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A B S T R A C T

Recognizing animal actions provides valuable insights into animal welfare, yielding crucial information for
agricultural, ethological, and neuroscientific research. While video-based action recognition models have been
applied to this task, current approaches often rely on computationally intensive Transformer layers, limiting
their practical application in field settings such as farms and wildlife reserves. This study introduces Mamba-
MSQNet, a novel architecture family for multilabel Animal Action Recognition using Selective Space Models.
By transforming the state-of-the-art MSQNet model with Mamba blocks, we achieve significant reductions in
computational requirements: up to 90% fewer Floating point OPerations and 78% fewer parameters compared
to MSQNet. These optimizations not only make the model more efficient but also enable it to outperform
Transformer-based counterparts on the Animal Kingdom dataset, achieving a mean Average Precision of
74.6, marking an improvement over previous architectures. This combination of enhanced efficiency and
improved performance represents a significant advancement in the field of animal action recognition. The
dramatic reduction in computational demands, coupled with a performance boost, opens new possibilities for
real-time animal behavior monitoring in resource-constrained environments. This enhanced efficiency could
revolutionize how we observe and analyze animal behavior, potentially leading to breakthroughs in animal
welfare assessment, behavioral studies, and conservation efforts.
1. Introduction

Understanding animal actions is fundamental to ethological re-
search and has far-reaching implications across numerous disciplines,
attracting increasing research attention in recent years (Fazzari et al.,
2024; Ghosh and Dasgupta, 2022a). Today, recognizing animal actions
is particularly significant for several key applications: animal behavior
monitoring, neurological studies, bio-inspired robotic engineering.

While these applications share some methodologies, they differ
significantly in their objectives. The first area primarily focuses on
livestock in agriculture, where multiple or single animals are observed
to analyze abnormal behaviors and evaluate their well-being. Recent
research in this domain includes analysis of pig contact and biting
behaviors (Odo et al., 2023; Alameer et al., 2022), monitoring feeding
habits (Kavlak et al., 2023; Ollagnier et al., 2023), and identification
of illness-related movements (Mei et al., 2023), researches that are
complementary to general advancement in computer vision for pre-
cision agriculture (Li et al., 2024a; Luo et al., 2021). Neurological
studies typically target smaller animals, mainly mice, to investigate
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diseases such as Alzheimer’s (Sutoko et al., 2021). The popularity of
this field has led researchers to develop numerous tools for analyz-
ing neural, video, and tracking data to extract meaningful features
correlating animal movements with behaviors (Mathis et al., 2018;
Pereira et al., 2022; Luxem et al., 2022; Segalin et al., 2021). Bio-
inspired robot engineering aims to transpose animal movements into
physical robotic animal (Manduca et al., 2024; Peng et al., 2020). The
common thread across all these applications is the need to discretize
and recognize actions, with subsequent uses tailored to each specific
domain. However, the majority of these operations occur post hoc,
after data collection from the animals. The collected data is typically
processed using machine learning algorithms, statistical methods, or a
combination of both. This method can introduce latency between obser-
vation and insight. Alternatively, real-time analysis involves immediate
processing, often facilitated by human operators making on-the-spot
decisions. While this approach reduces latency, it may be limited by
human cognitive capacity and prone to inconsistencies (Tjandrasuwita
et al., 2021).
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Machine Learning (ML), particularly Deep Learning (DL), has sig-
ificantly advanced research in Animal Action Recognition (AAR)
Kleanthous et al., 2022). DL models have been applied to various
odalities, including sensory data, images, videos, and multi-modal

fusion approaches. For processing sensor data (e.g., GPS, accelerome-
ers, and gyroscopes), Multi-Layer Perceptrons (Arablouei et al., 2023),

Recurrent Neural Networks (Dang et al., 2022), and Convolutional
eural Networks (Pan et al., 2023) are commonly employed. Image-

based approaches primarily utilize object detection techniques like
YOLO (Manoharan, 2020; Riekert et al., 2020) or segmentation strate-
ies (Xiao et al., 2023) for generating useful features, leading to the

development of specialized tools such as EthoFlow (Bernardes et al.,
2021). However, sensor data and static images have limitations in
capturing comprehensive animal movement information. Sensor data
lack skeletal details, while images fail to capture motion dynamics.
Video, in contrast, provides both physiological characteristics and
equential movement information. To address the need for diverse
nimal datasets, several video collections have been proposed (Feng

et al., 2021; Liu et al., 2020; Rahman et al., 2014). Recently, the
Animal Kingdom dataset (Ng et al., 2022) was introduced as the largest
publicly available multilabel action recognition dataset for animals.
The current state-of-the-art model for this dataset, in terms of mean
Average Precision (mAP), is the Multi-modal Semantic Query Network
(MSQNet) (Mondal et al., 2023).

MSQNet is a multi-modal fusion model built on the Transformer
rchitecture (Dosovitskiy et al., 2020). It comprises three key compo-
ents: (1) a spatio-temporal transformer video encoder, (2) a multi-
odal query encoder that integrates information from both video and

ction class-specific sources, and (3) a multi-modal decoder utilizing
ulti-headed self-attention and encoder–decoder attention mechanisms

to process the video encoding. While this architecture demonstrates
good capabilities, its complexity results in significant computational
demands. Consequently, MSQNet’s resource-intensive nature may limit
its practical application in real-world scenarios where computational
resources are constrained due to the use of Transformers. Consequently,
MSQNet’s resource-intensive nature may limit its practical applica-
ion in real-world scenarios where computational resources are con-
trained due to the inherent limitations of Transformer architectures.
ransformers fundamentally suffer from quadratic computational com-

plexity, primarily arising from their self-attention mechanism, which
requires pairwise comparisons between all sequence tokens (Vaswani,
2017). This architectural design creates significant computational bot-
tlenecks: processing long sequences becomes exponentially more ex-
pensive, memory consumption increases dramatically, and inference
speed becomes prohibitively slow, especially when dealing with high-
resolution or extensive data inputs. These computational inefficiencies
make Transformer-based models challenging to deploy in resource-
constrained environments such as edge devices, wildlife monitoring
systems, or mobile applications (Lu et al., 2024).

