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In this article, we present, for the first time, a soft robot 
control system (SofToss) capable of throwing life-size 
objects toward target positions. SofToss is an open-loop 
controller based on deep reinforcement learning (RL) that 
generates, given the target position, an actuation pattern for 
the tossing task. To deal with the high nonlinearity of the 
dynamics of soft robots, we deploy a neural network to 
learn the relationship between the actuation pattern and the 
target landing position, i.e., the direct model (DM) of the 
task. Then, an RL method is used to predict the actuation 
pattern given the goal position. The proposed controller 
was tested on a modular soft robotic arm, I-Support, by 
tossing four objects of different shapes and weights in  
140-mm squared target boxes. We registered a success rate 
of almost 65% of the throws in two actuation modalities 
(i.e., partial, keeping one module of the soft arm passive, 
and complete, with both modules active). This performance 
raises to 85% if one can choose the number of modules to 
actuate for each throwing direction. Furthermore, the 
results show that the proposed learning-based, real-time 
controller achieves a performance comparable to that of an 
optimization-based, nonreal-time controller. Our study 
contributes to the foundations for bringing soft robots into 

everyday life and industry by performing more complex, 
dynamic tasks.

INTRODUCTION 
Performing ballistic tasks, such as throwing objects, with a 
robot is an aspired ability. It increases the working capacity of 
the robot, for instance, in a weakly structured logistics sorting 
scene [1], [2], [3]. For a traditional robot, this ability is chal-
lenging to obtain for the high acceleration and speed required 
[4], which brings its joints to their limits. However, in [5] and 
[6], authors show that storing elastic energy by using compli-
ant actuators helps rigid robots to perform ballistic tasks, such 
as throwing an item. Soft robots may be better suited for this 
task, thanks to their characteristics [7]: they can store poten-
tial elastic energy within their bodies and then transfer it to 
the held object before releasing it to perform the throw. This 
characteristic has been shown in [8]. In that work, the authors 
show that a soft robotic arm is potentially able to perform sev-
eral tasks, such as the throwing one, by releasing the held 
object during a linear trajectory.

Indeed, due to the inherent deformability of the actuators 
and materials, soft robots are able to adapt to obstacles, ter-
rain, etc. These characteristics make them suitable for various 
unstructured environments, which opens up new opportunities 
in various fields, such as search and rescue, human assistance, 
and applications in medicine [7]. The downside of having these 
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complex soft body structures resides in their challenging con-
trol. Such problems affect both the low-level and high-level 
control. A low actuation frequency, especially in pneumatic-
actuated soft robots, represents one of the major issues of 
low-level control. Actuating the robot at high frequency will 
generate undesired vibrations in the soft robot. The impos-
sibility of applying the traditional rigid control theory (often 
based on rigidity assumptions) represents one of the main 
issues of the high-level controller.

Tossing an object toward a target requires reaching the 
releasing point in the robot workspace with a precise speed. 
This is not trivial to achieve with a soft arm since its dynamic 
model may not be available or, in general, accurate [9], mainly 
due to the high stochasticity in the fabrication process. Differ-
ent alternatives have been proposed to overcome this limita-
tion. Machine learning algorithms [10] have been deployed to 
approximate the model of a soft robot in static and dynamic 
conditions [11], but these strategies were tailored for a specific 
task, primarily trajectory tracking. Recently, this task has been 
performed with some payloads attached to the end effector of 
the soft robotic arm to assess the robustness of the control-
ler with respect to external interferences [12], [13]. In addi-
tion, state-of-the-art soft robot controllers use a combination 
of machine learning techniques, often neural network based, 
and optimization methods. This procedure makes the control-
ler unable to work in real time since it needs to wait for the 
optimization process to end.

