Modena et al. Human Genomics (2024) 18:102 H uman Genomics
https://doi.org/10.1186/540246-024-00657-x

: : . ®
Whole-exome sequencing to identify Rl

causative variants in juvenile sudden cardiac
death

Martina Modena'**®, Alberto Giannoni'>* ®, Alberto Aimo'*3®, Paolo Aretini*®, Nicoletta Botto?,
Simona Vittorini>3, Andrea Scatena®, Diana Bonuccelli®, Marco Di Paolo®™ and Michele Emdin'#3"

Abstract

Background Juvenile sudden cardiac death (SCD) remains unexplained in approximately 40% of cases, leading

to a significant emotional burden for the victims'families and society. Comprehensive investigations are essential

to uncover its elusive causes and enable cascade family screening. This study aimed to enhance the identification

of likely causative variants in juvenile SCD cases (age < 50 years), particularly when autopsy findings are inconclusive.

Results Autopsy revealed diagnostic structural abnormalities in 46%, non-diagnostic findings in 23%, and structur-
ally normal hearts in 31% of cases. Whole-exome sequencing (WES), refined through a customized virtual gene panel
was used to identify variants. These variants were then evaluated using a multidisciplinary approach and a structured
variant prioritization scheme. Our extended approach identified likely causative variants in 69% of cases, outper-
forming the diagnostic yields of both the cardio panel and standard susceptibility gene analysis (50% and 16%,
respectively). The extended cardio panel achieved an 80% diagnostic yield in cases with structurally normal hearts,
demonstrating its efficacy in challenging scenarios. Notably, half of the positive cases harboured a single variant,
while the remainder had two or more variants.

Conclusion This study highlights the efficacy of a multidisciplinary approach employing WES and a tailored virtual
gene panel to elucidate the aetiology of juvenile SCD. The findings support the expansion of genetic testing using
tailored gene panels and prioritization schemes as part of routine autopsy evaluations to improve the identification
of causative variants and potentially facilitate early diagnosis in first-degree relatives.
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Background

Sudden cardiac death (SCD) represents a dramatic
event and a significant public health concern account-
ing for 15-20% of all deaths in the general population,
with an estimated incidence of 1.3-2.8 per 100,000
person-years in individuals under the age of 50 [1, 2].
By definition, sudden natural death is presumed to be
of cardiac cause when it occurs within 1 h from the
onset of symptoms in witnessed cases, and within 24 h
from the last time the subject was seen alive when it is
unwitnessed [1, 2].

The aetiology of SCD is still largely unknown and
varies with age. In individuals below the age of 50,
SCD often stems from inherited disorders that induce
structural and/or functional abnormalities triggering
fatal arrhythmias [3, 4]. Such disorders encompass car-
diomyopathies (CMP), heart structural abnormalities
like hypertrophic cardiomyopathy (HCM), dilated car-
diomyopathy (DCM), and arrhythmogenic cardiomyo-
pathy (AC), and primary electrical disorders including
Brugada syndrome (BrS), long QT syndrome (LQTS),
short QT syndrome (SQTS), and catecholaminergic
polymorphic ventricular tachyarrhythmias (CPVT) [4—
6]. These conditions involve various genetic and clinical
characteristics. HCM is characterized by unexplained
left ventricular (LV) hypertrophy, myocyte disarray, and
fibrosis. Hypertrophic cardiomyopathy (HCM) is typi-
cally associated with mutations in sarcomere and sar-
comere-associated genes (e.g., Myosin Binding Protein
C3 - MYBPC3 and Myosin Heavy Chain 7 - MYH?7).
Notably, non-sarcomere HCM and phenocopies are
also reported, as well as digenic and polygenic risk fac-
tors [4, 5]. DCM features LV enlargement and fibrotic
substitution, leading to systolic dysfunction and
increased arrhythmic risk; common associated genes
coding for cytoskeletal proteins among which Lamin
A/C (LMNA) and Desmin (DES) are associated with a
particularly arrhythmogenic phenotype [4, 5]. ACM is
characterized by fibro-fatty replacement of the myocar-
dium, usually due to genetic defects affecting cardiac
desmosomes (e.g., Plakophilin-2 - PKP2 and Desmo-
plakin - DSP). Primary electrical diseases increase
the risk of ventricular arrhythmias and SCD without
apparent structural abnormalities. These include LQTS
(often due to mutations in Potassium Voltage-Gated
Channel Subfamily Q Member 1 - KCNQI, Potas-
sium Voltage-Gated Channel Subfamily H Member 2
- KCNH2, or Sodium Voltage-Gated Channel Alpha
Subunit 5 - SCN5A), SQTS (associated with potassium
channel gene mutations), BrS (often linked to SCN5A
mutations), and CPVT (commonly caused by Ryano-
dine Receptor 2 - RYR2 and Calsequestrin 2 - CASQ2
mutations) [1, 3, 4]. Notably, all these cardiac disorders
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exhibit autosomal dominant pattern of inheritance with
incomplete penetrance and variable expressivity mak-
ing genetic assessment even more complex [1, 3-5, 7].
Other involved disorders are represented by myocardi-
tis, congenital heart defects, including coronary artery
anomalies and valve diseases, and storage cardiomyo-
pathies. In the older individuals, coronary artery dis-
eases and valve diseases represents the main cause of
SCD [7, 8].

