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Abstract: Despite advances in wearable robots across various fields, there is no consensus definition
or design framework for the application of this technology in rehabilitation or musculoskeletal
(MSK) injury prevention. This paper aims to define wearable robots and explore their applications
and challenges for military rehabilitation and force protection for MSK injury prevention. We
conducted a modified Delphi method, including a steering group and 14 panelists with 10+ years
of expertise in wearable robots. Panelists presented current wearable robots currently in use or
in development for rehabilitation or assistance use in the military workforce and healthcare. The
steering group and panelists met to obtain a consensus on the wearable robot definition applicable for
rehabilitation or primary injury prevention. Panelists unanimously agreed that wearable robots can be
grouped into three main applications, as follows: (1) primary and secondary MSK injury prevention,
(2) enhancement of military activities and tasks, and (3) rehabilitation and reintegration. Each
application was presented within the context of its target population and state-of-the-art technology
currently in use or under development. Capturing expert opinions, this study defines wearable robots
for military rehabilitation and MSK injury prevention, identifies health outcomes and assessment
tools, and outlines design requirements for future advancements.

Keywords: military workforce; musculoskeletal injuries; injury prevention; exoskeleton; disability;
delphi method
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1. Introduction

The human body is susceptible to sustaining musculoskeletal (MSK) injuries due
to repetitive movements or limb overuse. These injuries are a common problem among
U.S. military Service members, Veterans, and healthcare service providers during object
lifting, high-speed changes of direction while wearing heavy personal equipment, and
patient repositioning. Over 2 million clinical visits related to MSK were reported across
military services in 2017, resulting in 8 million limited-duty days [1]. The incidence of MSK
problems among military personnel surpasses that of the general population by more than
tenfold [2], being the number one reason for the Department of Defense’s medical issue
that limits force readiness [2,3].

Similarly, in 2020, the Healthcare and Social Assistance sector (HCSA) had over
806,200 private industry injury and illness cases [4]. Among these cases, nursing as-
sistants, registered nurses, and licensed practical and vocational nurses—who are fre-
quently involved in manual patient handling, including lifting, moving, and repositioning—
experienced notable increases in the number of days away from work [4]. The effects of
MSK injuries can lead to chronic disability [5], delays in military readiness [6], and high
medical expenses [7].

Wearable robots represent a novel technological advancement for averting work-related
injuries [8]. Wearable robots are devices attached to the human body to enhance or assist
motor functions. The technology may empower individuals to execute tasks with reduced
physical strain, enhanced efficiency, and prolonged task and mission endurance [9,10]. Addi-
tionally, wearable robots may contribute to the recovery process for those with injuries and
disabilities, facilitating their rehabilitation and successful reintegration into society [11–13].
Despite the rapid development of wearable robot technology in various fields, there is no
consensus on the definition and framework of wearable robots for military rehabilitation and
assistance in preventing MSK injuries. Proud et al. [14] highlight that evaluation procedures
for exoskeletons vary widely across different fields, complicating comparisons. They also
emphasize that significant adaptation of existing technologies, such as industrial exoskeletons,
would be necessary to meet the specific requirements of military applications. Meanwhile,
other studies focus on the design considerations for lower [15] and/or upper exoskeletons [15]
and/or upper exoskeletons [16] tailored for military use, but they often neglect alternative
wearable robots designed particularly for rehabilitation and reintegration purposes. Therefore,
this paper aims to define wearable robots within this context and to describe categories of
wearable robots employed in the prevention of MSK injuries in the support of military op-
erations and in the enhancement of rehabilitation outcomes and social reintegration efforts.
Our findings assess the current state of technology, design requirements and challenges, and
research and development recommendations.