To reduce their computational demands while maintaining their
performance and ability to model sequential data, Linear State-Space
ayers (LSSLs), later known as State Space Models (SSMs), were intro-
uced (Gu et al., 2021b).

LSSLs map a 1-dimensional function or sequence 𝑢(𝑡) → 𝑦(𝑡) through
an implicit state 𝑥(𝑡) by simulating a linear continuous-time state-
space representation in discrete-time. Theoretically, LSSLs combine the
strengths of Recurrent Neural Networks, Convolutional Neural Net-
works, and Neural Differential Equations, being simultaneously re-
current, convolutional, and continuous-time. Efficient implementation
requires careful selection of 𝐴. Structured State Spaces (S4) (Gu et al.,
2021a) condition 𝐴 with a low-rank correction, enabling stable diag-
nalization and reducing the SSM to a Cauchy kernel computation.

Diagonal State Space (DSS) (Gupta et al., 2022) demonstrated that a
ully diagonal state matrix can preserve S4’s performance. S4D (Gu

et al., 2022) later introduced a diagonal SSM combining S4’s com-
utation and parameterization with DSS’s initialization, resulting in
2 
a simpler method. Despite these improvements, SSMs initially un-
derperformed attention in language modeling and were slower than
Transformers due to poor hardware utilization. H3 (Fu et al., 2022)
addressed these issues, which was further improved by Mamba (Gu and
Dao, 2023). Mamba incorporates a selection mechanism with parallel
scan, enabling the architecture to surpass Transformers in processing
long sequences.

Mamba’s rapid success in Natural Language Processing quickly ex-
panded to Computer Vision, mirroring the trajectory of Transformers.
Vision Mamba (Vim) (Zhu et al., 2024) employs bidirectional Mamba
layers for data-dependent global visual context modeling and position
embedding for location-aware visual understanding, achieving perfor-
mance comparable to Vision Transformers. VideoMamba (Li et al.,
2024b) extended this approach to video processing, handling sequential
rame information for single- and multi-modality video tasks.

We propose integrating Mamba (Gu and Dao, 2023) into MSQNet
(Mondal et al., 2023) to address critical computational limitations in
animal action recognition. Our specific research objectives are three-
fold:

• Develop a more computationally efficient architecture for animal
behavior analysis by replacing the existing spatio-temporal video
encoder and multi-modal decoder with Mamba-based compo-
nents.

• Demonstrate the potential of State Space Models in reducing
model complexity without compromising performance in animal
action recognition.

• Introduce Mamba-MSQNet, a novel family of architectures with
configurable dimensions and Mamba block configurations that
offer improved computational efficiency.

The proposed integration involves replacing the original encoder
with a VideoMamba (Li et al., 2024b) encoder and implementing
Mamba blocks for information processing. We have developed multi-
ple configurations varying in video encoder dimensions (tiny, small,
medium), pretraining strategies, and the number of Mamba Blocks used
for information fusion. Critically, our approach not only reduces com-
utational complexity in terms of model parameters and FLoating point
Perations (FLOPs), but also demonstrates performance comparable

o or potentially exceeding the original MSQNet architecture. To our
nowledge, this represents the first systematic application of Mamba
rchitectures to Animal Action Recognition, presenting a significant
tep towards more efficient and rapid behavioral inference in ecological
nd animal welfare research.

2. Materials and methods

2.1. Dataset

Our models for recognizing actions in animal videos were eval-
uated using the Animal Kingdom dataset (Ng et al., 2022), which
is currently the largest publicly available dataset for Animal Action

ecognition (AAR). This dataset comprises 30,100 video clips, to-
aling 50 h of footage, divided into training and validation sets of

24,004 and 6096 clips, respectively. The complexity of the task is
heightened by the multi-label nature of the videos, where multiple
animals and actions can occur simultaneously. The dataset encom-
passes 140 distinct actions, categorized into sixteen groups: affection,
aggression, communication, death, defense, feeding, general behavior,
life cycle, maintenance, movement, predation, resting, sexual behavior,
shelter-related actions, social interactions, and transport. The animal
ubjects represent a diverse range of 850 unique species, including
ammals, reptiles, amphibians, birds, fish, and insects, providing a

comprehensive spectrum of faunal behavior.
The dataset exhibits significant variability in the number of frames

per clip, ranging from 2 to 2797 frames, with a mean of 146.5 and a
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standard deviation of 168.8. This diversity is crucial to consider during
training, as we select a subset of frames from each clip based on the
employed video encoder. The frame selection process depends on the
relationship between the clip length (𝑙𝑐) and the video encoder’s frame
apacity (𝑙𝑒). When 𝑙𝑐 ≤ 𝑙𝑒, we sample frames at equal intervals across
he clip’s duration. Conversely, when 𝑙𝑐 > 𝑙𝑒, we first generate 𝑙𝑒 + 1
qually spaced indexes (linear_selection), then adjust these indexes using
he following equation:

𝑖𝑛𝑑 𝑒𝑥𝑒𝑠 = 𝑙 𝑖𝑛𝑒𝑎𝑟_𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛[1 ∶]
− 𝑙 𝑖𝑛𝑒𝑎𝑟_𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛[1 ∶] − 𝑙 𝑖𝑛𝑒𝑎𝑟_𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛[∶ −1]

2
(1)

This adjustment positions the selected frames at the midpoint be-
ween the initial linear selections, ensuring a balanced representation
f the clip’s content. For each clip we selected 16 frames, which is the
nput for our networks.