Recent approaches to controlling a soft robot involve the 
application of RL [10]. This method has great potential to 
come up with a robust decision-making capability but can 
hardly be applied directly on a real platform since the pro-
longed use of the soft robotic platform will lead to reliability 
problems. To mitigate this problem, the RL agent is trained 
in a simulation environment where the robot is approximat-
ed with its model [14] or with a function approximator, i.e., 
a neural network [12], [15]. However, an RL agent trained in 
simulated environments often performs poorly when tested on 
a real-world environment, mainly due to the “sim2real gap,” a 
lack of fidelity and accuracy of the environment in replicating 
real-world conditions, which are even more challenging with a 
soft robot compared with a traditional one.

In this work, we present SofToss, a model-free soft robot 
control system for the tossing task. SofToss consists of an 
open-loop controller in which an artificial agent is trained, 
through deep RL, to select the actuation pattern necessary 
to throw different objects into small boxes located outside of 
the robot workspace. This work introduces the learning of the 
control policy as a solution for carrying out complex ballistic 
tasks beyond the current soft manipulator controllers, which 
typically enable only tracking tasks.

MATERIALS AND METHODS 

METHODOLOGY 
Our controller can be classified as a model-free, open-loop 
approach to accomplishing the ballistic task of throwing 

objects with soft robots. More specifically, given a desired 
landing position, the controller learns through reinforcement 
to give the robot the appropriate actuation patterns to perform 
the throw toward the target. Figure 1(a) and (b) illustrates the 
targets and the objects employed, respectively.

Inspired by previous works [5], we generate the throw with 
a two-phase movement (backswing before the forward motion 
toward the target). This constraint applied to the movement 
generation speeds up the controller training phase since the 
grasped object trajectory is predefined and does not need to 
be predicted.

We defined that each trajectory lies in one of the planes of 
the sheaf of planes whose intersecting line is the z-axis pass-
ing along the manipulator’s longitudinal backbone. The divi-
sion of the movement into a run-up phase and a forward phase 
allows us to increase the robot’s speed and, consequently, its 
throwing range. In our experiments, the robot first performs 
a backswing (run-up) and then a rapid movement toward the 
target (forward), as shown in Figure 1(c). The object is released 
when it reaches the lowest point of the trajectory in the for-
ward movement after the backswing.

Our controller consists of three components: 1) an RL arti-
ficial agent, 2) a DM of the task, and 3) an actuation network 
(Figure 2). The RL agent learns to generate the actuation pat-
tern of the forward-phase movement. Given the actuation input 
pattern, the DM, which is implemented with a feed-forward 
artificial neural network (ANN) with one hidden layer, pre-
dicts the resulting landing position. The actuation network is 
used to predict the actuation pattern for backward movement, 
given the one for the forward movement generated by the RL 
agent. It is implemented with a feed-forward ANN with one 
hidden layer. The possibility of defining these task character-
istics and the reliance on a forward model derived from the 
robot data led us to a solution that speeds up the controller 
training phase. In fact, the trajectory is predefined and does 
not need to be learned.

Given the presence of several uncertainties, such as the 
approximations related to the neural networks employed, it 
was necessary to test the actuation pattern by performing the 
throw and recording the trajectory to assess if the task was 
accomplished or not (object in/object out). By attaching mark-
ers to the thrown object, we also tracked the trajectories of the 
real throws to obtain quantitative information. Each marker 
has a weight of 0.9 g and a characteristic dimension of 17 mm. 
This procedure introduced a slight discrepancy between the 
quantitative and the qualitative results, as the tossed object dif-
fered between the two conditions.

