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ARTICLE INFO ABSTRACT
Keywords: The continuous monitoring of an individual’s breathing can be an instrument for the assessment and enhance-
Artificial intelligence ment of human wellness. Specific respiratory features are unique markers of the deterioration of a health con-
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dition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk
situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence,
smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many
researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory
information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the res-
piratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different
conventional machine learning approaches were implemented as well to ultimately compare the results. The
meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are
considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing
relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and
dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short
one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy,
even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the
minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231
+ 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly,
being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar
results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to
0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of
respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures
proved the potential of such approach. These findings lay the foundation for the implementation of reliable
custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related
applications.

Abbreviations: FBG, Fiber Bragg Grating; M-IMU, magneto-inertial measurement unit; LSTM, long-short term memory; Al, artificial intelligence; RR, respiratory
rate; RV, respiratory volume; RMSE, root mean square error; IQR, interquartile range; GUI, Graphical User Interface.
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1. Introduction
1.1. Motivation and background

The monitoring of the respiratory activity is paramount for the
health and safety assessment and to improve the quality of life since it’s
highly correlated with many psychophysical factors [1]. In the clinical
field, continuous breathing tracking systems may help identifying the
onset of lung diseases, as well as potential failures or changes occurring
to the organs [2]. In addition, treatment follow-up [3] and condition
exacerbation detection may be achieved through remote measurement
and warning systems [4], consequently prompting intervention and
therapy adaptation strategies [2,5,6]. Besides the clinical field, as an
example, in the occupational health and safety framework, both the
onset or the monitoring of work-related diseases and mental stress [7]
and accidents forecasting, could be achieved by evaluating the param-
eters of breathing [8-10]. Consequently, strategies for work environ-
ment enhancement and injury prevention may be implemented.
Therefore, in these scenarios, the continuous recording of an in-
dividual’s breathing and robust real-time event detection might be
lifesaving. Mainstream breathing monitoring techniques usually provide
one-time, although accurate, measurements, since the device usage is
limited to the clinical setting because of their high cost, encumbrance
and expertise requirements. The clinical gold standard procedure for
breathing evaluation is spirometry [11]. However, mouthpiece-induced
discomfort and natural breathing conditioning [12-14] mainly prevent
spirometers to be used in long-term continuous monitoring. More
portable solutions rely on chest wall movement detection, which is
currently the most popular technique to monitor respiratory activity
[15], since the compartmental model of the chest wall has been pro-
posed [16]. However contact-based conventional method measurements
[17-19] are strongly affected by posture changes, slight motion-induced
displacements of the sensors and electromagnetic interference [13].
System encumbrance and potential difficulties in the device positioning
make them unsuitable for a remote continuous monitoring in everyday
life. Tighter and stabler wearable sensing systems embedding instru-
mented garments, may be seamlessly integrated in the user’s daily ac-
tivities, regardless of the setting, without being neither invasive nor
obtrusive. Among the most common wearable technologies, inertial
sensors are widely used in combination with either similar units posi-
tioned elsewhere on the body [20] or in addition to other types of sen-
sors serving as motion artifact compensation tools [21]. According to
[15], most of the recently developed wearables for breathing activity
monitoring are equipped with optical fiber sensors. These systems rely
on either the intensity modulation through macro-/micro-bending ef-
fects [22,23] or the wavelength modulation, as for Fiber Bragg Grating
(FBG) sensors [24]. The advantages of such technology lie in its small
size, flexibility, robustness and immunity to electromagnetic fields,
which are a major concern in many environments. In addition, FBGs are
inherently safe and very sensitive to strain (about 1 pm/pe), thus
achieving the detection of even very small chest movements. Besides
that, the most outstanding feature of these sensors is the multiplexing
possibility, since many gratings can be inscribed within a single fiber
wire, thus minimizing the number of needed links. Lastly, given their
form-factor, optical fibers could be integrated in a straightforward
manner into smart textiles by being attached, woven or knitted in fabric
[25]. Most of the wearable existing systems only focus on retrieving the
respiratory rate (i.e., the number of breaths per minute), without ac-
counting for other parameters or overall characteristics [15]. As an
example, in [22,23,25,26], wearable optical sensors captured the res-
piratory frequency with very low errors. Although the rate itself has
been proven to be a valuable parameter for identifying adverse events
[27], the monitoring of the respiratory pattern variability, as well as the
minute ventilation (i.e., the product between the respiratory rate and the
tidal volume, i.e., the amount of inhaled and exhaled air per breath
during quiet respiration), could provide a deeper insight on the user
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ventilatory status, revealing even underlying damages [2,28,29].
Nevertheless, the accurate measurement of volume is an open challenge
when dealing with wearables, since artifacts arising from either whole-
body movements or unstable sensors are a major concern [30,31]. Few
studies reported optical sensors in comprehensive breathing monitoring
applications, and the ones that do, besides the frequency, usually focus
only on relative volume estimation [32-34]. Along with these, FBGs
have been used for chest volume computation via a calibration pro-
cedure based on an optoelectronic plethysmography reference [35-37].
Results were promising but still preliminary, since only the quiet
breathing activity during standing stationary postures was evaluated. In
order to extrapolate the absolute respiratory volume, a calibration
against a reference device is usually required. The outcomes of con-
ventional methods strongly depend on the calibration procedure itself
[13]. Traditional approaches are based on linear models [38] which are
quite accurate when dealing with constant or quasi-constant tidal vol-
ume [30,39,40]. However, the respiratory system is considered to be
inhomogeneous and chaotic even at rest [41], and the thor-
acoabdominal interactions are complex [42] to such an extent that non-
linear models have been proposed and often outperformed the linear
counterparts [43,44]. Deep learning algorithms have been proposed as
well, but mainly for event detection and recognition. In this field, sleep
studies have been carried out in order to identify abnormal breathing
patterns by means of one-dimensional convolutional neural networks
(CNN) [45], or to detect sleep apnea through different approaches (1D
CNN, Long Short-Term Memory (LSTM)-based and fully connected
networks) [46,47]. Other examples reported the recognition of sleep
stages from ECG and respiratory signals via five deep-learning algo-
rithms (CNN and LSTM-based) [48], and the end-to-end respiratory
signal prediction from sleep photoplethysmography data by applying a
CNN-based encoder-decoder solution [49]. A general-purpose applica-
tion is addressed in [50], where the combination of the accelerometer
data and a 2D CNN is intended for the recognition of different breathing
patterns. Nevertheless, the presented approaches do not deal with the
reconstruction of respiratory activity-related signals, and they have been
validated mostly in very stationary conditions (e.g., sleep). Furthermore,
the potentiality of such algorithms combined with chest wearable sensor
data is still under investigation.