2. Materials and Methods

We used a modified Delphi process guided by a steering group to establish consensus
on the wearable robot definition and categories among a panel of experts. The study was
conducted at a 2-day workshop at the State of Science Symposia organized by the Center
for Rehabilitation Science Research (CRSR) within the Uniformed Services University of
the Health Sciences (USUHS) and the Human Engineering Research Laboratories (HERL)
of the University of Pittsburgh and US Department of Veterans Affairs, who served as the
steering group. The Delphi method is a qualitative analysis by which a group of experts
share their opinions to develop best-practice guidance where research is limited or evidence
is conflicting [17]. Its modified version is a formal panel consensus process guided by a
steering group achieve a convergence of opinion among the group of experts. Studies
have demonstrated that the modified Delphi method can be superior to the original Delphi
method, and is perceived to be highly cooperative and effective [18,19]. The Delphi process
involves multiple rounds of controlled feedback. Conflicts were resolved by using a diverse
panel of experts chosen to ensure a wide range of perspectives. The selection criteria
included expertise, experience, and relevance to wearable robotics for MSK prevention, and
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those who had an existing or prior collaboration with the US Department of Defense or US
Department of Veterans Affairs. Experts were asked to provide a presentation summarizing
the relevant literature on wearable robot applications for MSK injury prevention and
military medical rehabilitation, technology currently in use or under development, and
design requirements and challenges, with a set of questions and statements related to
wearable robotics. During round 1, common themes, agreements, and disagreements
were identified by the steering group team. Experts received a summary of the group’s
responses from their presentations and any comments. In Round 2, the panel reviewed this
feedback and revised initial positions in light of the group’s collective input. The process
of feedback, review, and response was repeated to reduce the range of answers and move
towards a consensus. Experts were encouraged to justify their opinions, especially if they
deviated significantly from the group’s response. Controlled feedback ensured that experts
were aware of the collective viewpoints and the reasons behind differing opinions. This
helped in understanding the rationale of other experts and led to convergence. Additional
rounds allowed experts to refine their views and address any misunderstandings. Conflicts
were resolved as experts adjusted their opinions based on new information and insights
gained from the feedback. A neutral facilitator group guided the process helped clarify
misunderstandings and ensured that all voices were heard. After over four rounds, a
consensus was achieved. The final result was a well-rounded agreement that reflected the
collective judgment of the expert panel.

On Day 1, 14 panelists specializing in wearable robots presented their work on the
current state of wearable robots used in rehabilitation and military medicine. The focus
was on mitigating injuries, both primary and secondary, and accelerating rehabilitation
and reintegration. Generally, Delphi sample sizes aim to achieve a panel of 11–30 members
to ensure effectiveness and reliability [20,21].

A theme analysis was conducted on the presented literature using a codebook that
covered aspects such as the target population, wearable robots in research and development
or used in functional and clinical applications, challenges, and potential applications. Tran-
scripts from each presentation were filtered and independently reviewed by three reviewers.
The results were compared for agreement. On Day 2, the steering group met in person with
panel members to reach a consensus on the themes identified in the theme analysis.

3. Results

The steering group and panel members agreed upon the definition that a wearable
robot is a powered mechanical device with built-in sensors in segments and/or joints
designed around the shape and functions of the user to restore and/or augment their
physical performance. It encompasses a range of devices, including exoskeletons, powered
prostheses and orthoses, and robotic power wheelchairs, among others. There was unan-
imous agreement that advances in wearable robots in the field of military medicine and
rehabilitation can be grouped into three main application fields: (1) primary and secondary
MSK injury prevention, (2) enhancement of military activities and tasks, and (3) functional
rehabilitation and social reintegration. Each application was presented within the context
of its target population and the state-of-the-art technology in use or under development.
The discussion included health outcomes, assessment tools, technological challenges, and
recommendations. An overall classification of wearable robots is described in Table 1.
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Table 1. Classification of exoskeletons modified from La Tejera (2021) [22] and Looze (2016) [23].

Dimension Specification

Body Part Full Body Upper Body Lower Body Specific
Segment

Specific
Joint Other

Structure Rigid Soft
Action Active Semi-Active Passive

Powered
Technology

Electric
Actuator

Hydraulic
Actuator

Pneumatic
Actuator Hybrid Mechanical

Systems Others

Purpose Rehabilitation Assistance
Application

Area Military Healthcare Research Industrial Civilian Other Field

Intended
Working
Method

Static Dynamic Static and Dynamic

Desired
Application Supporting Movement Supporting Posture Correcting Posture

3.1. Primary and Secondary MSK Injury Prevention

Several wearable robots for primary and secondary MSK injury prevention are cur-
rently in use or under development across various sectors, including in military, healthcare,
manufacturing, construction, and industrial applications [24]. Their focus is particularly
on reducing loading, fatigue, joint instability, and the risk of joint-related issues. Wearable
robots can assist by augmenting the user’s strength and endurance, allowing people to
sustain performance for longer periods without experiencing excessive fatigue, a common
issue in military personnel activities that require prolonged physical effort.