2.2. Data augmentation

Data augmentation was applied to both training and validation sets.
or the validation set, the process involved resizing video images while
reserving aspect ratios, followed by center cropping to a fixed size.

The images from each video were then stacked into a single tensor,
converted to a PyTorch tensor, and normalized using predefined mean
and standard deviation values. While this validation set augmentation
rimarily aimed to match the model’s input requirements, a more
xtensive augmentation process was implemented for the training set.

For the training set, a more extensive augmentation process was
pplied. First, a multi-scale cropping was performed by cropping the

images in a video using random scales selected from a list (100%,
87.5%, 75%, and 66% of the original size). Next, the images were hor-
izontally flipped with a probability of 50%. Following this, a random
color jitter operation was applied with an 80% probability, adjusting
brightness by up to 40%, contrast by 40%, saturation by 20%, and
hue by 10%. Additionally, a random grayscale effect was applied with
a 20% probability. Subsequently, the images from the video were
stacked into a single tensor. These images were then converted into
a PyTorch tensor and normalized for pixel values. Finally, the images
were normalized using predefined mean and standard deviation values.

2.3. Mamba-MSQNet architectures

Mamba-MSQNet represents a family of architectures sharing com-
on structures but differing in their pretrained VideoMamba (Li et al.,

2024b) models and the number of Mamba blocks at the network’s end.
his approach simplifies MSQNet (Mondal et al., 2023) by replacing
ransformer-based components with Mamba-based alternatives. Two
ey substitutions are made: (1) the spatio-temporal transformer video
ncoder is replaced with a spatio-temporal Mamba video encoder, and
2) the multi-modal decoder’s multi-head self-attention and encoder–
ecoder attention mechanisms are substituted with a combination of
ulti-Layer Perceptron and stacked Mamba blocks.

For the spatio-temporal video encoder, we replaced MSQNet’s
TimeSformer model (pretrained on K400 Kay et al., 2017) (Bertasius
et al., 2021b) with VideoMamba models pretrained on K400 and Sth-
thV2 (Goyal et al., 2017), following initial pretraining on ImageNet-
k (Deng et al., 2009) or using a mask strategy, as mentioned in

Table 2. VideoMamba’s three configurations (medium, small, and tiny)
generate embeddings of 576, 384, and 192 dimensions, respectively.
VideoMamba-S and -M models outperformed transformer-based ar-
chitectures on K400 and SthSthV2 datasets, establishing themselves
as compelling replacements for TimeSformer thanks to their superior
bility to capture spatio-temporal pattern more efficiently by using
amba blocks (Li et al., 2024b). Our experiments utilized all available
ideoMamba configurations with 16 frames, consistent with MSQNet’s
ptimal setup.
 w

3 
Table 1
Comparison in terms of floating point operations (FLOPs) and parameters between

SQNet (Mondal et al., 2023) and our Mamba implementations. M, S, Ti refers to
he different VideoMamba backbones employed, middle, small, tiny, respectively.
Model # Mamba Blocks FLOPs (T) PARAM (M)

MSQNet (Mondal et al., 2023) – 0.677 252
Mamba-M-MSQNet 16 0.487 190
Mamba-M-MSQNet 8 0.485 176
Mamba-M-MSQNet 4 0.484 166
Mamba-S-MSQNet 16 0.353 142
Mamba-S-MSQNet 8 0.351 127
Mamba-S-MSQNet 4 0.350 120
Mamba-Ti-MSQNet 16 0.303 123
Mamba-Ti-MSQNet 8 0.301 108
Mamba-Ti-MSQNet 4 0.300 101

To integrate the query required for the transformer decoder with
information from the global encoder and substitute this decoder, we
implemented a two-stage fusion process. First, an MLP concatenates
and fuses the query with the encoder output, providing an initial
ayer of information integration. This fused representation is then
ed into a series of Mamba blocks for further processing. Following

the recommendation of the Mamba authors (Gu and Dao, 2023), we
experimented with doubling the number of Mamba blocks relative
to the original transformer heads, which was eight. Specifically, we
tested configurations with 16, 8, and 4 Mamba blocks to evaluate how
performance varies with block count. The details of the architecture are
shown in Fig. 1.

Our architecture demonstrates significant reductions in floating-
point operations and model parameters. The 16-block versions show
reductions of 29%, 48%, and 55% in FLOPs for VideoMamba-M-
MSQNet, VideoMamba-S-MSQNet, and VideoMamba-Ti-MSQNet, re-
spectively, compared to MSQNet. Excluding the unmodified CLIP im-
age encoder (0.261T FLOPs), the reductions increase to 48%, 77%,
and 90%. Similarly, parameter counts are substantially reduced: 25%
(38% without CLIP) for VideoMamba-M-MSQNet, 43% (66% without
CLIP) for VideoMamba-S-MSQNet, and 51% (78% without CLIP) for
VideoMamba-Ti-MSQNet.