1.2. Main study contribution

In view of the above-mentioned criticalities regarding the continuous
and comprehensive monitoring of the respiratory activity, in this work, a
LSTM-based deep learning algorithm for the prediction of the respira-
tory flow, starting from a chest wearable system, is presented. Optical
sensors, specifically FBGs, along with an inertial unit, provided infor-
mation about the chest motion without hindering the user’s activities.
The primary aim of this work was overcoming the limitations of both
linear models and more complex algorithms. Hence, the proposed
approach was validated by considering both static postures and dynamic
activities. In addition, the deep learning model was enriched with the
implementation of a meta-learning solution [51,52], thus facing the
major concern of the across-subject variability in the respiratory activ-
ity. Therefore, the possibility of adapting the model to new subjects
through a short calibration session is a substantial added value of such
approach. Furthermore, the performance of the model has been
compared with additional benchmarking machine learning algorithms,
as in [53] and tested for different sensor configurations, thus providing a
deeper insight into chest FBG-based wearables for respiratory flow
predictions via an artificial intelligence algorithm. All things considered,
the possibility of retrieving a continuous and prolonged respiratory
signal by means of lightweight and comfortable sensors paves the way to
the further implementation of more complex and reliable well-being
evaluation systems.

In the following sections, the wearable system, as well as the
experimental session for data collection, is presented. Then, the meta-
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learning algorithm is detailed and compared with four different ap-
proaches, henceforth the benchmarking machine learning algorithms.
Further, the computation of the respiratory parameters is addressed.
Finally, the algorithm performance results are presented and discussed.

2. Materials and methods
2.1. FBG-based wearable system and experimental setup

The prototype of the wearable device consisted of two adjustable
elastic belts designed to be tightened around the thorax and the
abdomen (Fig. 1A). The single belt embedded two flexible sensors, each
composed of a polymeric substrate (2 mm thick) and encapsulating an
FBG sensor (10 mm length; reflectivity > 90%; AtGrating Technologies;
further details about the respiratory sensors and their working principle
in [54]). Given the FBG sensitivity to strain, which is encoded in the
wavelength shifts (A1) from the central value (1) of the back-reflected
spectrum (Fig. 1B-C), when placed on the chest, these sensors can
track its periodic inward and outward motion [55]. In particular, the
FBGs are elongated when the thorax enlarges (Fig. 1C), i.e., during the
air inhalation phase, and they shorten when the chest shrinks (Fig. 1B), i.
e., during the air exhalation phase. Since the FBGs are sensitive to any
kind of motion-induced strain, breathing-unrelated movements may
affect the quality of the signal of interest. In order to decouple different
motion effects, a M-IMU (LSM9DS1 by STMicroelectronics), including
an accelerometer and a gyroscope, was added and worn at the sternum
level (Fig. 1A). The temperature influence on the FBG wavelengths,
instead, was considered negligible since the current wearable prototype
was intended for experiments in a controlled environment. Besides the
wearable sensors, a commercial variable orifice flowmeter (SpiroQuant
P by EnviteC, Honeywell) was used as a reference device. The respira-
tory airflow, collected by means of a facemask and causing a pressure

Artificial Intelligence In Medicine 130 (2022) 102328

drop in the flow sensor, was then encoded into a voltage signal (sam-
pling rate 100 Hz). Both the M-IMU and the flowmeter electronics were
encased in a box (Fig. 1A) and their data were sent to a laptop via
Bluetooth. Conversely, the FBG absolute wavelength data were trans-
duced by an optical interrogator (Hyperion si255, Luna, Inc.; Fiber
Fabry-Pérot Tunable Filter laser-based [56,57]; 4 measurement chan-
nels; wavelength range: 1460-1620 nm; wavelength accuracy: 1 pm;
dynamic range: 25 dB peak) with a sampling rate of 100 Hz (Fig. 1A) and
transmitted to the laptop via Ethernet, through a TCP/IP communication
protocol. Extension cords from the sensors to the interrogation unit were
appended to facilitate the recruited subjects’ movements with negligible
signal loss, since the FBG wavelength measurement is not affected by
power fluctuations along the optical path [58]. Data collection, syn-
chronization, visualization and storage were managed through a custom
Graphical User Interface (LabVIEW, National Instruments, TX, USA).
Proprietary LabVIEW libraries for recording the optical interrogator
outputs were integrated in the acquisition code, as well. Furthermore, an
additional GUI, namely the virtual illustrator, was developed to show
the subject the specific actions he/she had to execute during the
experimental session (Fig. 1A).