Current technologies currently in use and development include exoskeletons and
assistive mobility devices. Exoskeletons are designed to enhance stability and control,
particularly for individuals working in environments or with health conditions that may
pose a risk for joint instability. By providing additional support to the MSK system,
wearable robots can help mitigate the risk of falls or injuries associated with compromised
joint stability, improving overall mobility and function. The Sarcos Guardian XO Full-Body
Exoskeleton [25] is a full-body exoskeleton designed for industrial applications, including
heavy lifting and manipulation, and has been assessed in military settings. The XOS 2
Exoskeleton is designed for tasks involving heavy lifting, and has been shown to reduce
the physical strain on workers in manufacturing and logistics [26]. Assistive mobility
devices align with the definition of a wearable robot by integrating powered mechanisms
and sensor technology to enhance the mobility and function of the user. For example, the
Powered Personal Transfer System (Figure 1) developed at HERL incorporates a customized
power wheelchair and hospital bed to facilitate automated transfers between both systems,
minimizing the risk of MSK injuries in caregivers and wheelchair users [27].

Figure 1. Wearable robots for primary and secondary MSK injury prevention. From left to right: The
Keego exoskeleton used for walking assistance and object lifting. The Powered Personal Transfer
System used by healthcare workers during transfers.
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3.2. Enhancement of Military Activities and Tasks

Soldiers undertake an inherently potentially perilous profession. Strenuous military
tasks impose tremendous physical and cognitive demands on soldiers’ bodies, frequently
approaching human safety limits leading to a high risk for MSK injuries [28,29]. The high
frequency of repetitive actions and prolonged exposure to static stress intensifies soldiers’
fatigue, discomfort, and pain, sometimes resulting in both acute and chronic injuries.
Occupational safety regulations recommend technical and organizational improvements to
reduce identified MSK injury risks in civil and military work scenarios. Wearable physical
assistance, in addition to improved physical training, is frequently considered after these
primary approaches cannot adequately mitigate the risks (Figure 2). Exoskeletons may
enhance the mission performance of military personnel by reducing physical strain on the
body [30–32]. Additionally, exoskeletons may mitigate mental fatigue, thereby preserving
the capacity to carry out cognitive and physical tasks effectively [33]. For instance, devices
could provide support during activities, such as walking while load-bearing or while
lifting and loading heavy objects (e.g., munition boxes, gas cans, etc.), as well as in the
maintenance of airplanes, large vehicles, and mobile logistics.

Figure 2. Wearable robots for occupational military activities. From left to right: Aerial Porter pushing
large pallets, a soldier with exoskeleton kneeling on the ground in a defensive position, a soldier
climbing a ladder with an exoskeleton, and soldiers transporting heavy boxes with an exoskeleton
support them during lifting.

Exoskeletons may be able to play a critical role in military missions in the following
three ways: increased endurance, reduced risk of injury, and amplification of capabilities.
They could affect the body mechanically by reducing the loading or by altering the load
path [22,34]. In addition, the future of exoskeletons on the battlefield may evolve from
the current individual limb power assistance to whole-body power assistance, perhaps
ultimately evolving into a smart personal exoskeleton [16]. A smart personal exoskeleton
could not only augment a soldier’s physical capabilities, but may also be integrated with
combat control systems to improve the soldier’s survivability. Future directions may
incorporate technologies to facilitate evacuation in case a warrior becomes incapacitated.

Wearable robots, such as the Lockheed Martin’s ONYX [16], are intended to support
soldiers and workers by reducing the physical strain associated with carrying heavy loads,
and has been demonstrated to be effective in both military and industrial scenarios. The
ExoBoot, developed by Dephy Inc. (MA, USA), is a military-powered ankle exoskeleton that
has shown positive results in reducing metabolic cost while walking [35]. Soft wearable
robots are alternative exoskeletons for reducing the metabolic rate when walking and
running using versatile and portable exosuits [36].

3.3. Functional Rehabilitation and Social Reintegration

Regaining or maintaining functional mobility is often a primary goal for individuals
with impairments in neurologic and musculoskeletal function, such as limb dysfunction,
spinal cord injury (SCI), and neuromuscular diseases. Wearable robots may offer new
and alternative approaches for improved mobility and functionality, and may be useful
in facilitating daily activity engagement by improving task performance in work environ-
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ments and fostering greater social integration. For instance, individuals who have had
a stroke may experience paresis and/or paralysis that limits lower and upper extremity
function. Wearable robots can play a role in enhancing neuroplasticity through motor
relearning for such individuals, and may contribute to improved motor control and overall
rehabilitation outcomes.