Autopsy plays a crucial role in identifying the cause of
death, which is particularly relevant for risk prediction
in family members. However, establishing a post mor-
tem diagnosis remains challenging despite standardized
autopsy guidelines [9, 10]. In particular, differentiating
non-diagnostic findings from pathological abnormali-
ties can be difficult, with up to 40% of SCD victims below
the age of 50 remaining undiagnosed after a compre-
hensive autopsy [7, 8, 11]. Cases are classified as unex-
plained when autopsy reveals either non-diagnostic
structural findings or no cardiac abnormalities, a sce-
nario named sudden arrhythmic death (SAD) [1, 11, 12].
Notably, in 88% of autopsied SCD cases, the fatal event
represents the first manifestation of an underlying, often
asymptomatic and undiagnosed, life-threatening cardiac
condition [3, 4]. Moreover, the concept of "concealed car-
diomyopathy" has recently emerged, describing poten-
tially fatal arrhythmias in inherited heart disorders that
occur before visible structural changes. This highlights
the complex interplay between genetic predisposition
and phenotypic expression in SCD cases [11, 13, 14].

Consequently, a thorough investigation of young SCD
victims is essential and post-mortem genetic testing
may prove beneficial [12, 13, 15]. However, genetic test-
ing has been limited for decades to four major suscep-
tibility genes (KCNQI, KCNH2, SCN5A, and RYR2),
typically sequenced with the Sanger method [15, 16].
The advent of Next Generation Sequencing (NGS) has
slightly enhanced diagnostic accuracy. The diagnostic
yield increases by 25-40% with NGS, when a wider spec-
trum of genes linked to cardiomyopathies or channelopa-
thies are included, analysing 40—200 genes depending on
the method and panel used for sequencing. For instance,
the TruSight Cardio Panel (Illumina, San Diego, Califor-
nia, U.S.) include 174 genes currently analysed for inher-
ited heart disease (https://emea.illumina.com/products/
by-type/clinical-research-products/trusight-cardio.html)
[17, 18]. Current guidelines advocate for genetic test-
ing in SCD cases with a probable genetic origin [1] but
caution is advised against examining genes without a
definitive link to the clinical phenotype [1]. This broader
approach often results in the more frequent identifica-
tion of variants of unknown significance (VUS), whit
subsequent problems in interpreting the results [19-21].
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American College of Medical Genetics (ACMG) guide-
lines for variant interpretation state that VUS are not
clinically actionable but stress the importance of make
an effort to reclassify VUS as either "pathogenic" or
"benign [22]. In addition to globally standardized guide-
lines, diagnostic genetics laboratories often adopt sup-
plementary practical guidelines, especially for managing
VUS (https://www.acgs.uk.com/; https://sigu.net/). These
laboratory-specific protocols guide practice and provide
clarifications based on user experiences.

In light of these challenges and evolving practices,
our study hypothesizes that employing whole exome
sequencing (WES), refined through a bespoke virtual
gene panel and a structured scheme for prioritizing
variants (particularly VUS), coupled with a meticulous,
case-specific variant evaluation using a multidisciplinary
approach, could substantially increase the diagnostic per-
formance of post-mortem genetic testing in SCD cases.

Methods

Study cohort

Our study is part of the "JUvenile Sudden cardiac deaTh:
JUST know and treat" (JUST) project, which started in
2016 and involved both retrospective evaluation of old
cases and prospective evaluations of new cases of juve-
nile SCD (age < 50 years). In the former, young indi-
viduals were scrutinized from the Forensic Medicine
Department of University Hospital of Pisa (1995-2016),
while in the latter also cases from the Forensic Medi-
cine Department of Lucca were included (2017-2023).
In both cases, exclusion criteria were: non-cardiac death
causes; ischemic heart and/or coronary disease; positive
toxicology tests. According to forensic reports, all indi-
viduals were either completely asymptomatic or exhib-
ited only nonspecific symptoms. Report of previously
cardiological investigations with inconclusive results was
reported for two subjects. None of the individuals had
been diagnosed with a specific cardiac disorder prior to
death (Supplemental Table 1). We secured consent for
genetic testing and research use of data from the relatives
of the deceased. This study was conducted in agreement
with the Helsinki Declaration and received approval from
the Ethic Committee of the Tuscany Region, Area Vasta
Nord-Ovest (no. 14870).