EXPERIMENTAL SETUP 
We tested our deep RL-based controller on an experimental 
setup that consists of the following:

■■ the robotic platform: a serial concatenation of the 
I-SUPPORT robot arm [16] and a custom-designed soft 
gripper

■■ the actuation unit: custom-made electronics to provide 
electronic input signals to the hardware platform 
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■■ sensors: vision-based motion capture (VICON Motion 
Capture Ltd).
The I-Support robot arm [Figure 3(a)] is a pneumati-

cally actuated modular soft robotic manipulator, where a 
single module [16] embeds three pairs of McKibben-like 
actuators arranged 120° from each other. In this work, 
two modules have been connected together through a ring-
shaped interface that is made of Plexiglas (width: 3 mm), 
with an offset in the orientation by 60° with respect to each 
other. Furthermore, to reduce the overall weight of the sys-
tem, the modules have a tapering shape. The robot is fixed 
onto an aluminum-based rectangular supporting frame of 
20 20 mm#  in a vertically downward position to reduce 
gravitational effects. In the resting position, the robot arm 
has a total length of 409 mm and weight of 230.5 g and 

is suspended 1 m above the ground. Below the robot, we 
placed the targets as represented in Figure 1(a); each one 
is represented by a square container, whose dimensions are 

.140 140 100 mm# #  In our experiments, we aimed at these 
containers with different objects, as shown in Figure 1(b), 
whose masses and dimensions can be different from each 
other—specifically, the following: 

■■ a ping-pong ball, whose mass and diameter are equal to 
0.8 g and 36 m, respectively

■■ a lemon (toy), which weighs 4.8 g and has a characteristic 
dimension of 62 mm

■■ a Vicon marker, whose mass and diameter are equal to 
3.2 g and 26 mm, respectively

■■ a tomato (toy), which weighs 10.2 g and has a characteris-
tic dimension of 63 mm.
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FIGURE 1. The experiments performed. (a) The targets used for the different trials. Ten goal points have been selected around the 
robot to explore the potentiality of our controller on the entire workspace of the soft robotic arm. Inside each box there are air pillows to 
avoid any damage to the tossed objects and the Vicon markers glued on them. (b) The objects thrown during the experiments.  
(c) The robot while performing a throw of the tomato toward target B. (d) The trajectories of the thrown objects toward target L using 
the complete actuation for each object. 
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More specifically, the last object, the “tomato,” was selected 
to test the robustness of the open-loop controller since its 
mass and dimension are outside the set of the others used to 
collect the dataset.

The custom-designed gripper is screwed to the distal mod-
ule. It comprises two fingers composed of 3D-printed surfaces, 
which are joined together by two thermoplastic polyurethane 
chambers realized with a heat press. The gripper has an over-
all weight of 27.5 g. The time required to open the gripper has 
a tremendous impact on the experiments; this motion has been 
characterized as follows: 50 closing and opening cycles have 
been carried out to quantify this delay. For each of them, we 
measured the time between the instant at which the opening 
command was sent ( )t 1 s=  and the instant at which the dis-
tance between the two appendixes is ,60 mm+  which approx-
imately corresponds to the greatest dimension of the thrown 
objects. From Figure 3(b), it is possible to appreciate the trends 
of the distance between the appendixes of the gripper and the 

one related to the pressure value applied to the component. 
We assessed that the opening time of the gripper is equal to 

. .0 2 s+

THROWING TASK SPECIFICATIONS 
In our tests, the robot moves first in the opposite direction 
with respect to the target (run-up phase) and then toward it 
(forward phase). The division of the movement aims at 
increasing the speed of the I-Support arm during the throw 
and, consequently, expanding the range of the target positions.

In a module comprising a triad of radially arranged actua-
tors, the activation of a single actuator will generate a bend-
ing in a specific direction. Consequently, a module will have 
a minimum of three major bending directions in the Carte-
sian space, each passing from the respective pair of pneumatic 
chambers. In this way, for the system under consideration [16], 
there will be a total of six bending directions, as illustrated in 
Figure 4. In particular, note that the bending motion has been 
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considered with respect to a local planar reference frame asso-
ciated with the cross section of the robot arm. For example, the 
inflation of chamber 1 results in a bending along the negative 
y-axis. In addition, it is important to avoid any interference 
between the proximal and distal modules in the case of simul-
taneous actuation of the chambers displaced along the same 
axis, e.g., chambers 1 and 5.