2.4. Training and validation

The training process was conducted in two phases: initially, the
ideo encoder for each model kept frozen for 100 epochs, followed

by 150 epochs with the video encoder weights trainable. This strategy
was implemented to prevent the propagation of not-ideal gradients
caused by the initial random initialization of the other layers, which
can lead to feature distortion (Kumar et al., 2022). Throught the
raining, model validation was performed every 5 epochs using the

validation set, reporting the mean Average Precision (mAP). The model
used Binary Cross Entropy with Logits (BCEWithLogitsLoss) as the
loss function, which is particularly effective for multilabel recognition
tasks. This is because it treats each label independently, enabling
the model to estimate the probability of multiple positive labels si-
multaneously. For optimization, AdamW (Adam with weight decay
regularization) (Loshchilov and Hutter, 2017) was chosen, as it ad-
dresses the limitations of standard Adam by decoupling weight decay
rom the learning rate, thereby improving regularization and gener-

alization performance. AdamW was employed with a learning rate
of 10−4, 𝛽1 of 0.9, controlling the decay rate for the first moment
stimates, 𝛽2 of 0.95, controlling the decay rate for the second moment
stimates, and a weight decay of 0.1. Additionally, a scheduler was em-
loyed based on cosine annealing with warm restarts (Loshchilov and

Hutter, 2016) with 10 interactions before a restart. The batch size was
et to 8 for all models, except for Mamba-Ti-MSQNet implementations,
hich used a batch size of 16.
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Fig. 1. Mamba-MSQNet architecture. FLOPs are considered for processing a single sample made of 16 frames.
2.5. Software and tools

All neural networks were trained on an NVIDIA A100 GPU using
Python and PyTorch. The training environment was set up using the
pytorch/pytorch:2.2.2-cuda12.1-cudnn8-devel Docker container, with
additional PyTorch utilities for vision and augmentation installed (de-
tailed dependencies are available in our GitHub repository). For em-
ploying VideoMamba (Li et al., 2024b), we installed a specific version
of Mamba provided within the VideoMamba package, as the original
Mamba version is incompatible with VideoMamba’s requirements.

Given that the NVIDIA A100 GPU used for training is better suited
for high-performance server environments, rather than real-world,
resource-constrained devices, we tested inference times on an NVIDIA
GTX 1650 GPU. This allowed us to better assess the model’s potential
for future in-field applications.

3. Results

We evaluated our models using mean Average Precision (mAP),
a metric previously employed by Ng et al. (2022) and Mondal et al.
(2023) for this dataset. Table 2 presents the performance of our
Mamba-MSQNet implementations alongside CARe-X3D, the best model
proposed with the Animal Kingdom dataset (Ng et al., 2022), and
MSQNet. The results are categorized by backbone type, Mamba layers,
and pretraining strategies.

Our top-performing model, Mamba-Ti-MSQNet (16 layers,
ImageNet-1K pretrained, K400 training), achieves a mAP of 74.6,
slightly surpassing MSQNet while significantly reducing parameter
count and FLOPs as displayed in Table 1. Several insights emerge from
the results: (1) all but three of our implementations matched or ex-
ceeded MSQNet’s mAP score, demonstrating the robustness and poten-
tial of our proposed approach; (2) smaller backbones generally yielded
superior performance, possibly due to reduced network complexity and
improved generalizability; (3) ImageNet-1K pre-training proved more
effective than MASK pretraining, highlighting the importance of foun-
dational visual representation learning; and (4) increasing the number
of Mamba blocks systematically enhanced network performance by
enabling deeper and more refined information processing.

The previous evaluations relied solely on pretrained VideoMamba
backbones. In order to assess the model’s adaptability, we also exam-
ined the performance of Mamba-MSQNet without this pretraining. We
trained the three configurations of Mamba-MSQNet with 16 Mamba
blocks over 250 epochs. The results showed a 2–3 point decrease in
mAP compared to the models with pretrained backbones. This under-
scores the benefits of utilizing a pretrained backbone to enhance the
overall performance of the Mamba-MSQNet model, as was previously
done by MSQNet.

To gain deeper insight into the similarities and differences between
our best-performing architecture and MSQNet, we conducted a com-
parative analysis of their predictive capabilities. We examined the
4 
Table 2
Results in terms of mean Average Precision (mAP). VidEnc stands for Video Encoder.
The ‘Pretrained On’ columns refer to the initial pretrained before the actual trained of
the network on the ‘Trained On’ task. The best result is the one in bold.

Model # Mamba VidEnc VidEnc mAP
layers pretrained on trained on

CARe-X3D – – – 25.2
MSQNet – – K400 73.1

Mamba-M-MSQNet 16 – –
Mamba-S-MSQNet 16 – – 71.3
Mamba-Ti-MSQNet 16 – – 71.5
Mamba-M-MSQNet 16 MASK K400 73.1
Mamba-M-MSQNet 8 MASK K400 73.0
Mamba-M-MSQNet 4 MASK K400 72.9
Mamba-M-MSQNet 16 ImageNet-1K K400 74.2
Mamba-M-MSQNet 8 ImageNet-1K K400 73.8
Mamba-M-MSQNet 4 ImageNet-1K K400 73.2
Mamba-S-MSQNet 16 ImageNet-1K K400 73.7
Mamba-S-MSQNet 8 ImageNet-1K K400 73.4
Mamba-S-MSQNet 4 ImageNet-1K K400 73.4
Mamba-Ti-MSQNet 16 ImageNet-1K K400 74.6
Mamba-Ti-MSQNet 8 ImageNet-1K K400 74.1
Mamba-Ti-MSQNet 4 ImageNet-1K K400 73.1
Mamba-M-MSQNet 16 MASK SthSthV2 73.7
Mamba-M-MSQNet 8 MASK SthSthV2 73.6
Mamba-M-MSQNet 4 MASK SthSthV2 73.0
Mamba-M-MSQNet 16 ImageNet-1K SthSthV2 74.0
Mamba-M-MSQNet 8 ImageNet-1K SthSthV2 73.6
Mamba-M-MSQNet 4 ImageNet-1K SthSthV2 73.1
Mamba-S-MSQNet 16 ImageNet-1K SthSthV2 73.6
Mamba-S-MSQNet 8 ImageNet-1K SthSthV2 73.4
Mamba-S-MSQNet 4 ImageNet-1K SthSthV2 73.0
Mamba-Ti-MSQNet 16 ImageNet-1K SthSthV2 74.4
Mamba-Ti-MSQNet 8 ImageNet-1K SthSthV2 74.3
Mamba-Ti-MSQNet 4 ImageNet-1K SthSthV2 74.1