Autopsy examinations

Autopsy examinations were conducted according to the
latest guidelines [10]. The heart and lungs were removed
"en bloc" and the pulmonary vessels were explored. Sub-
sequently, an analysis of the right and left sections of the
heart (atrial and ventricular) and the valve planes was
carried out. Multiple transverse cuts at 3-mm intervals
along the course of the main epicardial arteries, including
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branches, such as the diagonal and obtuse marginal, were
performed to check patency. Finally, cuts were made
along the short axis of the heart to obtain slices about
1 cm thick. Wall thickness was then verified: the endo-
cardium was carefully inspected, and the thickness of the
mid-cavity free wall of the left ventricle (LV), right ven-
tricle (RV), and interventricular septum (IVS) (exclud-
ing trabeculae) was measured. At the end, we compared
the measurements against tables of normal thickness by
age, gender, and body weight [23]. The forensic experts
(M.D.P, D.B.) retrospectively reviewed all the reports
of macroscopic and histopathology examinations, and
classified the cases into three categories: “diagnostic
structural abnormalities’, if the macroscopic and/or his-
topathological alterations fell within the diagnostic cri-
teria for a specific cardiomyopathy; “non-diagnostic
autopsy findings’, if the macroscopic and/or histopatho-
logical alterations were subtler, such as non-diagnostic
small areas of fibrosis, inflammation or fatty replacement;
“structurally normal heart’, if no relevant cardiac altera-
tions were found.

DNA extraction and whole exome sequencing

For retrospective cases, formalin-fixed, paraffin-embed-
ded (FFPE) samples of the heart, kidney, or spleen were
used. Conversely, for prospective cases, 5 to 10 mL of
whole blood using a hypodermic syringe from either
the femoral or inferior vena cava were collected, sub-
sequently storing it in ethylenediaminetetraacetic acid
(EDTA). The blood was refrigerated at 2 to 8 °C for analy-
ses within 4 weeks, or frozen at — 20 °C or — 80 °C for
later examinations.

DNA extraction from FFPE samples was performed
using Promega’s Maxwell 16 LEV DNA FFPE Purification
Kit (Promega, Madison, Wisconsin U.S.). In prospective
cases, DNA extraction from whole blood was done using
the Maxwell® 16 LEV Blood DNA Kit (Promega, Madi-
son, Wisconsin U.S.). Whole exome library preparation
followed the manufacturer’s guidelines for the Illumina
DNA Prep with Enrichment Kit (Illumina, San Diego,
California, U.S.). Sequencing was conducted using Illu-
mina’s NextSeq 500 instrument (Illumina, San Diego,
California, U.S.).

Bioinformatic analysis and extended cardio panel

Primary exome data analysis was executed using the
SeqMule pipeline [24]. FastQC and FastqScreen Qual-
ity Control (QC) systems identified and rectified errors,
trimmed low-quality reads, and removed adaptors [25].
The reads were aligned to the reference human genome
(GRCh37/hgl9) using BWA-MEM software (https://
github.com/MGPC-Nantes/MEM). Variant calling was
conducted using the Genome Analysis Toolkit (GATK)
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[26], annotating only variants in genetic regions with
a quality score>30 and a read depth>20 at the altered
position [27]. VarAFT [28] and BaseSpace Variant Inter-
preter software (Illumina Inc., San Diego, CA, USA) were
used to filter annotated variants, excluding those with a
minor allele frequency (MAF)>0.01 (1%) in GnomAD
(http://gnomad.broad institute.org) and including only
missense, nonsense, frameshift, and splice site variants.
WES data were filtered to create a virtual panel specifi-
cally constructed from selected genes associated with
cardiac diseases to expand the possible associations with
SCD. Genes were first selected exploiting two databases:

1. Human Phenotype Ontology (HPO): this provides a
standardized vocabulary of phenotypic abnormali-
ties encountered in human disease. We searched for
"Abnormal Myocardium Morphology" (HP:0001637),
identifying 689 diseases and 565 associated genes,
and "Abnormality of Cardiovascular System Electro-
physiology" (HP:0030956), identifying 750 diseases
and 524 associated genes.

2. Human Protein Atlas: this integrates various omics
technologies to map all the human proteins in cells,
tissues and organs. We searched for “heart-specific
proteome” and selected the 419 genes with elevated
expression in the heart compared to other tissue
types. We have also checked genes used in previ-
ous NGS studies (13-36), such as those included
in TruSight Cardio Panel (Illumina) (Supplemen-
tal Table 1). The final virtual panel used to filter the
annotated variants thus included 1304 genes (Supple-
mental Table 2).