2.2. Experimental protocol

The wearable system and the reference flowmeter were used to
capture the respiratory activity of thirteen healthy volunteers (seven
females; age 27 + 4; height 168 + 10 cm; weight 63.1 + 12.0 kg).
Recruited subjects were required to be mentally and physically healthy
and to not have any respiratory difficulty or disorder. No exclusion
criteria derived from the hardware thanks to its adaptability. The ex-
periments were approved by the ethical committee of Universita
Campus Bio-Medico di Roma and volunteers signed an informed consent
prior to being recruited. Each subject donned the wearable system while
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Fig. 1. A) Experimental setup. A volunteer wearing the wearable device and the facemask for the reference respiratory flow collection is portrayed. The wearable
system was made up of 4 FBG sensors with different nominal central wavelengths 1o and a M-IMU. The M-IMU was enclosed into the depicted box and fastened
around the upper thorax. The output fibers are then connected to the desktop optical interrogator (FBG1-2 and FBG 3-4 connected to two separate channels), which
illuminated the fibers and read the AAZ. In its turn, the interrogation unit is wired to the laptop, which showed the virtual illustrator for the experimental session. B and
C) Functioning principle of the FBG-based respiratory sensors. B) During the exhalation, the FBGs shorten up to their nominal length. The pitch distance, that varies
with the applied strain and contributes to the wavelength shift, is A. Accordingly, the FBG wavelength is centered at 4o (graph on the right). Each FBG 4, slightly
differed across subjects, according to the initial fiber prestress. C) During the inhalation the FBGs are stretched, causing a pitch increase, thus obtaining A’. The back-
reflected spectrum shows a peak which is shifted of A1 from the central wavelength (graph on the right).
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being supervised by an experimenter so he/she could correctly place the
sensors attached to the elastic belts on the thorax and the abdomen. Any
repositioning of the device was avoided during each session. During the
experiment, the subjects performed three series of activities, henceforth
the protocols, as illustrated in Fig. 2. In particular, they were asked to
quietly breath (eupnea), hold the breath (apnea) and rapidly breath
(tachypnea) while standing, sitting and lying on their backs (in Fig. 2, P1, P2
and P3 the postures, respectively). Transitions from a posture to
another, namely the adaptations, were included as well. Besides these
static activities, there was a self-paced walk while spontaneously
breathing (from now on, walk) in the second protocol (in Fig. 2, referred
to as W). For the entire experimental session, the subject was instructed
to refer to the monitor, where the virtual illustrator (Fig. 1A) showed the
specific action he/she had to perform and its timing.

2.3. Meta-learning algorithm for respiratory flow prediction

Data processing was implemented in MATLAB (Mathworks, Inc.).
Collected data were conveyed to a meta-learning algorithm in order to
estimate the respiratory flow. In particular, the wearable system data
(Fig. 2), i.e., the FBG wavelength shifts (A1) along with their derivatives
and the M-IMU three-axes accelerations (a) and angular velocities (@),
were the algorithm input features. The flowmeter voltages (Vo, raw
signals in Fig. 2) were the algorithm target outputs that had to be pre-
dicted. Four benchmarking machine learning algorithms were also
trained for comparing the results of the proposed approach with con-
ventional regression methods. Finally, the respiratory benchmarking
parameters, i.e., the respiratory rate (RR) and volume (RV), were
computed for evaluating the robustness of the algorithm in potential
applications. Fig. 3 shows the data processing workflow. The raw signals
were first preprocessed. Abnormal FBG wavelength values, which
originated from temporary fiber cables bending or bad connections,
were detected and deleted, and missing signal portions were recon-
structed when possible (the maximum admitted gap length for inter-
polation was 500 samples). All data were also resampled at a frequency
of 50 Hz to guarantee evenly spaced data points. Then, signals were
smoothed by means of a first-order low-pass Butterworth filter with a
cut-off frequency of 2 Hz, which is suitable for capturing breathing
dynamics. Furthermore, the FBG wavelengths were de-offset differently
for each subject-related dataset by subtracting their initial values Ao,
thus obtaining the FBG AA. Time dependence was preserved by splitting
protocols in about 10 s sequences in order to have short and equal length
timeseries. Only apnea, eupnea, tachypnea and walk sequences were kept.
Afterward, these timeseries were conveyed to the regression meta-
learning algorithm.

Meta-learning means learning to learn [51], hence, as it happens for
human learning strategies, a model can learn new tasks from the expe-
rience of similar and familiar ones. A prior knowledge of the problem
helps gaining new skills more easily than starting from scratch. Herein,
the proposed few-shot learning approach reproduced the serial version
of the Reptile algorithm [59], which, specifically, approximates the
Model-Agnostic Meta-Learning procedure (MAML [60]). Differently
from the MAML approach, the Reptile algorithm does not deal with
differentiation, but it is based on a linear updating rule for retrieving the
initial testing model parameter setting. In detail, the neural network
learns to regress the air flow from the chest movements of new subjects
from only a few respiratory sequences. An initial setting of the model
parameters is firstly obtained by training the algorithm on an extensive
dataset of similar examples. This stage is called meta-training. Then,
when a new, but familiar, example is presented, i.e., a new subject, the
model parameters are adjusted via a few training iterations in order to
ultimately find the tailored parameter setting for it. Starting from pre-
viously established parameters, instead of random ones, helps making
this last tuning phase as fast as possible and to generalize well from the
few sequences related to the new subject. This stage is referred to as
meta-testing.

Artificial Intelligence In Medicine 130 (2022) 102328

Firstly, this algorithm progressively computes the parameter values
in the meta-training phase by moving them in the direction of those
computed on randomly sampled sequences of a subject belonging to the
meta-training dataset. The meta-training dataset consisted of the above-
mentioned sensor data collected from 10 (S in Fig. 3) out of 13
randomly selected subjects, for a total of 834 input sequences. Each one
was about 10 s long, for a total duration of 2.3 h. In the following
pseudo-code, the meta-training stage is summarized.

Meta-training algorithm

¢ initialization
for e = 1: meta-epochs
for s = 1: subjects
N sequences random sampling — meta-training set
Training set normalization
&= model (¢, k)
Poae= P+ (¢ - )
b < P

¢melmmmmg < ¢

In other words, the parameters (¢), i.e., the model weights and biases,
were at first randomly initialized. Then, the algorithm was run for 50
iterations (meta-epochs). At the e-th meta-epoch, each subject s dataset
was considered for randomly sampling N (30) sequences. This data pool
was then normalized to facilitate the algorithm convergence to the
global minimum. Hence, the model was trained on these randomly
selected sets for k (50) iterations, starting from the previous parameter
setting (¢). By doing so, the new parameters (¢s) were obtained and they
reflected the features of the s-th subject. Finally, both the previous
parameter configuration (¢) and the new one (¢;) contributed to the
parameter update. In particular, the new settings (¢updae) Were
computed through a linear rule (in the pseudo-code) which was gov-
erned by the ¢ factor, that changed linearly at each meta-epoch as
follows:

€ =1—e/meta_epochs (€]

The updated parameters (¢ pdaze) became the ones (¢) that were then
serially fed into the algorithm, as reported in the pseudo-code. Once the
last meta-epoch was reached, the final meta-training parameters (¢metq-
training) Were retrieved. These became the initial settings for the following
meta-testing stage, where weights and biases for each new subject were
adjusted accordingly. The meta-testing and testing datasets consisted of
the sensor data collected from the 3 (S1) out of 13 remaining subjects. In
particular, the meta-testing one was made up of the randomly selected
70% of the total number of sequences related to each activity, i.e., apnea,
eupnea, tachypnea and walk. Therefore, for each meta-testing subject, the
training set was made up of 58 10 s input sequences, for a total duration
of 9.67 min. The residual sequences (25, i.e., 4.17 min of recordings)
were considered for the next testing phase. The main steps of the meta-
testing algorithm are reported below, and they are intended to be run
separately for each new meta-testing subject.