Given a desired goal ( ; ),T x yT TG G G  the actuation required 
to throw an object is determined as follows: considering 
the desired goal ,TG  an objective point is obtained that has 
coordinate values that are diametrically opposite to those of 
the desired goal, ( ; ) ( ; ).T x y y xT T T TG G= = - -  Then, this 
objective point is projected on a unit circle, represented as 

( ; ),T x yT Tl l l  and is exploited to obtain 
the corresponding rectangular coor-
dinates on all six major bending axes 
using the formulas summarized in 
Table 1. In particular, the length of 
each rectangular projection represents 
a direct proportionality between the 
projection on the axis and the pressure 
applied to the actuator. In other words, 
when the projection of the radius ( )OT l  
is equal to one, it means that the pres-
sure applied to that specific actuator is 
maximum; in this case, it is restricted to 
p 1max =  bar.

DATASET COLLECTION 
Having established the geometrical rela-
tionship between the input activation 
and the throwing direction, we can now 
start to collect a database of trajectories.

As stated previously, the movement of the manipulator is 
divided into two phases, i.e., the run-up phase and the for-
ward phase. In particular, it has been empirically determined 
that the overall movement will last ,t 2 stotal =  of which the 
first .t 0 5 srun up =-  is spent for the run-up phase. The object is 
released at .t 0 97 s=  because we observed that, around this 
time instant, the robot reaches the lower position of the for-
ward phase, where the favorable effect of gravity on movement 
ends. In this way, each trajectory is essentially characterized 
by one time instant, i.e., the one where the object would be 
released. To create a dataset, more than 1,000 trajectories 
have been collected. For each one, we randomly selected a 
point and followed the procedure described in the “Throw-
ing Task Specifications” section, summarized in Table 1, to 
find the actuation pattern for the two phases. The data collec-
tion process took two hours and 15 min. This work aims to 
teach a robot how to throw, so, from the dataset of position and Proximal Section
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The geometrical relationship between the actuation inputs of the 
I-Support robotic arm used to restrict the overall motion to a plane.  
Tl  represents the projection on a unit circle with coordinates that are 
diametrically opposite to the desired goal TG.

TABLE 1. Actuations given a point. 
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velocity of the end effector, a dataset of 
landing positions is generated through 
the projectile equations.

The dataset has been collected three 
times. In each case, the object that the 
gripper was holding has been changed 
from the ping-pong ball to the marker 
and then the lemon (toy). Then, the 
final dataset was obtained, which was 
used to train the networks, by averag-
ing the landing positions in these three 
cases. This last operation aims to take 
into account the different weights of the 
held objects from the ones used to train 
the networks to build a controller that is 
not object specific. This procedure is repeated for both actua-
tion scenarios, partial (just the proximal module) and com-
plete (the joined actuation of the distal and proximal modules). 
Figure 5(a) and (b) shows, respectively, the datasets when one 
module or two modules were actuated with the different grip-
ping objects and the final two datasets that then have been 
used to train the ANN to obtain the DM.

ANN TRAINING 
After the collection of the dataset, with an ANN, we mapped 
the input space with the resulting landing positions of the 
thrown object as in 

	 ( , ).fx rux x= � (1)

Here, ( , )rux x  are, respectively, the actuation input of the run-
up and forward phases, and x  represents the resulting land-
ing position. Equation (1) represents the DM. It consists of an 
ANN with one hidden layer. We performed a model selection 
based on the average Euclidean distance from the desired tar-
get to choose the best set of hyperparameters. The results are 
presented in Table 2.

We trained the model (1) using the actuation inputs for 
both phases. To decrease its prediction error, it is neces-
sary to have an input that is consistent with the inputs used 

MODEL

HYPERPARAMETERS DM OF THE TASK ACTUATION NETWORK

Actuation Partial Complete Partial Complete

Number of units 64 64 128 128

Activation function ReLU ReLU ReLU ReLU

Normalization Rescaling Z-score — —

Error 4.59 mm 6.58 mm 0.07 bar 0.02 bar

The best combination of hyperparameters for the DM and the actuation network in the two actua-
tion scenarios. ReLU: rectified linear unit.