Multilabel Area Under the Curve (AUC) for both MSQNet (Fig. 2) and
Mamba-Ti-MSQNet (our best implementation, Fig. 3), focusing on in-
dividual action categories. This analysis allowed us to identify specific
strengths and weaknesses in each model’s performance across different
types of actions. Numerical results for each action are specified in
Table 3.

• Affection: Mamba-Ti-MSQNet demonstrated superior
performance compared to MSQNet in the Affection category,
achieving higher Area Under the Curve (AUC) scores for two spe-
cific actions: Hugging (ID 65) and Showing Affection (ID 106). The
improvement was substantial, with an increase of approximately
0.2 in AUC for both actions. It is worth noting that the action
Holding Hands (63) was not represented in the test set.

• Aggressive: The Aggressive category comprises 13 distinct ac-
tions. Mamba-Ti-MSQNet demonstrated performance comparable
to MSQNet for several actions, including Attacking (ID 1), Chasing
(14), Coiling (17), Disturbing other animal (27), Fighting (47),
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and Spitting venom (112). Notably, both models failed to rec-
ognize the Coiling action, which had a single sample in the
test set, resulting in an AUC of 0 for both. Mamba-Ti-MSQNet
showed substantial improvements in certain actions. For Compet-
ing for dominance (18), the AUC increased from 0.069 to 0.533,
while Wrapping itself around prey (137) saw an improvement
from 0.064 to 0.708. A modest increase was observed for Prey-
ing (91), with the AUC rising from 0.132 to 0.304. However,
MSQNet marginally outperformed Mamba-Ti-MSQNet in three
actions: Hissing (62), where MSQNet achieved an AUC of 0.856
compared to Mamba-Ti-MSQNet’s 0.601; Rattling (94), decreasing
from 0.239 to 0.175; and Wrapping prey, declining from 0.176 to
0.039. The action Pounding (89) had no entries in the test set,
precluding comparative analysis for this particular action.

• Communication: Mamba-Ti-MSQNet demonstrated superior per-
formance across the majority of actions within this category.
Notably, our model exhibited improved results for several ac-
tions, including Barking (3), Calling (10), Giving off light (56),
and Waving (136). The latter two actions, each represented by a
single sample in the test set, were particularly noteworthy. While
MSQNet failed to detect these actions, resulting in an AUC of
0.0, Mamba-Ti-MSQNet achieved perfect detection with an AUC
of 1.0. For the action Chirping (15), both MSQNet and our model
demonstrated equivalent performance.

• Death: Regarding mortality-related actions, Mamba-Ti-MSQNet
demonstrated varying degrees of improvement. For the action
Dying (39), our model showed a marginal enhancement in per-
formance. However, for the action Dead (21), Mamba-Ti-MSQNet
achieved a substantial improvement, with an Area AUC of 0.851
compared to MSQNet’s 0.505.

• Defensive: Our best architecture demonstrated performance com-
parable to MSQNet for the majority of actions, including Camou-
flaging (11), Displaying Defensive Pose (26), Escaping (42), Fleeing
(51), Retaliating (96), and Retreating (97). However, Mamba-
Ti-MSQNet exhibited superior performance in detecting Defen-
sive rearing (23), which has the highest increase (from 0.068 to
0.246), Standing in alert (117), and Struggling (120). Conversely,
it underperformed compared to MSQNet in identifying Doing a
back kick (29).

• Feeding: The actions classified in this category (8, 38, 40, 80,
and 105) exhibited comparable performance across both mod-
els. In particular, Mamba-Ti-MSQNet demonstrated superior per-
formance in feeding-related actions, consistently outperforming
MSQNet. These results underscore the model’s enhanced capabil-
ity to recognize and interpret complex interactions involving food
and nutritional activities.

• General: Comparable results were observed for most actions,
including ‘‘Flapping its ears’’ (49), ‘‘Keeping still’’ (68), ‘‘Panting’’
(79), ‘‘Startled’’ (118), and ‘‘Stinging’’ (119). A notable exception
was ‘‘Lying on top’’ (75), where Mamba-Ti-MSQNet significantly
improved the AUC from 0.02 to 0.19. It is worth noting that three
actions in this category—‘‘Gasping for air’’ (53), ‘‘Spitting’’ (111),
and ‘‘Tail swishing’’ (126)—had no entries in the test set.