Meta-testing algorithm (one subject)

¢51 “— ¢mela-zm[ni/1g

meta-testing set normalization

for e, = 1: epochs
M sequences random sampling — training set
¢, = model (p,, k1)
Dt wpae= G+ E(Pu” - $o)

¢\'1 < 's1_update

¢wb,m “— ¢s‘1
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Fig. 2. Experimental session and raw signals. On top, the postures (P1, P2 and P3, i.e., standing, sitting and lying on the back, respectively) and the activity (W, i.e.,
walk) to be performed during the experiment. Each of them is reported accordingly in the protocol sequences. For each protocol the collected raw data are reported as
well. M-IMU (accelerations (a) and angular velocities (w)) data are illustrated for the second protocol only, since it included the dynamic walk task. In the other
protocols, variations of M-IMU data were significantly smaller. Respiratory tasks (i.e., apnea, eupnea and tachypnea) are illustrated in the protocols through the colored
background areas.
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the web version of this article.)

Firstly, the parameters were initialized with the previous extrapo-
lated meta-training settings (¢meta-training)> thus providing ¢s;. After the
dataset normalization, at each epoch (es1), M (30) sequences were
randomly selected from the meta-testing set. The model was trained for k1
(30) iterations, starting from the previous parameter settings (¢s1).
Then, the parameters were updated (¢s1_ypdate) and fed sequentially into
the algorithm. When the number of epochs (es;) reached epochs (20), the
meta-testing algorithm stopped, and the final parameter set (Psupjec) Was
retrieved. Finally, the testing stage relied on the ¢gpjecr Obtained during
the meta-testing. Hence, the input features, i.e., the FBG A}, their de-
rivatives and the M-IMU data, were conveyed to the model (model
(¢subject)) for further predicting the reference flowmeter signal for that
subject. In Fig. 3, on the left, the workflow of the proposed meta-learning
algorithm is illustrated. The implemented deep-learning model consisted
in a Long-Short Term Memory (LSTM)-based network [61,62] structure
made up of 3 stacked LSTM and 3 fully connected (FC) layers (Fig. 3,
bottom-left). LSTM neurons, memory cells or units, are provided with
multiple internal gates intended to manage long-term memory. In more
detail, the information flows through the memory cells, which are as
many as the number of time steps to consider backwards. Each memory
cell has its own cell state (c), which is regulated by means of the forget (f),
the input (i) and the output (o) gates (Fig. 3). At each time step t, the
current input x; and the previous cell and hidden states, respectively c;_1
and h;_1, enter the LSTM unit to finally output the current updated states
as follows:

Cr :leCt—l +it®gt
he = 0,(Doe(cr)

(2)
3)

where (9 denotes the element-wise product, o, is the hyperbolic tangent
activation function, and f;, i, o; and g; are respectively the forget, the
input, the output gates and the cell candidate at time t. Thoroughly, the
forget gate [63] controls what to retain and reject for the cell state
computation by looking at both the previous hidden state and the given
input. The forget gate output is:

fo =0, (Wpx, + Rehey + by) O]

The oy is the sigmoid activation function, W, R and b indicate, in
general, respectively the input weights, the recurrent weights and the
biases, here pertained to the forget gate as the subscripted f denotes. The
other gate outputs are computed as follows:

i = 0g(Wix, + Rily_y + b;) %)
8 = 0c(Wox, + Roh_y + by) (6)
0, = 6,(W,x, +R,h,—1 +b,) )

The proper combined opening and closure of the gates protect the cell
state from potential changes originating from irrelevant inputs or noise,
thus preserving the memory ability of the network.

The implemented LSTM recurrent network was devised to gather
temporal correlations in the signals in order to facilitate the respiratory
flow prediction. Each LSTM layer included 20 hidden units (memory cells
in Fig. 3). The same amount was considered for the first FC layer,
whereas the last two were provided with half the neurons. The model
learnable parameters (¢ or ¢s1) were iteratively updated within the k
(or k1) iterations, with the adaptive moment estimation (Adam) [64]
approach, whose decay rates were set to 0.9 and 0.999 for the first and
the second moments respectively. The learning rate was initialized at
each epoch (e or e51) to 0.005 and was then dropped by 0.1 factor every
10 iterations (out of k or k1). The model gradient evaluation function was
the half mean squared error, as in the following loss expression:

loss = (1/27) Z(?i =)

i=1

®

where T denotes the maximum sequence length, y the predicted output
and y the expected one. Once being computed, the gradients were
clipped at 0.5 with a Euclidean norm-based scaling factor. The whole
algorithm, comprehensive of the meta-training, the meta-testing and the
testing stages, was run for different input data configurations. In
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particular, the M-IMU, the thoracic and the abdominal FBG data were
considered both alone and in combination with the other ones. Hence,
seven configurations were investigated, as depicted in Fig. 4, and named
M-IMU, 2FBGgap, 2FBGrx, 2FBGag + M-IMU, 2FBGrx + M-IMU and
4FBG + M-IMU. The meta-training and meta-testing dataset arrangements
were kept across all the configurations.

The testing algorithm output the predicted flowmeter voltages which
were then compared with the target signals. The data analysis provided
overall considerations, without accounting for the differences between
individual subjects. At first, both the root mean square errors and the
Pearson correlation coefficient (r) of target and predicted values were
computed for each configuration, in order to evaluate the overall algo-
rithm performance. Then, both the signals were processed for the esti-
mation of the respiratory parameters, as reported in the following
section.

