely separated antennas, act as the
criteria used by the genetic algorithm for the optimization of
the antenna positions.

The GA, that will be presented in Section III, exploits the
following KPIs both in an individual or joint manner (i.e.,
trying maximize two KPIs at the same time):

• Peak-to-Maximum Sidelobe Ratio (PMSR),
• Peak-to-Average Sidelobe Ratio (PASR),
• Range resolution (∆R) of the mainlobe,
• Cross-range resolution (∆XR) of the mainlobe.
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III. GENETIC ALGORITHMS FOR ANTENNA POSITION
OPTIMIZATION

In MIMO radars, the TX and RX antennas create a M ×N
equivalent virtual array given by the Kronecker product of the
M -ary TX array with the N -ary RX array [19]. This way, it
is like if the RX array were repeated for every transmitting
antenna. However, this can lead to redundancy in the virtual
array elements placement [20]. Therefore, it is necessary a
robust procedure for optimizing the distribution of the MIMO
radar antennas along the baseline.

Genetic algorithms represent a class of algorithms for solv-
ing both constrained and unconstrained optimization problems
[21]–[23]. They follow an approach similar to the one driving
biological evolution and natural selection. They can be applied
to solve optimization problems in which the objective function
is discontinuous, non-differentiable, stochastic, or highly non-
linear. Finally, they help optimizing the attributes of a given set
of objects called population. The high-level flow diagram of
the system optimization procedure based on genetic algorithm
is sketched in Fig. 1, whereas the main differences with the
statistical-based approach are summarized in Table I.

Fig. 1. High-level flow diagram of optimization based on genetic algorithm.

The core of the algorithm is the fitness function. In principle,
the fitness function can be any of the already defined KPIs.
Population reproduction can be obtained by mutations, i.e.,
statistical perturbations of the peripherals number and position.
From a detection and estimation perspective, the main interest
is in minimizing the sidelobes, understanding how they behave
changing antennas disposition and number. Instead, from a
target localization perspective, the aim is to minimize the
system resolution, both in range and cross-range domains.

Since Matlab already has a set of functions related to genetic
algorithms [24], this operation is performed using the ga and

Statistical Approach Genetic Approach
The algorithm generates a single Generates a population of points

point at each iteration. The at each iteration. The best point in
sequence of points approaches an in the population approaches an

optimal solution. optimal solution.
Selects the next point in the Selects the next population by
sequence by a deterministic computation which uses random

computation. number generators.
Typically converges quickly to a Typically takes many function

local solution. evaluations to converge. May or
may not converge to a local or

global minimum.
TABLE I

STATISTICAL VS GENETIC APPROACH

gamultiobj built-in functions. The first is used when the
fitness function is represented by only one optimization crite-
rion, whereas the second is used when multiple optimization
criteria are used.

IV. SIMULATION RESULTS

In the simulations, which replicate the in-door experimental
scenario described in [25], the following setup parameters are
considered for the coherent MIMO radar system:

• M = 2 TXs and N = 4 RXs over a 3 m baseline;
• Target distance from the baseline center equal to 3 and

30 m, for sudy case A and B, respectively;
• Frequency fRF = 10 GHz, with signal bandwidth B = 1

GHz (i.e., 1/10 fractional bandwidth).
The optimization procedure is carried out fixing one TX

and one RX at the two extremes of the baseline. This allows
to exploit the whole baseline extent and, thus, to achieve the
maximum nominal azimuth resolution imposed by the baseline
length given the RF frequency.

Seven criteria are considered as fitness functions for the GA.
Four of them consist in optimizing separately PMSR, PASR,
∆R and ∆XR. They are indicated with criteria no. 1, 2, 4
and 5, respectively. Instead, the last three criteria consist in
the joint optimization of two KPIs simultaneously: PMSR and
PASR, ∆R and ∆XR, PMSR and ∆XR are indicated with
criteria no. 3, 6 and 7, respectively.

A. Analysis of Study Case A

The MIMO-AFs corresponding to the seven optimized
antenna configurations are depicted in Fig. 2, 3 and 4. In
particular, in Fig. 2 results of the optimization of PMSR,
PASR and joint PMSR and PASR are shown. In Fig. 3, results
of the optimization of ∆R, ∆XR and joint ∆R and ∆XR
are shown. Finally, in Fig. 4, results of the joint optimization
of PMSR and ∆XR are shown. For completeness, the KPIs
measured on the seven optimized MIMO configurations are
summarized in Table II.

In general, regardless of the optimization criteria, the second
TX is placed at the opposite side of the baseline with respect
to the first one. Conversely, the RXs are more distributed
along the baseline, especially when the optimization is done to
reduce the MIMO-AF sidelobes (i.e., PMSR, PASR). In this
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Fig. 2. MIMO baseline optimization based on the maximization of the peak-to-sidelobe ratios. No. 1) maximization of PMSR (left column): a) resulting
coherent MIMO output, b) optimized MIMO baseline; No. 2) maximization of PASR (center column): c) resulting coherent MIMO output, d) optimized
MIMO baseline; No. 3) joint maximization of PMSR and PASR (right column): e) resulting coherent MIMO output, f) optimized MIMO baseline.