TABLE 2. The model selection. 
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during  training. This led to the need for the actuation net-
work (2). It is a one-hidden-layer ANN, which, given the for-
ward actuation pattern, predicts the one for the run-up phase. 
In this case, the model selection, whose results are displayed 
in Table 2, was based on the average error on the actuation 
components:

	 ( ).grux x= � (2)

PROXIMAL POLICY OPTIMIZATION 
These two neural networks were the building blocks of the 
RL environment, as shown in Figure 2. In our framework, 
the agent, a multilayer perceptron, learns how to set the actu-
ation ( )x  of the soft robot for tossing the object in the desired 
target. The agent has to guess the actuation responsible for 
the forward movement by looking at the landing position 
associated with the previous tentative actuation pattern ( )x  
and its distance from the desired target ( ).d  Once the agent 
infers the best action to take, the correspondent run-up actua-
tion ( )rux  is predicted thanks to the actuation network (2). 
Then, with the DM (1), the toss is simulated. For each toss, 
the agent receives a reward based on the distance ( )d< < 2  
between the landing point associated with the tentative actua-
tion and the target position. More specifically, it is the sum of 
two contributions: a continuous part, which is always nega-
tive and equals to the distance, in millimeters, from the tar-
get, and a pseudostep part, which is positive. The overall 
reward can be written as
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Such a reward function allows the agent to improve its perfor-
mances quickly. Indeed, there is a massive reward when the 
target is hit.

We wanted to exploit the goal-direct learning and deci-
sion making that characterize every RL algorithm [17]. More 
specifically, we opted for the proximal policy optimization 
algorithm [18] since it is one of the most sampling-efficient 
algorithms with respect to other policy gradient-based 
approaches. In addition, it is less affected by the hyperparam-

eter initialization, and it can be applied to a wide variety of 
RL tasks.

Once trained, the RL agent predicts, in a deterministic 
mode, the actuation pattern to toss the objects. The prediction 
errors tested on the DM for both the actuation scenarios are 
shown in Table 3.

Despite being within acceptable limits, the average errors 
associated with the RL predictions remain relatively high. We 
attribute this to the stochastic behavior of the soft arm and the 
approximation errors introduced by the building blocks of the 
controller, which relies on a DM based on an average data-
set of the different objects. A comparison with object-specific 
controllers can be found in the supplementary material avail-
able at https://doi.org/10.1109/MRA.2023.3310865.

RESULTS 
Our results show that the SofToss controller reaches a perfor-
mance in successfully tossing objects to target locations as 
high as 62%–63% on average (depending on the actuation 
pattern used) and consistently more than 80% in the best- 
performing directions for each actuation pattern. Furthermore, 
it shows a performance similar to that of a nonreal-time con-
troller that uses optimization [19]. SofToss shows a signifi-
cantly shorter time spent for finding a new actuation pattern 
after changing the target, which makes our system work in 
real time.

In the experiments, we tossed four objects, different in size 
and weight, as shown in Figure 1(b). We selected goal points 
that cover the whole workspace and different directions. We 
tested the proposed controller in two scenarios: 1) partial 
actuation, where only the proximal module is actuated, and 
2) complete actuation, where both modules are actuated. Both 
quantitative (involving the tracking of the object trajectory) 
and qualitative (without trajectory tracking) tests have been 
performed to assess the ability of the controller to generate 
an appropriate actuation pattern that allows tossing an object 
into the target. Figure 1(c) and (d) show the robot perform-
ing such tests. For each combination of parameters (the object 
type, qualitative/quantitative test, and target position), three 
trials have been recorded for a total of 240 throws for each 
actuation scenario.