2.4. Benchmarking machine learning algorithms

In order to compare the LSTM-based meta-learning results with other
conventional machine learning approaches, four additional models have
been trained. In detail, a regression ensemble of trees, a shallow neural
network, a recurrent neural network and an LSTM model were imple-
mented. The choice of these benchmarking learners aimed at comparing
the performance of the simplest regression approaches, i.e., regression
trees and shallow networks, and the ones dedicated to timeseries pre-
diction, i.e., basic recurrent networks and LSTM models. In particular,
each algorithm was trained more than once while changing some rele-
vant parameters. Given the relatively high amount of data, bagging
regression tree ensembles were considered to limit overfitting, through
averaging out the results of each tree in the collection [65]. Different
numbers of weak learners (20, 50, 100 and 200; minimum leaf size = 10)
were grown by picking random samples in the training dataset with
replacement. The validation regression errors were then computed from
the out-of-bag data, which did not contribute to the tree growth. Then, a
shallow neural network was trained with different number of neurons in
the hidden layer (20, 50, 100 and 200). The scaled conjugate gradient
method for backpropagation and the early stop criterion (6 validation
checks) were implemented. The dataset was randomly sorted into
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Fig. 4. Device configurations. On the axes, the number of abdominal and
thoracic FBGs (0 or 2) and M-IMU (0 or 1). All the cube vertices, with the
exclusion of the (0,0,0) point, represent a possible device arrangement. The
dark red spots are the investigated sensor combinations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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training (80%) and validation (20%) sets. Concerning the timeseries
dedicated approaches, firstly, a recurrent network, as a generalization of
the Elman model [66] was designed. Three hidden layers, with 20
neurons each, were included and different delays (10, 20 and 50 sam-
ples) were considered for training (gradient descent with momentum
(0.7) and adaptive learning rate (0.01 and drop factor 0.5) back-
propagation). The same dataset partition as the shallow network was
devised. Finally, the LSTM model was implemented as described in the
previous section but with the exclusion of the meta-learning procedure.
Each algorithm input features were normalized and the datasets, i.e., the
training sets, encompassing randomly sampled validation sets or out-of-
bag data, and the test sets, were kept the same as for the meta-learning
algorithm so they could be comparable. As for the meta-learning
approach, the benchmarking method results were assessed for each
configuration of sensors.

2.5. Benchmarking respiratory parameters

The benchmarking RR and RV parameters were extrapolated from
both the target signals and the meta-learning testing outputs, i.e., the
predicted flowmeter voltages, for each input feature configuration.
Firstly, voltage signals were converted into flows (L/min), being the
sensor sensitivity 0.0069 V-min/L, and the offset an ad hoc value
computed from target apneas for each subject-related test set. Afterward,
the respiratory flow signals were smoothed by means of a moving-
window Savitzky-Golay filter (window size: 27 samples). Then, the
above-mentioned parameters were extrapolated.

RR is expressed in bpm, i.e., breaths per minute, as follows:

RR = 60/At ©)

where At (s) is the time period between two consecutive flow peaks
(Fig. 3, bottom-right). Specifically, the above threshold peaks in the
signals were identified and checked to be the global maxima in each
single breath. In detail, the threshold changed across the subjects, and it
was one third of the interquartile range of all the target testing flow se-
quences. The median RR values were computed for each target and
predicted 10 s sequence and further used for statistical analyses.

RV (L) refers to the inhaled and exhaled air quantity and it is defined
as the flow signal subtended area. Therefore, the target and predicted
flow approximate integrals were computed for each complete breath,
which was in turn identified from the signal zero-crossing points (Fig. 3,
bottom-right). Furthermore, at the end of each breath, RV was forced to
0 in order to avoid outcome drifts caused by asymmetries in the flow
signal. Finally, the RV mean values from each 10 s sequence were
considered for the next statistical analysis. Differences between the
target and each configuration predicted parameters (i.e., the RR me-
dians and the RV averages) were investigated by applying paired sample
t-tests or Wilcoxon signed-rank tests, according to the normality
assessment of each data pair. Then, the errors (RR and RV errors, in the
following) for both the parameters were computed as the difference
between the target values and each configuration predicted ones, thus
obtaining 7 condition samples. The repeated-measures one-way ANOVA
(or the Friedman test, for not normally distributed data) was applied to
investigate differences between the 7 configurations. If significant p-
values were found, post hoc pairwise comparisons (paired sample t-test
or Wilcoxon signed-rank) with the relevant correction were carried out.
Before the ANOVA, the sphericity assumption was assessed through the
Mauchly’s test and, when it was violated, the Greenhouse-Geisser
correction was considered. Both the analyses on absolute and error
data were run separately for each respiratory behavior (apnea, eupnea,
tachypnea) and posture (standing, sitting, lying on the back and walk)
dataset, to ultimately investigate potential differences in relevant
parameter estimation across the considered breathing patterns and body
positions and motion. The overall alpha significance level was 0.05. The
statistical analysis was implemented in SPSS Statistics 26 (IBM, New
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York, NY, USA).
3. Results

The meta-learning algorithm regression performance for each device
configuration is depicted in Fig. 5 along with the corresponding Pearson
correlation coefficients (r). In addition, the Root Mean Square Errors for
all the algorithm stages, i.e., the meta-training, the meta-testing and the
testing ones, are listed in Table 1. For a qualitative evaluation of the test
results, some examples of the 4FBG + M-IMU superimposed target and
predicted flows are showed in Fig. 6.

The benchmarking algorithm test results are presented in Fig. 7 and
compared with the meta-learning method performance, in terms of
across-subject median and percentiles RMSE. In addition, aggregated-
subject flow root mean square errors for each tested algorithm and
each condition are reported in Table 2. The average and the standard
deviation of the test target flow range were 69.23 + 21.48 L/min.