• Life cycle: Our model shows particularly strong performance
in identifying Exiting cocoon (43), Giving birth (55), and Laying
eggs (71), with significantly higher mAP scores than MSQNet.
Additionally, it was able to identify the only Undergoing chrysalis
(129) entry. No identification was possible for the simple entry
for Hatching (60), as for MSQNet. Also in this category an action
has no entries for the test set, the action is Molting (77),

• Maintenance: This category comprises 13 actions, for which the
performance of MSQNet and Mamba-Ti-MSQNet varies. In several
cases, the two networks yield very similar results, specifically for
Defecating (22), Doing a face dip (32), Grooming (58), Preening
(90), and Shaking head (104). Our model performs slightly worse
 t
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in some actions, including Doing a chin dip (31), Performing allo-
preening (82), Shaking (103), and Washing (135). However, it
demonstrates superior performance in Performing allo-grooming
(81), Rubbing its head (99), Licking (73), and Urinating (132). No-
tably, for the latter two actions, Mamba-Ti-MSQNet significantly
outperforms the standard version, which exhibits an AUC close to
or equal to zero.

• Movement: This category, comprising 46 actions, is the largest in
the dataset. For actions with substantial test entries, Mamba gen-
erally outperforms MSQNet. Notable improvements are observed
in Digging (25), Doing a backward tilt (30), Immobilized (66),
Running on water (101), Standing (116), and several others (33,
37, 44, 74, 98). Mamba-Ti-MSQNet also demonstrates significant
improvements in actions with fewer entries, such as Learning
(72), Pulling (93), Sinking (107), Squatting (115), and Swaying
(122). However, MSQNet performs better in some cases, including
Falling (46), Flying (52), Sitting (108), and others (48, 57, 64).
It is noteworthy that five actions (Detaching as a parasite (24),
Doing a side tilt (34), Doing somersault (36), Lying down (70),
and Spreading (113)) had no test entries, limiting our ability to
compare performance for these specific actions. The remaining
actions in this category, such as Jumping (67), Swimming (123),
and Walking (133), along with others (0, 16, 28, 41, 50, 59, 69,
76, 78, 100, 121, 125, 128, 130, 131, 134), show very similar
AUC between our model and the non-Mamba implementation.

• Prey: In this category, Mamba-Ti-MSQNet consistently outper-
formed MSQNet, particularly for challenging actions. For in-
stance, Playing dead (88) improved from 0.002 to 0.551, while
Trapped (127) increased from 0.017 to 0.335. Though more
modest, another improvement was also observed for Being eaten
(7). These results suggest that the proposed model is more adept
at recognizing subtle and complex prey-related behaviors.

• Resting: For most of the actions in this category the two models
achieves the same results, specifically for Resting (95), Sleeping
(109), Sleeping in its nest (110). However, Mamba-Ti-SQNet has
an increment of 0.2 for Yawning (139).

• Sensing: Similar AUC results were obtained for Attending (2),
Exploring (45), Having a Flehmen response (61), Sensing (102)
actions.

• Sexual: Mamba-Ti-MSQNet demonstrated comparable or superior
performance to MSQNet in the Sexual category. Actions such
as Dancing on water (20), Performing sexual display (84), and
Performing sexual exploration (85) showed similar results in terms
of AUC. Interestingly, Puffing its throat (92), Dancing (19), Doing
push-ups (35), and Performing copulation mounting (83) exhibited
a significant increase in precision. However, Performing sexual
pursuit (86) did not have any entries.

• Shelter: This category has only one action, Building nest (9),
for which the two models have similar results, although ours
performed slightly better.

• Social: Mamba-Ti-MSQNet achieves a 0.2 increase in accuracy
for the Playing (87) action. Moreover, Mamba-Ti-MSQNet success-
fully identifies the sole instance of Swimming in circles (124) in the
test set, a task in which MSQNet failed to detect.

• Transport: Comparable results were achieved from both the mod-
els in the Transport actions (5, 6, 12, 13). The action Being carried
(4) has no entry for the test set (see Table 3).

4. Discussion

Our study introduces a novel approach utilizing Mamba blocks, a
Selective State Spaces architecture, for action recognition in animal
ehavior analysis, comparing it to the state-of-the-art Transformer
odel, MSQNet. We developed a family of Mamba-MSQnet architec-

ures with varying sizes based on the VideoMamba video encoder and
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Table 3
Area Under the Curve (AUC) results for each action in the Animal Kingdom dataset using MSQNet and our best model (Mamba-Ti-MSQNet).

Action ID MSQNet Ours Action ID MSQNet Ours

Affection Movement (continue)

Holding Hands 63 – – Digging 25 0.323 0.550
Hugging 65 0.572 0.725 Diving 28 0.193 0.198
Showing Affection 106 0.598 0.728 Doing a backward tilt 30 0.094 0.336

Aggressive Doing a neck raise 33 0.681 0.788

Attacking 1 0.394 0.337 Doing a side tilt 34 – –
Chasing 14 0.346 0.340 Doing somersault 36 – –
Coiling 17 0.0 0.0 Drifting 37 0.320 0.452
Competing for dominance 18 0.069 0.533 Entering its nest 41 0.048 0.087
Disturbing other animal 27 0.868 0.866 Exiting nest 44 0.013 0.127
Fighting 47 0.548 0.612 Falling 46 0.706 0.544
Hissing 62 0.856 0.601 Flapping 48 0.635 0.567
Pounding 89 – – Flapping tail 50 0.0 0.026
Preying 91 0.132 0.304 Flying 52 0.720 0.654
Rattling 94 0.239 0.175 Gliding 57 0.499 0.286
Spitting venom 112 0.889 0.893 Hanging 59 0.700 0.764
Wrapping itself around prey 137 0.064 0.708 Hopping 64 0.617 0.328
Wrapping prey 138 0.176 0.039 Immobilized 66 0.295 0.464