Fig. 3. MIMO baseline optimization based on the minimization of system resolution parameters. No. 4) minimization of ∆R (left column): a) resulting
coherent MIMO output, b) optimized MIMO baseline; No. 5) minimization of ∆XR (center column): c) resulting coherent MIMO output, d) optimized
MIMO baseline; No. 6) joint minimization of ∆R and ∆XR (right column): e) resulting coherent MIMO output, f) optimized MIMO baseline.

case, the maximization of PMSR is more effective than the
maximization of PASR.

Instead, minimization of ∆R and/or ∆XR could result
dangerous if they are the only optimization criteria, because
the resulting sidelobe level may become too large. Thus, if
minimization of resolution is sought, it should be always ac-
companied by minimization of sidelobes, too (see optimization
criterion no. 7). Moreover, joint criteria have the advantage of
optimizing more KPIs at the same time, even if at the expense
of a larger computation time.

B. Analysis of Study Case B
For conciseness, the resulting MIMO-AFs and correspond-

ing array configurations are not shown. However, the analysis
of KPIs after antenna position optimization when the target is

No. Opt. Criterion PMSR [dB] PASR [dB] ∆R [m] ∆XR [m]
1) PMSR 5.3080 15.2199 0.1140 0.0150
2) PASR 1.3556 16.2447 0.1320 0.0135
3) PMSR & PASR 5.3042 15.4150 0.1260 0.0150
4) ∆R 2.9923 14.8281 0.1020 0.0150
5) ∆XR 0.2862 13.7568 0.1500 0.0135
6) ∆R & ∆XR 1.3683 14.9017 0.01020 0.0135
7) PMSR & ∆R 5.3144 15.0889 0.01260 0.0135

TABLE II
PERFORMANCE RESULTS OF THE OPTIMIZATION CRITERIA FOR A

TARGET AT 3 M (STUDY CASE A)

at 30 m from the centre of the MIMO baseline are summarized
in Table III. When the target position changes in the space,
results demonstrate that similar conclusions can be drawn
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Fig. 4. MIMO baseline optimization based on criterion No. 7) joint maximiza-
tion of PMSR and ∆XR: a) resulting coherent MIMO output, b) optimized
MIMO baseline.

No. Opt. Criterion PMSR [dB] PASR [dB] ∆R [m] ∆XR [m]
1) PMSR 13.1291 21.4410 0.1380 0.1320
2) PASR 13.1029 23.0628 0.1380 0.1500
3) PMSR & PASR 13.1293 22.4838 0.1380 0.1410
4) ∆R 11.8667 20.1933 0.1380 0.1500
5) ∆XR 0.3600 10.1010 0.1380 0.1155
6) ∆R & ∆XR 1.0931 12.7024 0.1380 0.1150
7) PMSR & ∆XR 13.0308 21.2694 0.1380 0.1305

TABLE III
PERFORMANCE RESULTS OF THE OPTIMIZATION CRITERIA FOR A

TARGET AT 30 M (STUDY CASE B)

on the effectiveness of KPIs to be chosen. Even if only
two points in the monitored space have been considered, it
is possible to conclude that every target position leads to
a different optimized MIMO radar configuration. Thus, the
optimum MIMO radar configuration should be retrieved by
averaging the results over the whole area.

An additional prosecution of this work will concern the
analysis of non-static targets, which entail phase compensation
due to target-sensor relative velocity, as well as the optimiza-
tion of MIMO radar baselines in close-to-reality scenarios
(e.g., coastal-based systems, swarms of drones). Finally, due
to the randomness in the optimization process, Monte Carlo
simulations will be considered for obtaining a more accurate
performance analysis of the algorithm. The aforementioned
issues are currently object of ongoing research.

V. CONCLUSION

In this paper, the optimization of antenna positions in a
multiple-input multiple-output (MIMO) radar using genetic
algorithms (GAs) has been presented. Key performance in-
dicators (KPIs) measured on the MIMO ambiguity function,
such as the peak-to-maximum and peak-to-average sidelobe
ratios, respectively PMSR and PASR, as well as the range
and cross-range resolutions have been investigated as poten-
tial optimization criteria. The optimization has been carried
out by means of the GA-based function library available
in MATLAB©, selecting both single and multiple KPIs as
optimization criteria.

The maximization of PMSR is more effective than the
maximization of PASR. Minimization of range and/or cross-
range resolutions could result dangerous if they are the only
optimization criteria. Thus, if minimization of resolution is
sought, it should be always accompanied by minimization of
sidelobes. Even if only two points in the monitored space
have been considered, it is possible to conclude that every
target position leads to a different optimized MIMO radar
configuration. Thus, the optimum MIMO radar configuration
could be retrieved by averaging the results over the whole area.

Additional prosecution of this work will concern the analy-
sis of non-static targets, as well as the optimization of MIMO
radar baselines in close-to-reality scenarios (e.g., coastal-based
systems, swarms of drones). Finally, Monte Carlo simulations
will be considered for obtaining a more accurate performance
analysis of the algorithm, thus overcoming the solution ran-
domness issue in the GA-based optimization process.
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