For what concerns the parameters, the analysis of the target vs. each
configuration predicted RR medians resulted in significant differences in
the eupnea (target vs. 2FBGpp p < .005, 2FBGpp + M-IMU p = .005),
standing (target vs. M-IMU p = .006, 2FBGp + M-IMU p = .041), lying on
the back (target vs. 2FBGag p = .024, M-IMU p = .006) and walk (target
vs. 2FBGrx p = .02) groups. The comparison among the device config-
urations through the RR errors resulted in differences for the lying on the
back case (y%(6) = 19.66, p < .005). However, post-hoc comparisons
with the Bonferroni correction did not reveal paired differences. The
Root Mean Square values of the RR errors are reported in Fig. 8. The
paired comparisons of target and configuration-related RV averages
revealed significant differences for the eupnea (target vs. 2FBGap p = .02,
M-IMU p < .001, 2FBGrx + M-IMU p = .017), tachypnea (target vs.
2FBGp, M-IMU, 2FBGag + M-IMU, 2FBGrx + M-IMU p < .005, 4FBG p
= .043), lying on the back (target vs. 2FBGap p = .002, M-IMU p = .001,
2FBGrx + M-IMU p = .006) and walk (target vs. all the configurations, p
< .01, with the exclusion of 2FBGpg + M-IMU p = .051 and 4FBG + M-
IMU p = .075) groups. The Friedman test, for the configuration com-
parisons on RV errors, output significant differences for the eupnea
(x2(6) = 36.32, p < .001), tachypnea (y*(6) = 19.13, p < .005), standing
(;(2(6) =13.31, p=.038) and sitting ()(2(6) =18, p =.006) cases. Post hoc
pairwise comparisons with the Bonferroni correction revealed that the
M-IMU configuration was statistically different from all the other ones
(p < .001), except for the 2FBGap one (p = .248) for the eupnea case,
whereas no differences were found for the other groups. For the lying on
the back and walk tasks, the ANOVA with the Greenhouse-Geisser
correction determined differences between the device configurations
(F(2.88,48.99) = 5.44, p < .005; F(2.62,18.28) = 3.73, p = .034
respectively). Post hoc tests using the Bonferroni correction revealed
that paired conditions did not differ for walk, whereas significant dif-
ferences were found for lying on the back (2FBGap vs. 2FBGap + M-IMU
(p < .001), 2FBGTx (p < .005), 4FBG + M-IMU (p < .005); 2FBGrx + M-
IMU vs. 4FBG (p = .034), 2FBGtx (p < .005)). The root mean square
values of the RV errors are illustrated in Fig. 8.
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4. Discussion and conclusion
4.1. Main achievements

In this work, a meta-learning algorithm for the prediction of the
respiratory flow, starting from FBG-based wearable sensor data, has
been presented. Currently, well-established wearables for respiratory
purposes usually do not provide a comprehensive insight into the user
status [15]. Hence, the ultimate goal of this study was to train the
wearable sensors to estimate the respiratory flow, that was measured
with a gold standard flowmeter, as a starting point for future applica-
tions in cardiorespiratory monitoring. In addition, most of the state-of-
the-art approaches which combine wearables and Al, do not deal with
dynamic activities, since whole body movements usually overwhelm the
respiratory ones, the latter being significantly smaller. Therefore,
achieving robustness in breathing assessment during free activities is a
stated challenge. In this scenario, the feasibility of the proposed
approach was tested with both static and dynamic experimental condi-
tions. Besides the main novelty of predicting a reference respiratory flow
from wearables under different circumstances, the meta-learning algo-
rithm addresses the major concern of the inter-subject breathing vari-
ability [67,68], through the fine-tuning of the model. This requires a
one-time calibration procedure which is very short, since only a few
minutes are needed to record the respiratory activity (about 10 min per
subject, as the duration of the proposed meta-testing dataset) and adjust
the model. This approach also overcomes the need of very large datasets
in order to achieve a fair generalization. The comparison with conven-
tional machine learning algorithms for regression data prediction
demonstrated that the proposed meta-learning approach achieved the
lowest test errors (Fig. 7 and Table 2), thus confirming that tuning
procedures might improve subject-dependent generalization properties.
Furthermore, the meta-learning lowest error interquartile ranges (Fig. 7)
suggested a fair across-subject repeatability of the results, unlike the
other approaches. Comparable test results might be achieved in tradi-
tional machine learning approaches through very large datasets and
extensive training sessions. Among the benchmarking methods, the ones
for timeseries forecasting, i.e., the LSTM and the Recurrent NN, per-
formed better than those without memory, i.e., Tree Ensembles and
Shallow NN, with the LSTM-based approach being the most accurate
(Fig. 7, Table 2). This evidence endorsed the application of the LSTM
model to the meta-learning implementation. All the algorithms were
tested in different wearable sensor configurations, i.e., both complete
and simplified variations, to ultimately evaluate the meta-learning
approach robustness in even more unobtrusive conditions. The meta-
learning model showed better results than the conventional methods
almost for every combination of wearable sensors, except for the 2FBGpp
configuration, since comparable or even lower errors were obtained
through the benchmarking algorithms. Nevertheless, the corresponding
flow error for that configuration (Table 2) across them was always
remarkable with respect to the average target flow and considerably
higher than the best meta-learning algorithm achievements. Further
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Fig. 5. Meta-learning target vs. predicted voltage correlation. For each device configuration, the data point cloud, as well as its regression line (in green) are showed.
The desired regression line (in gray) is reported as well. Configurations are sorted from the worst to the best in terms of the achieved correlation coefficient r (in the
headings). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
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Meta-Learning algorithm errors. Meta-testing and testing errors are across-subject (S1) median and interquartile range (in parentheses) values.

Root mean square errors [V]

2FBGag M-IMU 2FBGag -+ M-IMU 4FBG 2FBGrx + M-IMU 2FBGrx 4FBG + M-IMU
Meta-training Training 0.089 0.096 0.048 0.072 0.043 0.054 0.060
Validation 0.082 0.102 0.066 0.074 0.056 0.070 0.050

Meta-testing Training 0.076 (0.017) 0.091 (0.023) 0.055 (0.002) 0.068 (0.003) 0.046 (0.010) 0.063 (0.011) 0.044 (0.006)

Validation 0.106 (0.036) 0.133 (0.017) 0.077 (0.014) 0.062 (0.003) 0.072 (0.014) 0.081 (0.027) 0.062 (0.023)