Variant interpretation

We prioritized filtered variants based on pathogenicity
through VarSome (https://varsome.com) and Franklin by
Genoox (https://franklin.genoox.com), which automati-
cally classify variants according to the ACMG guidelines
[22]. We also reconsidered the PM2 criterion, fulfilled for
ACMG if the MAF was<0.01% (ultra-rare variants): after
looking for a possible pathogenic variant among the rare
variants (MAF < 1% during filtration), we evaluated the var-
iants considering, together with the other ACMG criteria,
the frequency of the different pathologies underlying SCD
(e.g., HCM 1:625-1:344, MAF ~0.2%; DCM 1:250-400,
MAF ~0.2 up to 1:2000, MAF ~0.005%; AC and channelo-
pathies ~1/2000, MAF 0.005%). Splicing and frameshift
variants’ functional impacts were further examined using
Human Splicing Finder (https://hsf.genomnis.com) and
Regulation Spotter (https://www.regulationspotter.org/)
[29, 30]. We have sub-classified the VUS identified from
VCEF after excluding pathogenic (P) or likely pathogenic
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(LP). VUS that met specific criteria were classified as highly
suspicious of pathogenicity and defined as VUS/LP:

1. Each ACMG criterion describing the variant falls
within the pathogenic criteria set. This ensures that
we do not include variants classified as VUS by
ACMG solely due to conflicting evidence, even if
some criteria suggest them as benign.

2. Franklin’s aggregated prediction, which combines
results from various prediction tools, based on latest
recommendations for PP3/BP4 rules [25], indicates
a high likelihood of pathogenicity. If this criterion
was not fully met, we considered whether the vari-
ants were in a recognised hot spot and/or in a critical
functional domain (PM1).

3. The variant resides in a gene whose functional path-
way aligns with the structural and/or functional car-
diac alterations probably responsible for the SCD in
the cases examined.

Using these prioritization schemes, variant reported
as VUS based only on the PM2 criterion, when all other
evidence suggests that it is benign, were considered VUS/
likely to be benign and were not reported, in line with
recent practical guidelines (https://www.acgs.uk.com/;
https://sigu.net/). Variants reported underwent further
scrutiny for clinically relevant information via ClinVar
(https://www.ncbi.nlm.nih.gov/clinv), OMIM (https://
www.omim.org/), ClinGen (https://clinicalgenome.org/),
and PubMed (https://pubmed.ncbi.nlm.nih.gov), along
with an evaluation of the variants’ presence in pertinent
regions (e.g., protein functional domains, binding sites)
via UniProt (https://www.uniprot.org/). Genotype asso-
ciations were determined based on OMIM and ClinGen
for genes already recognized in association with car-
diomyopathy/channelopathies. For genes not previously
linked, we considered whether the gene was reported in
ClinGen as "challenged" or "limited" in association with
the cardiac phenotype, previously published studies on
cardiac involvement, the reported phenotype, and/or the
pathway involved in cardiac function found on Human
Phenotype Ontology and GeneCard (https://genecards.
org/). The phenotype and/or pathway were retrieved from
the Human Phenotype Ontology (HPO) and GeneCard
(https://genecards.org/) databases. Globally, all informa-
tion on identified variants and genes were interpreted by
a multidisciplinary team, including geneticists, bioinfor-
maticians, cardiologists and forensic medicine specialists.