The comparison between the partial and complete actua-
tion scenario tests is summarized in Figure 6(a). In Figure 6(a), 
we show a box plot based on the average error, i.e., the Euclide-
an distance between the target and the actual landing position, 
across the three trials for each combination of object–target. 
This graph shows that the average performances of the con-
trollers in the two actuation scenarios are remarkably similar. 
By measuring the error as the distance of the object landing 
point from the center of the target location, we obtain 68.3 mm 
for the complete actuation scenario and 61.7 mm for the partial 
one. For the qualitative results, we consider the success rate, 
i.e., the number of successful landings of the object inside the 
target box (with or without the bouncing of the object on its 
edge) with respect to the total number of throws. We obtain 
62% for the complete scenario and 63% for the partial one. 

SCENARIO PARTIAL COMPLETE

MINIMUM 2.43 19.07

AVERAGE 24.38 30.55

MAXIMUM 48.18 49.5

TABLE 3. The RL performances: errors in millimeters 
associated with the prediction of the RL agent tested 
in the DM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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These latter results are obtained through the analysis of the 
recorded videos. In addition, Figure 6(d) shows the success 
rate of the two scenarios with respect to threshold errors. By 
considering the 70-mm threshold value as an approximation of 
the box size, it is possible to appreciate a success rate greater 
than 60%, confirming the success rate derived qualitatively.

A comparison with the nonreal-time controller [19], pre-
sented in Figure 7, is summarized in Figure 6(c). This con-
troller is based on the basin-hopping optimization algorithm 
applied to the DM (1). The optimization aims at minimizing 
the value function represented by the difference between the 
desired position and the landing position predicted by (1) given 
the generated actuation pattern.

To compare the two controllers, we tested the optimization-
based one over the same targets in the complete actuation sce-
nario. We thus performed another 240 throws.

In Figure 6(c), it is possible to note that our strategy perfor-
mances are close to the nonreal-time ones; indeed, their aver-
age error is equal to 65.2 mm. Figure 6(e) shows a comparison 
between the nonreal-time approach and the proposed control-
ler in terms of the success rate. The controller performances 
are similar since the success rate for both strategies has a simi-
lar trend. The nonreal-time controller achieves a success rate 
of 63% considering the threshold of 70-mm, while the RL-
based one reaches a success rate of 66%.

DISCUSSION AND CONCLUSION 
We showed that, despite a smaller workspace and lower 
dynamics than a conventional robot, with our controller, a 

soft robot can perform the dynamic task of tossing an object 
inside a target area. We tested our deep RL-based controller 
in different actuation scenarios, where we obtained a success 
rate greater than 60%.

One source of error in our system is the stochastic behavior 
of the soft arm. We quantified it by observing the variations 
in output under the actuation input pattern used for throwing 
(here, we just consider the arm movement, not the gripper). 
By considering the releasing point in all trials for the same 
trajectory (used to throw in a specific target), we derived a 
parallelepiped that includes all of these points to have a mea-
sure of their variability. All of these parallelepipeds have been 
averaged (considering all of the targets in the two actuation 
scenarios), producing a variability volume that has the follow-
ing size: 17 13 4 mm.# #  The same phenomenon occurs with 
the initial resting position of the robot gripper, which varied 
throughout the trials and was contained within a volume of 
7 5 2 mm.# #  In addition, the initial position of the object 
in the gripper has a variability volume of 14 11 32 mm.# #  
This is mainly due to the manual positioning of the object in 
the gripper. Additionally, since the neural networks are trained 
on an average dataset and not on the dataset related to a spe-
cific object, the controller generates a suboptimal condition for 
each tossed item.

Nevertheless, when the threshold is near 100 mm, the 
behavior of the controller in the complete actuation scenario 
presents a plateau with respect to the partial actuation case. 
This is due to the inability of the controller to generate appro-
priate actuation patterns for some specific directions. Indeed, 
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FIGURE 7. The nonreal-time controller. The control scheme of the optimization-based approach on which the controller is based is 
described in [19]. 
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as shown in Figure 6(b), the controller is not able to toss any 
of the objects inside target A. Therefore, there are at least 12 
cases in which the error is more significant than the one in 
the partial scenario, and the distance from the goal is bigger 
than the dimension of the target. The presence of preferred 
directions in which the controller is able to throw objects is 
also found in the partial actuation scenario. This characteristic 
can be associated with the controller generating some actua-
tion patterns that make the soft robot move abnormally (e.g., 
generating higher acceleration). As a result, the held object is 
released in a nonoptimal condition, causing a failure. Addi-
tionally, some uncertainties can be due to the geometrical 
approximation we relied on for the controller definition.