Testing 0.131 (0.088) 0.131 (0.009) 0.081 (0.027) 0.085 (0.007) 0.077 (0.011) 0.075 (0.009) 0.063 (0.014)
combination with the inertial sensors, the correlation coefficient resul-
— ’g?_g%?ctte i ted to be one and half time (r = 0.84) more than the 2FBGxg case, as they
apnea+eupnea jointly compensated for artifacts while perceiving the breathing move-
50 ‘ 1 ments as well. The algorithm errors reported in Table 1 bolstered this
o | hypothesis, being similar to the 4FBG + M-IMU case ones. The 4FBG
configuration resulted in r = 0.85, which was close to the 2FBGpp + M-
5ok ‘ ‘ ‘ 2 IMU correlation with the target. This suggests that the two configura-
0 5 10 15 20 tions are equivalent, and this deduction is supported by the position of
tachypnea the M-IMU, which was close to the sternal region, thus limiting the lack
e 50r ‘ 1 of thoracic FBGs for the 2FBGag + M-IMU condition. In most cases, the
g ol ] combination of the inertial unit with other sensors resulted in better
; performance than the M-IMU configuration one. The correlation of the
2 50 ‘ ‘ ‘ M-IMU signals with the target one was very low (r = 0.58) and similar to
0 5 10 15 20 2FBGp thus confirming that such positions for wearable sensors, if
‘ . walk ‘ uniquely considered, are largely affected by non-respiratory compo-
0r ] nents. Overall, the algorithm performance-related errors, as reported in
0 WW Table 1, were consistent with what suggested hitherto, being similar
across all the different settings of the input features, except for the
-50 F ) ) ) ) - 2FBGap and M-IMU cases. In fact, their testing median errors (0.131 V)
0 2 time (s) 8 10 and aggregated-subject flow RMSE (22.03 L/min, 18.84 L/min,

Fig. 6. Superimposed target and predicted signals for each activity (apnea,
eupnea, tachypnea and walk) in the 4FBG + M-IMU configuration. An example of
the transition from apnea to eupnea is reported in the top graph.

evidence is provided by the test regression plots and the training and the
validation RMSE:s for all the benchmarking algorithms (Supplementary
Figs. 1 and 2, Supplementary Table 1). Considering the worse bench-
marking outcomes, the following discussion mainly focuses on the meta-
learning prediction accuracy. As expected, the 4FBG + M-IMU
arrangement turned out to be more robust than the other ones, with a
correlation against the reference flow of 0.9 (Fig. 5). Similar results are
listed in Tables 1 and 2. The performance of the air flow estimation was
almost the best for the complete set of the input features across all the
meta-learning stages, especially in the meta-testing and testing ones. In
the latter, the 4FBG + M-IMU flow error resulted to be about half the
worst 2FBGap and M-IMU RMSEs (Table 2). Qualitatively, the signal
fitting was very good for the static tasks (i.e., apnea, eupnea and
tachypnea), whereas the prediction in the walk case exhibited slightly
higher error but it was still satisfactory (Fig. 6). Furthermore, transitions
between two different respiratory patterns, apnea and eupnea (Fig. 6),
were accurately predicted. Comparable results were achieved with the
2FBGrx configuration (r = 0.88, Fig. 5; RMSE = 10.639 L/min, Table 2),
with slightly higher algorithm errors (Table 1). This outcome suggested
that the usage of only two FBG sensors in the thoracic area may provide
fair flow predictions. This might originate from the rigid structure of the
thorax, which could be less sensitive to artifacts than the abdomen.
Furthermore, the effect of gravity determines changes in the respiratory
behaviors and lung capacity as a consequence of different postures [69],
but the thorax, encompassing the rib cage, is less affected by this phe-
nomenon. Conversely, shape changes are more common for the
abdomen, which is mainly made up of soft tissues. Accordingly, the
results showed that the 2FBGup configuration performance was the
worst one (r = 0.57, algorithm errors ranging from 0.76 V to 0.131 V,
Table 1). Nevertheless, when the abdominal FBGs were used in

respectively) revealed that noisier and less informative data from iso-
lated sensors deteriorate the actual flow prediction and the algorithm
generalization capability, as well. It is worth mentioning that this severe
effect was remarkable mainly for one subject. In this respect, a deeper
investigation on the testing results revealed that the M-IMU and 2FBGpp
correlation coefficients were 0.26 and 0.43 respectively, whereas they
were fair for the other subjects (between 0.6 and 0.8). These results
suggested that, given the high inter-subject variability of both respira-
tory patterns and anatomical features [68,70], some sensor configura-
tions could be more suitable for a specific subject than other ones. In this
scenario, the proposed method might help in finding the optimal device
arrangement with a one-time recording session and just a few fast meta-
testing stages.

In order to further investigate the robustness of the algorithm results
in the different proposed device configurations, two relevant respiratory
parameters, i.e., RR and RV, from both the target and the estimated
signals, were calculated and further compared. The estimated RR vs. the
target RR comparisons revealed differences mainly with the configura-
tions including the 2FBGap and the M-IMU sensors alone or in combi-
nation with each other, confirming the above reported considerations.
Conversely, the configuration errors resulted to be statistically similar.
Nevertheless, the RR error root mean squares (Fig. 7) showed remark-
able differences between the high-correlation configurations and the
other ones, for the apnea, eupnea, tachypnea, standing, sitting and lying on
the back groups. The walk outcomes were a special case, since the
2FBGrx and 2FBGrx + M-IMU showed on average a substantial error
(13.2 bpm and 11.9 bpm, respectively), against the lower 4FBG + M-
IMU, 4FBG and 2FBGag + M-IMU ones (3.2 bpm, 5.9 bpm and 4.5 bpm,
respectively). This suggested that the positioning of multiple sensors in
different trunk areas could help in decoupling walk-related artifacts and
respiratory movements for robust RR computation. Nevertheless, the
rate estimation strongly depended on the calculation procedure, which
was quite simple. However, the more accurate the signal fitting is the
more reliable the RR computation might be, as it happened for the 4FBG
-+ M-IMU configuration. In the other cases, ripples on the peaks, arising
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Fig. 7. Benchmarking algorithm performance. For each approach, the testing across-subject median and interquartile range RMSE [V] across all the sensor con-

figurations is illustrated in comparison with the meta-learning results.

Table 2

Meta-learning and test errors achieved with benchmarking algorithms. The testing aggregated-subject flow RMSEs are reported for each approach.