Communication Jumping 67 0.607 0.579

Barking 3 0.660 0.716 Landing 69 0.512 0.485
Calling 10 0.192 0.303 Lying down 70 – –
Chirping 15 0.796 0.795 Learning 72 0.025 0.250
Giving off light 56 0.0 1.0 Lying on its side 74 0.506 0.667
Waving 136 0.0 1.0 Manipulating object 76 0.694 0.745

Death Moving 78 0.574 0.587

Dead 21 0.505 0.851 Pulling 93 0.0 1.0
Dying 39 0.955 0.995 Rolling 98 0.415 0.505

Defensive Running 100 0.515 0.574

Camouflaging 11 0.883 0.819 Running on water 101 0.433 0.696
Defensive rearing 23 0.068 0.246 Sinking 107 0.006 0.349
Displaying Defensive Pose 26 0.853 0.880 Sitting 108 0.423 0.319
Doing a back kick 29 0.291 0.194 Spreading 113 – –
Escaping 42 0.014 0.047 Spreading wings 114 0.280 0.285
Fleeing 51 0.300 0.284 Squatting 115 0.002 0.334
Retaliating 96 0.540 0.513 Standing 116 0.122 0.302
Retreating 97 0.775 0.764 Surfacing 121 0.773 0.771
Standing in alert 117 0.219 0.380 Swaying 122 0.023 0.350
Struggling 120 0.442 0.539 Swimming 123 0.775 0.795

Feeding Swinging 125 0.002 0.001

Biting 8 0.619 0.626 Turning around 128 0.465 0.531
Drinking 38 0.884 0.884 Unmounting 130 0.004 0.0
Eating 40 0.625 0.634 Unrolling 131 0.0 0.0
Pecking 80 0.835 0.851 Walking 133 0.635 0.625
Sharing food 105 0.386 0.455 Walking on water 134 0.0 0.0

General Prey

Flapping its ears 49 0.545 0.522 Being eaten 7 0.375 0.494
Gasping for air 53 – – Getting bullied 54 0.0 0.167
Keeping still 68 0.519 0.533 Playing dead 88 0.002 0.551
Lying on top 75 0.020 0.190 Trapped 127 0.017 0.335

Panting 79 0.001 0.002 Resting

Spitting 111 – – Resting 95 0.013 0.002
Startled 118 0.685 0.639 Sleeping 109 0.006 0.006
Stinging 119 0.021 0.036 Sleeping in its nest 110 0.633 0.700
Tail swishing 126 – – Yawning 139 0.312 0.555

(continued on next page)
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Table 3 (continued).
Lify cycle Sensing

Exiting cocoon 43 0.004 0.355 Attending 2 0.514 0.500
Giving birth 55 0.126 0.508 Exploring 45 0.367 0.399
Hatching 60 0.0 0.0 Having a Flehmen resp. 61 0.673 0.557
Laying eggs 71 0.006 0.415 Sensing 102 0.468 0.488

Molting 77 – – Sexual

Undergoing chrysalis 129 0.0 1.0 Dancing 19 0.106 0.785

Maintenance Dancing on water 20 1.0 1.0

Defecating 22 0.729 0.711 Doing push up 35 0.122 1.0
Doing a chin dip 31 1.0 0.633 Perf. copulation mounting 83 0.032 0.752
Doing a face dip 32 0.896 0.897 Perf. sexual display 84 0.867 0.885
Grooming 58 0.319 0.314 Perf. sexual exploration 85 0.002 0.042
Licking 73 0.004 0.501 Perf. sexual pursuit 86 – –
Perf. allo-grooming 81 0.335 0.526 Puffying its throat 92 0.002 0.130

Perf. allo-preening 82 0.359 0.073 Shelter

Preening 90 0.780 0.773 Building nest 9 0.223 0.272

Rubbing its head 99 0.811 0.919 Social

Shaking 103 0.548 0.489 Playing 87 0.670 0.841
Shaking head 104 0.636 0.600 Swimming in circles 124 0.055 1.0

Urinating 132 0.0 0.501 Transport

Washing 135 0.864 0.788 Being carried 4 – –

Movement Being carried in mouth 5 0.686 0.734

Abseiling 0 0.0 0.0 Being dragged 6 0.070 0.001
Climbing 16 0.233 0.275 Carry 12 0.020 0.007
Detaching as a parasite 24 – – Carrying in mouth 13 0.541 0.600
r
a
t
a

a
f
c
t
t
l
a
a

the number of Mamba blocks used. Our findings indicate that smaller
configurations of VideoMamba performed better, while increasing the
number of Mamba blocks consistently led to improved results within
similar configurations.

One of the most notable advantages of our models is their compu-
tational efficiency compared to the Transformer-based model, demon-
strating a substantial reduction in both FLOPs and model parameters.
These efficiency gains are crucial for fast inference, making our models
applicable to potentially constrained devices in real environments for
on-the-fly analysis. However, our model still relies on CLIP for text
nd image encoding, which could be a limitation. Text encoding is

performed only once before training, with Learnable Label Embeddings
(resulting in a matrix) being the only part considered during inference
and training. The image decoder is employed for every operation within
the network. Currently, no Mamba-based models that can effectively
perform like CLIP are completely available (Huang et al., 2024).