A variety of exoskeletons have been developed to restore independence in mobility
and activities of daily living. The MyoPro is a myoelectric orthosis that has been designed
to assist individuals with upper extremity motor impairments. It detects the user’s muscle
signals to power the movement of the affected arm, providing support and assistance
during arm movements. Similarly, the Hybrid Assistive Limb by Cyberdyne [37] is a
powered exoskeleton designed to assist and enhance human limb function via the detection
of bioelectric signals from the user’s muscles to predict and support their movements.

Exoskeleton-assisted walking (EAW) devices enable users to undergo locomotion
rehabilitation. Early models of exoskeletons for gait training were bulky and required
assistance to use, limiting their application to clinical settings rather than personal use.
However, as exoskeletons continue to become lighter, more affordable, and capable of
independent use, they may become suitable for home and community use. Examples of
newer devices include Ekso (Ekso Bionics, San Rafael, CA, USA), [38] Indego (Vanderbilt
University, Nashville, TN, USA), [39] and ReWalk (ReWalk Robotics, Inc., Marlborough,
MA, USA) [40]. EksoNR (Next-Gen Rehabilitation Exoskeleton) is designed for rehabili-
tation centers, and provides robotic-assisted gait training via adaptive support that may
assist patients in regaining or improving their ability to walk. ReWalk offers wearable
robotic exoskeletons that enable individuals with spinal cord injuries to stand, walk, and
climb stairs. Rex Bionics (Rex Bionics Ltd., Auckland, New Zealand) offers a hands-free
robotic exoskeleton that allows individuals with mobility impairments to stand, walk, and
move in some settings in a controlled and stable manner. Other limb-specific EAW devices
are intended to enhance gait patterns, including the Active Knee Orthosis (AKO) and the
Active Pelvis Orthosis (APO) [41].

Recent technological advances within the field of prosthetics have also been focused
on enabling individuals with limb amputations to regain or improve mobility and better
participate in daily activities. Wearable applications that use inertial measurement unit
(IMU) sensors systems, such as the Rehabilitation Lower-limb Orthtopedic Assistive Device
(RELOAD), can assess the gait and provide audible feedback in real-time to improve walk-
ing and mobility in the home and community while reducing some of the burdens related
to in-person-only physical therapy programs [42]. Myoelectric and powered prostheses
have been developed to enhance functions beyond the capabilities of body-powered or me-
chanical components. The Power Knee (Össur, Iceland) is a motor-powered microprocessor
knee with the potential to enhance gait patterns via active assistance. The Mia hand [43] is a
myoelectric prosthetic hand combined with implanted magnets to provide biofeedback and
a myoneural interface for more intuitive terminal device control. Other human interfaces
currently in development translate brain signals into prosthetic motor movements that
allow users to control devices for greater precision and accuracy [44,45].

Amazon LLC and HERL have developed an alternative wearable device for indi-
viduals with SCI and MSK disorders who aim to return to work [46]. These wearable
robots are seated mobile platforms designed to pick and place packages in fulfillment
centers. Users are required to have the ability to move independently to the device and
possess good upper extremity and trunk balance functions. These wearable robots may
enhance function within the workspace, enabling users to perform tasks similarly to their
able-bodied counterparts.

4. Discussion
4.1. Health Benefits

Research has shown a reduction in the MSK loads of critical body parts (e.g., back and
shoulders) when using exoskeletons during selected static and dynamic tasks [47]. Back
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support exoskeletons can reduce hip and spinal muscle effort in forward-bending tasks [48],
while upper limb exoskeletons can reduce shoulder muscle effort in arm-lifting tasks and
prevent the occurrence of shoulder tendinopathies [49–51]. The utilization of exoskeletons
is anticipated to alleviate the burden on soldiers’ backs and shoulders, possibly diminishing
the likelihood of MSK injuries [47–51]. Improved ergonomics, which exoskeletons may
promote, can be particularly beneficial in occupational settings where workers are prone to
MSK disorders due to poor posture or repetitive motions.

Likewise, wearable robots may help by offloading some of the mechanical stress
during repetitive tasks, reducing the likelihood of overuse injuries and health conditions
such as arthritis. Some exoskeletons can be programmed to encourage proper movement
patterns, potentially further minimizing the risk of joint-related conditions. Research
findings indicate that employing an Aerial Porter Exoskeleton could lower the occurrence
of MSK injuries among soldiers by enabling them to carry out tasks with reduced physical
effort (e.g., lower heart rate, decreased oxygen consumption, and a decreased perception of
exertion) [47,48,52]. This may not only reduce the risk of immediate injuries, but also may
contribute to long-term MSK health.