We refer to the 4 main susceptibility genes as “Core
genes’, the 174 genes from the TruSight Cardio Panel
(Ilumina, San Diego, California, USA) as “Cardio panel’,
and the 1304 genes examined in this study as “Extended
panel”
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Table 1 Characteristics of sudden cardiac death cases
SampleID Gender Age Eventatdeath Symptomsatdeath Weight(kg) x Heart Autoptic diagnosis Sample type
height (cm)  weight
(9)
SCDO1 M 26 Sport Syncope 85175 700 HCM FFPET
SCD02 M 29  Sleep Dyspnoea 71x174 n/a SAD n/a
SCDO03 M 22 Sport Syncope 87x171 365 HCM FFPET
SCD0o4 M 36 Lightactivity n/a n/a n/a SAD n/a
SCDO5 M 29 Sleep None 70x177 340 SAD FFPET
SCD06 M 37 Rest None 63x172 350 SAD FFPET
SCDo7 M 20 Sport Syncope n/ax175 500 AC (RV, LV) FFPET
SCDo8 M 25 Sleep None 77%xn/a 370 SAD FFPET
SCD09 F 25 n/a n/a n/a n/a Non-diagnostic autopsy findings n/a
(MVP)
SCD10 M 21 Sport Syncope 90x 187 520 DCM FFPET
SCD11 M 37 Sleep None n/ax168 360 AC (RV) FFPET
SCD12 M 25 Rest Dyspnoea n/a 360 AC (RV) FFPET
SCD13 F 14 Sleep None n/a 260 AC RV, LV) n/a
SCD14 F 21 Light activity none n/ax 160 310 HCM FFPET
SCD15 F 22 Sleep n/a n/a 220 HCM n/a
SCD16 F 35  Rest n/a 87x171 365 HCM n/a
SCD17 F 45 Rest Dyspnoea n/a 290 AC (RV) FFPET
SCD18 M 20 Rest None n/ax178 360 HCM FFPET
SCD19 M 40  n/a n/a n/ax180 530 Non-diagnostic autopsy findings Autoptic blood
(foci of fatty replacement of the myo-
cardium, RV)
SCD20 F 50 Rest n/a n/ax 164 300 AC (RV) Autoptic blood
SCD21 F 29  Light activity Syncope n/a n/a MVP (Myxomatous degeneration Autoptic blood
of the mitral valve leaflets)
SCD22 M 42 Sleep None n/a n/a SAD Autoptic blood
SCD23 M 34 Light activity Syncope n/a n/a Non-diagnostic autopsy findings Autoptic blood
(small foci of fibrosis)
SCD24 M 31 Rest Fever n/ax188 415 Non-diagnostic autopsy findings Autoptic blood
(foci of fatty replacement of the myo-
cardium, LV)
SCD25 F 37 Light activity n/a n/a 530 SAD Autoptic blood
SCD26 M 23 Rest n/a n/ax190 565 Non-diagnostic autopsy findings Autoptic blood
(mild fatty replacement, RV, LV)
SCD27 M 50  Light activity None n/a 630 HCM Autoptic blood
SCD28 M 29  Sport Syncope n/a 380 SAD Autoptic blood
SCD29 M 42 Lightactivity None n/a 540 Non-diagnostic autopsy findings Autoptic blood
(slightly dilated chambers and mild
fatty replacement of the myocardium)
SCD30 M 40 Rest Chest pain n/a 450 Non-diagnostic autopsy findings Autoptic blood
(small foci of fibrosis)
SCD31 45 Rest Chest pain n/a 286 SAD Autoptic blood
SCD32 29 Sport n/a n/ax 184 315 AC RV, LV) Autoptic blood
SCD33 M 50  Sport n/a n/a 510 Non-diagnostic autopsy findings Autoptic blood
(mild fatty replacement, RV, LV)
SCD34 M 45 n/a n/a n/a n/a SAD Autoptic blood
SCD35 M 39  Light activity Palpitations 175xn/a 575 HCM Autoptic blood
SCD36 F 50  Sport n/a 173 %70 300 HCM Autoptic blood
SCD37 M 42 Sleep None 185%90 610 HCM Autoptic blood
SCD38 F 50  Rest None 160 % 80 400 SAD Autoptic blood
SCD39 F 45 Rest None 160 60 200 SAD Autoptic blood

AC arrhythmogenic cardiomyopathy, HCM hypertrophic cardiomyopathy, DCM dilated cardiomyopathy, SAD sudden arrhythmic death, MVP mitral valve prolapse, LV
left ventricle, RV right ventricle, FFPET formalin-fixed and paraffin-embedded tissue, n/a not available
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Results

The final study cohort included 39 subjects (18 from the
retrospective cohort and 21 from the prospective cohort;
Table 1). Subjects were mainly male (n=26, 67%), with an
age of 33 + 10 years. Autopsy results revealed a diagnostic
structural abnormality in 18 cases (46%), which could be
classified as HCM in 10 (56%), AC in 7 (39%), and DCM
in 1 (6%). Additionally, 9 cases (23%) displayed non-
diagnostic autopsy findings including fatty replacement
(n=4), mitral valve prolapse (n=2), myocardial fibro-
sis (n=2), and mild left ventricular dilation (n=1). The
remaining 12 cases (31%) displayed structurally normal
hearts. Overall, 21 cases (54%) displayed non-diagnostic
autopsy findings or structurally normal hearts.

WES was performed in 32 cases (7 HCM, 6 AC, 1
DCM, 10 SAD, 8 with non-diagnostic autopsy find-
ings), due to FFPE unavailability in 6 samples and bac-
terial DNA contamination in 1 FFPE sample, precluding
the completion of the remaining retrospective cases.
Likely causative variants were found in 22 cases, trans-
lating to a detection rate of 69%, outperforming both the
Cardio panel and standard susceptibility gene analysis
(50% and 16%, respectively, as shown in Fig. 1).