Root mean square errors [L/min]

2FBGap M-IMU 2FBGap + M-IMU 4FBG 2FBGrx + M-IMU 2FBGrx 4FBG + M-IMU
Meta-learning 22.03 18.84 12.65 12.29 11.31 10.99 9.97
LSTM 17.24 22.45 17.94 14.85 16.17 13.57 16.32
Recurrent NN Delay 10 19.14 23.23 19.83 18.15 18.40 18.50 18.49
Delay 20 19.43 23.17 19.84 18.04 19.23 18.10 18.51
Delay 50 19.36 23.18 19.75 17.71 19.36 18.15 18.34
Tree ensembles 20 learners 19.55 25.60 21.07 18.25 20.56 20.14 19.04
50 learners 19.43 25.80 21.19 18.08 19.78 20.01 19.07
100 learners 19.43 25.55 20.95 18.26 19.88 20.00 19.05
200 learners 19.41 25.58 20.94 18.09 19.83 19.93 19.04
Shallow NN 20 neurons 19.65 25.68 37.64 19.10 23.40 18.53 23.00
50 neurons 19.95 28.41 24.38 21.31 29.99 19.05 25.42
100 neurons 21.30 25.59 28.57 20.70 27.27 19.40 23.32
200 neurons 21.23 26.67 31.92 20.97 29.64 21.87 24.64

from dynamic tasks, may compromise the RR computation robustness.
For what concerns the RV analysis, the target vs. predicted significant
differences changed across the activities, but the complete configuration
was always comparable to the reference. The RV error analysis revealed
that the M-IMU and the 2FBGap configurations were similar in the case
of eupnea and that the lying on the back condition resulted in differences
between configurations of sensors that were placed in different trunk
areas. This outcome was consistent with the above-mentioned hypoth-
eses about the changes of lung capacity depending on postures [69]. Post
hoc comparisons with the Bonferroni correction for the other tasks did
not result in any differences. However, the error root mean square values
were lower for the high-correlation configurations, as expected, being
the volume directly derived from the flow. Fig. 8 reports analogous RV

10

standing error values across all the configurations, whereas more evident
differences between the best and the worst sensor configurations (i.e.,
2FBGap and M-IMU) occurred for the sitting and the lying on the back
postures, confirming again their effect on lung capacity [69]. Overall,
the errors for each activity group were comparable across the best
configurations, thus suggesting that different arrangements could be
suitable for the volume estimation from the predicted flow.

4.2. Limits and perspectives
The achieved results of the meta-learning algorithm were promising

when dealing with some respiratory patterns and different tasks.
Nevertheless, the tested experimental conditions did not include more
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Fig. 8. RR (on the left) and RV (on the right) root mean square errors values for each device configuration (x axis) and each activity (y axis). Cell color intensities are
scaled according to each RMS weight. Darker cells represent lower error values. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

challenging activities which might affect the accuracy of the results. In
particular, wider limb movements, trunk twisting or flexion, and posture
changes which elicit additional strains on the FBGs were not taken into
account. The meta-training, as well as the testing datasets should include
more noisy information in order to ultimately evaluate the actual
robustness of the flow prediction. The proper positioning of inertial units
or even other FBG sensors for differential data capture may help to
enhance the algorithm. Actually, the M-IMU was placed close to the
sternum and, as it has been proven, it was sensitive to both whole body
and chest movements. In order to more effectively decouple the two
effects, its repositioning should be devised. Different solutions could be
investigated through the implementation of this algorithm, with just one
short data collection session. Along with the limited dynamic conditions
explored, only a few respiratory rates and depths were investigated.
However, the present results suggested that different patterns can be
reliably reconstructed, since transitions between different rates were
precisely tracked (Fig. 6). Further experimental conditions are hence
required and tests with longer time series and multiple device donning
sessions for repeatability evaluation should be performed as well. Larger
meta-training dataset, encompassing more and heterogeneous subjects
and more respiratory behaviors, are expected to improve the overall
performance and speed up the calibration phase. Furthermore, starting
from a well-established knowledge of the problem, generalization
properties of each specifically tuned model may be enhanced. Hence,
brand-new patterns could be predicted through inference. This over-
comes the major concern of the tiresome procedures of the traditional
calibration-dependent approaches [30,44]. Nonetheless, although the
proposed algorithm may be robust to new conditions, the user’s physical
or respiratory behavioral changes (because of a disease onset, for
example) may require further model adjustments. Additional evidence
of the potentiality of this meta-learning algorithm results was bolstered
via the estimation of the respiratory parameters. Referring to the com-
plete sensor configuration, i.e., 4FBG + M-IMU, which reached the
highest correlation with the target, RR and RV were computed with low
errors. However, further improvements are needed since the measure-
ments for the dynamic task were less accurate. Volume estimates pre-
sented errors which on average ranged from 5% to 11% (considering the
target median absolute volume values, i.e., 0.6 L, 0.33 L and 0.5 L for
eupnea, tachypnea and walk, respectively). This performance-related
outcome might be satisfactory for other applications besides the most
crucial clinical settings, where the maximum accuracy is not required (e.
g., telemedicine, homecare, remote monitoring). Nevertheless, these
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preliminary results suggested that an overall assessment of the user’s
status could be however reliably provided, even though more robust
outcomes might be achieved through more extensive model training.
Further improvements would primarily deal with the implementation of
more sophisticated intelligent solutions for accurate real-time estima-
tion of the respiratory parameters of interest, even training end-to-end
neural networks. Then, in the perspective of real-life application sce-
narios, the enhancement of the wearable system robustness and porta-
bility would be devised. Firstly, the targeted future enhancement of the
technology readiness level would require the implementation of
temperature-compensation strategies. As an example, the positioning of
additional FBG sensors in a way to not make them sensitive to me-
chanical effects, could be a solution to retrieve temperature-induced
variations of the signals. In addition, more reproducible positioning of
the required sensors should be implemented through subject-specific
reference points on the instrumented garments. More importantly,
given the remarkable constraint resulting from the bulky interrogation
unit, portable and wireless devices [71] should be considered. More-
over, the brand-new on-chip FBG interrogators [72] pave the way to
even more integrated and less expensive systems, which would be
completely provided with edge computing hardware. In this way, the
implementation of feedback and warning strategies for safety, health
preservation and rehabilitation purposes, relying on FBG-based wear-
able devices, would be enabled for varied real-life applications.
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