Upper-extremity exoskeletons may offer benefits such as reducing spasticity and restor-
ing dexterity through controlled reaching movements [53]. Lower-extremity exoskeletons
may offer significant health benefits such as improving standing and walking function, gait
patterns, walking speed, cardiovascular capacity, and the efficiency of oxygen consump-
tion [54–61]. Early interventions using wearable assistive devices have shown improved
rehabilitation outcomes [60]. Assistive mobility platforms enable people with impairments
to perform functional tasks and provide ergonomic improvements for some users while
maintaining work efficiency [46]. Wearable devices hold promise for alternative pathways
for employment and career advancement.

4.2. Assessment Tools

Assessment tools for wearable robots are essential for evaluating their functionality,
safety, and impact on users. Assessment tools help researchers, engineers, and healthcare
professionals gather quantitative and qualitative data to make informed decisions about the
functionality and optimal implementation of wearable robots. Functionality encompasses
aspects such as usability, user acceptance, task performance, and comfort. Subjective
parameters, including perceived exertion and user satisfaction, are typically measured using
questionnaires, surveys, and semi-structured interviews. Muscle activity is often monitored
using electromyography (EMG), while metabolic effects are often assessed through heart
rate measurements, spirometry, and impedance cardiography [62]. Simulation models
can be leveraged to investigate deeper muscle groups and compute joint loads [63]. The
impact of wearable robots on human kinematics may be evaluated through motion capture
systems using cameras and sensor tracking systems [30,64]. Force plates and tools to
measure ground reaction forces and moments can assess the impact of wearable robots on
gait and balance, and can be combined with EMG data to estimate muscle engagement
and fatigue. Heart rate and physiological monitors can be used to assess cardiovascular
response to the use of wearable robots, particularly relevant in applications involving
physical exertion. Oxygen consumption (VO2) measurement may be used to quantify the
metabolic cost of wearing an exoskeleton during different activities, providing insights
into energy efficiency. Energy expenditure monitoring measures calories burned during
activities with and without the wearable robot. Upper extremity function can be measured
using standard hand function tests (e.g., nine-hole, box and block, Jebsen-Taylor Hand
Function Test) [65]. Lower extremity function and mobility can be measured using static and
dynamic balance tests (e.g., Time Up and Go test [66], Berg Balance Scale, and Functional
Reach Test) [67] and gait tests (e.g., gait pattern and cycle tests, and gait analysis) [68].
Accuracy in task execution can assess the precision and effectiveness of wearable robot
assistance during various activities.
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Field studies and laboratory studies may be used for analyzing individual move-
ments [30,64]. An innovative approach, such as the Exoworkathlon®, transfers real-world
use cases into standardized laboratory settings with task-specific expert groups [69]. This
approach enables an evaluation of exoskeleton effects, encompassing both subjective as-
sessments through questionnaires and objective measurements through biomechanical
measures. Safety checklists are used as systematic assessments of features and potential
risks associated with wearable robot use. Assessment tools, used in combination, may
provide a comprehensive understanding of the impact and effectiveness of wearable robots
in various contexts, from rehabilitation to military applications.

4.3. Challenges and Areas of Opportunities

Wearable robots offer promising solutions for injury prevention and rehabilitation
in military and Veteran populations for various fields in industries, healthcare, and the
home/community. However, several challenges remain to be addressed for effective
deployment and utilization. This study created some recommendations and considerations
for exploring and adopting wearable robotic technologies, as follows:

Weight and Power consumption: There is a gap between the need and ability of devices
to be lightweight and to provide sufficient strength support during dynamic military tasks
under high loads. Devices need to be able to produce a specific power between 50 and
300 W/kg, which is hard to achieve with present drive solutions like electric, pneumatic,
or hydraulic drives. Long battery life and easily replaceable batteries are crucial for
uninterrupted operation. Three paths may potentially minimize this challenge: (1) slower
motion requirements can enable a lighter drive and a wearable robot, possibly practical
for rehabilitation; (2) minimize assistance to only during specific targeted movements; and
(3) control of passive springs, such as servo drives, may lead to active adaptive passive
solutions which are lighter than active systems but more flexible than current passive
wearable robots.