Detailed variant descriptions are provided in Tables 2,
3 and 4. All identified variants were heterozygous. Half of
positive cases (n=11) harboured a single variant, while
the remainder had >2 variants. P/LP and VUS/LP vari-
ants were distributed in the different autopsy groups as
follows: SCD with diagnostic structural abnormalities,
8 out of 14 (57%; 6/7 in HCM, 2/6 in AC, 0/1 DCM);
non-diagnostic autopsy findings, 6 out of 8 (75%); struc-
turally normal heart, 8 out of 10 (80%; Fig. 2). Overall,
78% of cases with non-diagnostic autopsy findings or

100%
80%
60% positive

negative

40%

20%

0%

CORE GENES
(4 GENES)

CARDIO PANEL
(174 GENES)

EXPANDED
PANEL

(1304 GENES)
Fig. 1 Added diagnostic value of the extended cardio panel. The
variant detection rate (%) found using different virtual panels in all
autopsy cases: core genes 16%, cardio panel 50%, extended cardio
panel 69%. “Core genes”represent the 4 main susceptibility genes,
“Cardio panel”includes the 174 genes from the TruSight Cardio
Panel (lllumina, San Diego, California, USA) and the “extended panel”
includes the 1304 genes selected in this study
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structurally normal heart had a positive genetic test with
the extended cardio panel.

P/LP variants were found in 12 cases (38%): 7 in genes
affecting myocardial structure/morphology and 4 in
genes related to cardiac electrical function. VUS/LP
variants were identified in 10 cases (31%): 6 in structural
protein genes and 10 in ion channel-related genes. Fifty
percent of sudden cardiac death (SCD) cases, whether
they exhibit diagnostic structural abnormalities or have
non-diagnostic autopsy findings, showed variants in
cardiomyopathy genes. In contrast, 80% of cases with
structurally normal hearts (SAD) presented variants in
channelopathy genes (Fig. 3). Fifteen genes recognized
for their association with cardiac disease were identi-
fied: 3 (RYR2, SCN5A, KCNH2) from the primary sus-
ceptibility panel and 12 (TTN, MYH7, MYBPC3, TGFB2,
CACNA2D1, CALMI, LAMA4, DSB CACNAIC, FBNI,
SNTAI BAG3) from the Cardio panel. Three cases
with variants in Cardio panel genes had causative vari-
ants exclusively identified in the extended panel. Nine
genes uniquely included in our extensive panel (HCNI,
KCNJ14, SCN9A, SLC4A3, PSEN2, SCN10A, KCNMA1,
ATP1A2, CDH?2) were found to have a disease associa-
tion labeled as “disputed” or “limited” (ClinGen) and/or
cardiac-related pathways (GeneCards). No significant dif-
ferences were found in the diagnostic yield across the dif-
ferent age groups (p=1 for each age class; Fig. 4).

Discussion

Juvenile SCD remains unexplained in approximately
40% of cases, despite forensic and molecular autopsy.
This highlights the need for a more in-depth search for
gene variants. Our study employed a multidisciplinary
approach involving geneticists, cardiologists, bioinfor-
maticians, and forensic medicine specialists. The exper-
tise of this team was exploited in a stepwise manner: (1)
review of macroscopic and microscopic findings from
SCD cases, (2) comprehensive assessment of available
guidelines and relevant literature to develop a robust var-
iant prioritization scheme, (3) analysis of variants iden-
tified through WES. A multidisciplinary discussion was
crucial to sub-classify VUS and evaluate prioritized vari-
ants in the context of individual case characteristics. This
integrated approach enabled a thorough and nuanced
interpretation of genetic findings in relation to the clini-
cal and pathological features of each SCD case, identify-
ing likely causative variants in 22 out of 32 cases (69%),
compared to 16 cases (50%) when using the standard car-
diac panel.

Our diagnostic yield is higher than previous studies.
Among 26 other NGS studies that adhered to ACMG
guidelines and with a sample size comparable to ours,
reported diagnostic yields ranged from 6 to 44% [15, 17,
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Fig. 2 Variants diagnostic detection rate (%) in each autopsy
group. The cohort of “SCD with diagnostic structural abnormalities”
(A) (macroscopic and/or histopathological alterations fell

within the diagnostic criteria for a specific cardiomyopathy) shows
a detection rate of 14% (2/14) with the major susceptibility genes
(core genes), 43% (6/14) with the cardio panel and 57% (8/14)

with the extended cardio panel; the core genes have a detection rate
of 0% in the group of “SCD with non-diagnostic autopsy findings”
(B) (macroscopic and/or histopathological alterations were subtler)
(0/8) and of 30% in the group of “SCD with structurally normal heart
(SAD)"(3/10); the increase in the detection rate of likely causative
variants ranges from 63% (5/8) with the cardio panel to 75% (6/8)
with the extended panel for “SCD cases with inconclusive autopsy
findings” (C) and from 60% (6/10) to 80% (8/10) for the SAD group