By taking into account this peculiarity, we can realize a 
controller in which the actuation scenario also becomes a 
parameter. According to this strategy, given the target con-
tainer position, we can select how many modules should be 
actuated to maximize the performance of the toss. This simple 
approach allows us to bring the success rate to 85% in cor-
respondence with the characteristic dimension of the target 
(70 mm) as presented in Figure 6(d).

Throwing tasks, in both biological and robotic studies, can 
be found in the literature. For instance, in [20], the authors 
compared the throwing performances of capuchin monkeys 
and humans. Monkeys were required to throw stones weigh-
ing between 15 and 25 g into a target bucket (whose diam-
eter was 300 mm) located at 300 or 600 mm from the animal. 
Similarly, the humans had to throw tennis balls weighing 57 g 
into a basket (whose diameter was 550 mm) at a distance of 
3,000 or 6,000 mm. The success rates for the monkeys were 
68% for the closest target and 34% for the furthest, while, for 
the humans, they were, respectively, 71% and 31%. From the 
robotic side, in [3], the authors used a rigid robot (UR5) to 
perform pick-and-toss tasks of objects into rectangular target 
boxes with dimensions of 250 150 100 mm,# #  achieving a 
success rate of 82.3%. The authors stated that this success rate 
was highly influenced by the precision of the grasping phase. 
Though the task space for our robot is smaller than the one 
presented in the studies described, the success rate is compa-
rable to that of the rigid robot if one could choose the actuation 
pattern to be used. Alternatively, it could be compared to that 
of humans and monkeys.

Figure 6(c) and (e) show the comparison between the non-
real-time approach with our controller in terms of the success 
rate. As already discussed, their average error and variance 
behavior are similar, thanks to the presence of the same build-
ing blocks in the two strategies i.e., neural networks, and so 
they are affected by the same approximation errors. For this 
reason, as expected, in Figure 6(e), the curves that describe 
their behavior tend to overlap. In any case, the deep RL-based 
strategy presents the considerable advantage that it does not 
need to wait for the optimization process to end when we 
change the target. Indeed, in this case, we measured that less 
than 1 s was required to find the actuation with the deep RL 
strategy, while more than 1 min was necessary to change the 
target with the nonreal-time controller.

To increase the controller performance, it is critical to focus 
on the gripper, as it has a considerable effect on this task. This 
element influences the releasing point of the object and, con-
sequently, the object initial kinematic conditions in its freefall 
toward the target. In this work, to develop the model of the task, 
we simulated several throws given the trajectories starting from 
the kinematic condition of the object held in the gripper in a 
precise time instant. At the same time, delay estimation charac-
terization of the gripper was conducted only for a defined dimen-
sion of the object. This was because, as for the learning on the 
average dataset, we wanted to challenge the generalization capa-
bilities of the controller. Indeed, small objects (e.g., markers) are 
released earlier than the others, thus in suboptimal conditions.

In conclusion, the performances of our system are affected 
not only by the stochasticity of the soft arm dynamics and the 
variability in the gripper realizing time but also by the learn-
ing method and the task model. The concurrent effect of all of 
these components makes it difficult to assess the effect of the 
proposed RL controller compared to the other factors. In addi-
tion, another limitation of our work is that we have not includ-
ed methods to alleviate the simulation-to-real gap problem (the 
controller derived in silico is applied to the robot without any 
adjustment). Future works can address this issue by including 
online optimization methods to reduce the mismatch.
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