Flexibility: Wearable robots need the ability to assist during specific activities. However,
they must not hinder the user during other activities, especially in military applications [70].
Military tasks range from long-distance marches to complex maneuvers. Designing wear-
able robots that can adapt to the wide array of activities performed by military personnel
poses a significant challenge.

Unknown long-term effects of wearable robots on users: There is a paucity of long-term
studies that aim to understand the effect of systems on reduced or increased load on
the targeted joint complex and the neighboring MSK regions [51]. There is a need for
further longitudinal studies on the entire postural chain during tasks when wearing an
exoskeleton and the impact on static and dynamic posture. Effective use of wearable robots
requires proper training, and soldiers will need time to integrate these new technologies.
There needs to be an investigation into the impact on the user’s physical health, including
potential strain on joints and muscles, as well as the physiological aspects of wearable
robots [71,72]. The load on other body parts can increase depending on a task and wearable
robot. Theurel and Desbrosess warned in 2018 [51] that passive wearable robots may
lead to counterproductive antagonist muscle compensations and/or spinal imbalance as
unintended effects.

Seamless integration with existing gear: Soldiers must often carry heavy loads, and
adding additional weight with wearable robots could exacerbate fatigue and limit mobility.
Military operations often take place in diverse and challenging environments (e.g., desert,
jungle, and extreme temperatures), requiring wearable robots to be robust and weather
resistant. Wearable robots are not a one-stop solution for assistance, but a possible platform
for different applications.

Independent use: Recent advancements in wearable robots may allow for minimal
assistance or independent donning and doffing, but they still pose challenges for people
with disabilities. In addition, users may face challenges in independently recovering after
a fall. If there is an unexpected power outage, finding a solution can be a hurdle without
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assistance. In such situations, individuals with disabilities may need assistance from a
third party.

Training programs and evaluation: It is necessary to implement comprehensive train-
ing programs to ensure that users can adapt and use the wearable robot effectively [73].
Increasing user comfort and confidence, for example through the development of stan-
dardized EAW training programs, is a critical factor for their successful adoption. These
programs will need to be evaluated and validated for specific objectives (e.g., health benefits,
cost–benefit).

Size, function, and customization: While this analysis focused on the use of wearable
robots for primary and secondary injury prevention; it is important to investigate and
determine specific tasks or functions and target populations. For instance, people with
disabilities include a wide range of etiologies that make it challenging to create one-size-fits-
all upper- and lower-extremity wearable robots. Design requirements should be established
to guide the customization of wearable robots according to user ergonomic needs.

Human–machine interaction: Active wearable robots and users must work together to
facilitate a ‘symbiotic’ interaction. The design of control algorithms for wearable robots
needs to account for the response of the user to the forces generated by actuators [74]. In
several applications, actuators need to react faster than physiological human responses for
seamless and effective interaction [75]. Integrating biosensors in the design of wearable
robots (e.g., to monitor the user’s biomechanics or enable EMG-control of actuators) can
foster improvements in the ‘symbiotic’ human–machine interaction [76].

Affordability: Wearable robots must become more affordable to be used in homes and
communities, as they are still financially inaccessible to many individuals. It is crucial to
analyze factors such as the initial cost, maintenance costs, and potential productivity or
health benefits, making more wearable robots eligible for insurance coverage.

4.4. Study Limitation

Due to the short time to perform the modified Delphi consensus method in presence
with the panelists and the steering group, the results were limited to qualitative findings.
While results showed design considerations in wearable robots from experts in the field,
future studies with a similar approach should consider supporting these findings with
qualitative data.

5. Conclusions

In conclusion, this study aimed to define wearable robots for military rehabilitation
and MSK injury prevention by capturing expert opinions. Through a modified Delphi
process and thematic analyses, consensus was reached on the definition, categories, and
applications of wearable robots. The study identified three main applications of wearable
robots in military and rehabilitation settings, as follows: primary and secondary MSK injury
prevention, enhancement of military activities and tasks, and functional rehabilitation and
social reintegration. The classification of wearable robots provided insights into their
structural and functional aspects. Furthermore, this study highlights the current state of
technology, design requirements, and challenges associated with wearable robots. This
research lays the foundation for future efforts aimed at advancing wearable robots for
military and rehabilitation purposes, with the ultimate goal of improving the health and
well-being of service members, veterans, and individuals with MSK injuries.
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