21, 31-33], as detailed in Supplemental Table 1. Several
studies do not include VUS in the diagnostic yield report-
ing only their detection percentage [17, 21, 34—36]. Con-
versely, other studies have found that including VUSs in
genetic evaluation increases the variant detection rates to
approximately 50-80% [18, 31, 37]. However, these stud-
ies did not further categorize VUSs based on their prob-
abilities of being benign or pathogenic, unlike our study.
Some variants were classified as VUS based solely on the
PM2 criterion, even when other criteria suggested benig-
nity, or when the PP3 criterion was not fully satisfied.
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In our prioritization scheme, such VUS are considered
‘cold; which excludes variants that are more likely to be
reclassified as benign over time. VUS are considered “not
clinically actionable” and cannot be used directly for diag-
nostic purposes [22]. However, recent publications [38,
39] and practice guidelines (https://www.acgs.uk.com/;
https://sigu.net/) advocate for a more nuanced approach
to manage VUS, rather than simply categorizing them as
uncertain. Multidisciplinary discussions to evaluate VUS
in specific cases can help to determine which VUS should
be reported to clinicians, particularly when there is high
level of evidence supporting pathogenicity and potential
for obtaining additional evidence [40]. Further studies are
necessary to validate variants we have classified as VUS/
LP and achieve final reclassification. However, our results
underscore the importance of expanding genetic testing
through tailored gene panels and specific prioritization,
with variant assessment conducted in a multidisciplinary
setting that considers the case context. Integrating this
approach into laboratory practice facilitates comprehen-
sive reporting to clinicians and enables further variant
studies and patient follow-up. The data collected may
contribute to future reclassification of the VUS/LP identi-
fied in this study. Furthermore, the stored raw exome data
can be re-evaluated in future trio-family analyses.

All cases with positive genetic results exhibited het-
erozygous variants, and 27% had 2 or more variants,
highlighting the complexity of the SCD phenotype. These
observations support the theory that SCD might result
from interactions among common variants with moder-
ate impacts or clusters of rarer variants with more pro-
nounced effects. Distinguishing pathogenic from benign
variants is particularly challenging, given the potential for
incomplete penetrance, variable expressivity, and pheno-
typic overlap in channelopathies and cardiomyopathies,
which typically follow an autosomal dominant inherit-
ance pattern. Combinations of known and unknown
genetic and environmental factors may contribute to
incomplete penetrance and variable expressivity [41-44].

In our study, 9 altered genes would not have been
identified in the standard cardiac panel. Some of these
genes— Solute Carrier Family 4 Member 3 - SLC4A3,
Presenilin 2 - PSEN2, Sodium Voltage-Gated Channel
Alpha Subunit 10 - SCN10A, and Cadherin 2 - CDH2—
are currently under investigation, but are likely to be
associated with SQTS, DCM, BrS and AC, respectively.
The remaining genes are implicated in ion homeostasis
and cardiac conditions. For instance, Hyperpolarization-
Activated Cyclic Nucleotide-Gated Channel 1 (HCNI),
highly expressed in human sinoatrial node, could have
a key role in pacemaker current [45-47]. ATPase Na+/
K+ Transporting Subunit Alpha 2 (ATP1A2) had “car-
diac conduction” among its related pathways, with a role
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Fig. 3 Cardiomyopathy versus channelopathy genes in different autopsy groups. Probable causative variants in genes associated

with cardiomyopathy (orange) are observed more frequently in cases of SCD with diagnostic structural abnormalities (50%) (A)

and with non-diagnostic autopsy findings (50%) (B), compared to those with structurally normal hearts (SAD) (25%) (C). Bars are marked
with the same symbol when represent the same subject; genes marked with an asterisk present (P/LP) variant

20-29 (y.0.)

30-39 (y.0.)

40-50 (y.0.)

Fig. 4 Diagnostic yield percentages across age groups. Waffle
charts depicting diagnostic yield percentages for three age groups:
20-29 years (58%), 30-39 years (67%), and 40-50 years (71%).

Each square represents 1% of the total sample. Despite apparent
differences, statistical analysis revealed no significant variation

in diagnostic yield across age groups (p=1 for each age class)

67%

in ion homeostasis and ion transport by P-type ATPases
and recently, Staehr et al., suggesting its potential role
in cardiac function and metabolism through the Src/
Ras/Erk1/2 pathway [48]. Most variants in these genes
are classified as VUS/LP, given the absence of definitive
gene/disease associations. Current guidelines advocate
genetic testing in SCD cases with a probable genetic
basis, but also advice caution against analysing genes not

definitively associated with the clinical phenotype [1].
This is a significant issue, particularly in cases with non-
diagnostic autopsy findings or structurally normal hearts,
when clinical and family histories are unavailable to
guide post-mortem genetic testing. We propose a com-
bined approach extending the search for genetic variants
beyond specific panels, while limiting the likelihood of
casual results from broad screenings.

The diagnostic yield found in SCD with diagnostic
structural abnormalities (57%) aligns with results from
earlier studies on inherited cardiomyopathies [49]. Ion
channel-related genes were found in 4 cases revealed a
potential overlapping phenotype. This result is consist-
ent with previous studies that have detected variants in
cardiac conduction-related genes in cases of SCD with
autopsy diagnosis of cardiomyopathy [50, 51]. This could
derive from the use of a broader gene panel including
classical “channelopathies” genes to test subjects with
structural alteration. On the other hand, structural and
conduction alterations might coexist, and CPVT, LQTS,
and SQTS can present as asymptomatic, but still lead to
cardiac arrest as its first manifestation, as in our cohort.

Our results underscore the efficacy of a multidisci-
plinary approach to elucidate the aetiology of juvenile
SCD, particularly in unexplained cases. We identi-
fied probable causative variants in 14 cases with either
non-diagnostic autopsy findings or structurally normal
hearts, achieving a yield of 78%. This approach reduced
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the proportion of unexplained cases from conventional
autopsy to molecular autopsy. Variants in genes associ-
ated with channelopathies were found in 50% of cases,
supporting previous findings [18, 44]. Notably, RYR2
VUS/LP variants were identified in 9% of SAD cases,
aligning with previous reports that observed a preva-
lence of 5-10% [52, 53]. However, all three cases in our
cohort also harboured additional probable causative
variants, underscoring the importance of comprehen-
sive genetic analysis. Conversely, variants in cardiomy-
opathy-associated genes were found in 28% of cases,
supporting the hypothesis that variants in structural
proteins can trigger functional abnormalities in cardio-
myocytes before any macroscopic or histopathologi-
cal changes are evident [11, 14, 44]. Sudden death in
these individuals, who carry a likely causative variant
in a cardiomyopathy-associated gene, could be attrib-
uted to a "concealed cardiomyopathy," where malig-
nant arrhythmias occur in the absence of overt clinical
disease. As instance, case [SCD29] had slightly dilated
chambers found at autopsy and carried the splicing LP
LAMA4:c.719-2A > G already found in a DCM patient
[54], while case [SCD31] with structurally normal heart
carried a frameshift LP variant in TTN. Therefore,
these results support recent recommendations sug-
gesting that genes linked to cardiomyopathy should be
included in the molecular autopsy [1].

The co-segregation of the variant with the disease in
family members is a powerful tool for identify the causa-
tive variant as well as for reclassification of VUSs. Func-
tional validation studies of genetic variants represent
another effective approach, though their expense and
time-consuming nature limit their routine use, especially
considering the vast number of variants uncovered by
NGS. We did not perform either co-segregation or func-
tional validation studies, and the small sample size and
the limited information about previously clinical data
and family history did not allow searching for associa-
tions between specific variants with clinical data. These
limitations have led to a lack of definitive confirmation
of the pathogenicity of the variants considered VUS/LP.
However, we have tried to address this limitation through
the specific VUS prioritization scheme and careful case-
specific variant assessments by multidisciplinary team.

In conclusion, WES optimized with a customized vir-
tual gene panel, a structured variant prioritization scheme
and a multidisciplinary approach for case-specific variant
evaluation can significantly improve the identification of
likely causative variants in juvenile SCD cases, particularly
when autopsy findings are inconclusive. This approach
should be considered as a routine basis in this setting for
achieving a thorough autopsy diagnosis and potentially
facilitating early diagnosis in first-degree relatives.
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AC Arrhythmogenic cardiomyopathy

ATPTA2  ATPase Na+/K+ Transporting Subunit Alpha 2
ACMG American College of Medical Genetics

BrS Brugada syndrome

CPVT Catecholaminergic polymorphic ventricular tachycardia
CASQ2 Calsequestrin 2

DES Desmin

DSP Desmoplakin

FFPE Formalin-fixed: paraffin-embedded

HCN1 Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 1
IVS Interventricular septum

LMNA Lamin A/C

LQTS Long QT syndrome

Lv Left ventricle

MAF Minor allele frequency

MYBPC3  Myosin Binding Protein C3

MYH7 Myosin Heavy Chain 7

PKP2 Plakophilin-2

KCNQ1 Potassium Voltage-Gated Channel Subfamily Q Member 1
KCNH2 Potassium Voltage-Gated Channel Subfamily H Member 2
RYR2 Ryanodine Receptor 2

RV Right ventricle

SAD Sudden arrhythmic death

SCD Sudden cardiac death

SCN5A Sodium Voltage-Gated Channel Alpha Subunit 5

SQrs Short QT syndrome

VUS Variant of unknown significance
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