Furthermore, we tested our best model on a cost-effective GPU,
he NVIDIA GTX 1650 (approximately $200 USD at the time of sub-

mission), to assess its inference speed, which is crucial for real-world
nimal monitoring applications. Our model is able to predict actions in
 video in just under 0.8 s on average, whereas MSQNet takes 1.3 s.
iven that the average clip length in the Animal Kingdom dataset is

about 5.5 s (with 16 frames per clip, meaning a frame every 0.35 s),
our model is able to process and prepare for the next sequence after
pproximately 2.3 meaningful frames. In contrast, MSQNet requires 3.7
rames before it can process again. This difference represents a signifi-
ant reduction in processing time, particularly for continual monitoring
pplications. For instance, after an hour of continuous monitoring, our
amba-MSQNet model would be capable of making 4500 predictions,

ompared to MSQNet’s 2769.
Analysis of the Multilabel AUC results yields interesting conclusions.

The Mamba architectures employed in our best-performing model are
designed to capture long-range dependencies more effectively than
traditional Transformer architectures. This is a key strength, as many
of the actions in the Animal Kingdom dataset, such as those in the
Movement, Maintenance, and Life Cycle categories, involve complex,
sequential patterns that span longer time horizons. For example, actions

like Exiting cocoon (43), Giving birth (55), and Laying eggs (71) are

7 
inherently sequential and require the model to understand the tempo-
al evolution of an animal’s behavior. The Mamba blocks, with their
bility to selectively attend to relevant past states, are better equipped
o learn these long-range dependencies compared to the fixed-size
ttention windows in Transformer-based models like MSQNet.

Similarly, the improved performance on low-sample actions can be
ttributed to the Mamba architecture’s capacity to generalize better
rom limited data. By effectively modeling the temporal dynamics and
ontextual cues within the video sequences, Mamba-Ti-MSQNet is able
o extract more robust and discriminative features, even for behaviors
hat are rarely observed in the training set. This advantage is particu-
arly evident in actions like Competing for dominance (53), Licking (73),
nd others with sparse representations. The Mamba blocks’ selective
ttention mechanism allows the model to focus on the most relevant

information, mitigating the impact of limited training samples and
enhancing its ability to recognize these behaviors accurately.

Furthermore, the performance boost in critical actions related to
animal well-being, such as Dead (21), Immobilized (66), and Urinating
(132), suggests that the Mamba-based architecture is better able to
capture the subtle cues and contextual nuances that distinguish these
important behaviors. This could be invaluable in real-world applica-
tions, where reliably identifying these actions is crucial for monitoring
animal health and welfare (Wilkinson, 2011a).

In contrast, the few cases where MSQNet outperformed our model,
such as Hissing (62) and Rattling (94), may indicate that the
Transformer-based approach is better suited for capturing certain types
of short-term, localized patterns in the data. However, the overall
trends demonstrate the Mamba-Ti-MSQNet’s superior capabilities in
handling the complex, long-range dependencies and sparse represen-
tations prevalent in the Animal Kingdom dataset.

4.1. Robustness testing

We further demonstrated the robustness of our approach by evaluat-
ing it on another Animal Action Recognition dataset, the BaboonLand
dataset (Duporge et al., 2024). This dataset consists of 20 h of video
footage captured by Unmanned Aerial Vehicles (UAVs), showcasing ba-
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Fig. 2. Precision–Recall curve for MSQNet considering the multilabel nature of our task. The legend displays the action IDs.
a
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boons performing 12 distinct actions (13 when including the ‘occluded’
ction). BaboonLand presents a realistic and challenging real-world ap-
lication scenario for testing our model. Although BaboonLand features
ewer action categories than the Animal Kingdom dataset, it introduces

unique challenges, such as fully occluded animals and varying camera
angles. These characteristics allowed us to assess the model’s capacity
to differentiate between frames where no action is visible (occluded)

and those where actions are observable. a
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Table 4 reports the micro mAP results for our Mamba-MSQNet
models, the X3D baseline presented in the original BaboonLand paper,
nd MSQNet, which we trained to ensure a fair comparison. For these
xperiments, we used VideoMamba backbones pretrained on ImageNet-
K followed by fine-tuning on K400, as this configuration yielded the
est results on the Animal Kingdom dataset. The results clearly show
hat our Mamba-MSQNet outperforms both the baseline and MSQNet,

chieving the highest scores across configurations.
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Fig. 3. Precision–Recall curve for our best model (Mamba-Ti-MSQNet using 16 Mamba blocks) considering the multilabel nature of our task. The legend displays the action IDs.
f
a

Once again, increasing the depth of the Mamba blocks led to general
improvements in mAP performance. Additionally, smaller backbone
configurations performed exceptionally well, demonstrating their abil-
ity to extract meaningful features for the multimodal model even with
their reduced size. This finding underscores the effectiveness of shal-
low VideoMamba architectures in generating compact and informative
representations compared to deeper configurations. However, the high-

est score was achieved by Mamba-M-MSQNet with 4 Mamba layers, K
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reaching a mAP of 78.9, followed by our previous best configuration
or Animal Kingdom, Mamba-Ti-MSQNet with 16 Mamba layers, that
chieved a comparable mAP of 78.3.

4.2. Possible challenges

Although our model outperforms prior efforts on both the Animal
ingdom and BaboonLand datasets, its mean Average Precision (mAP)
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Table 4
Results in terms of mean Average Precision (mAP) for the Baboonland dataset. VidEnc
tands for Video Encoder. The ‘Pretrained On’ columns refer to the initial pretrained
efore the actual trained of the network on the ‘Trained On’ task. The best result is
he one in bold.
Model # Mamba VidEnc VidEnc mAP

layers pretrained on trained on

X3D (baseline) – – – 63.9
MSQNet – – K400 76.5

Mamba-M-MSQNet 16 ImageNet-1K K400 78.1
Mamba-M-MSQNet 8 ImageNet-1K K400 78.2
Mamba-M-MSQNet 4 ImageNet-1K K400 78.9
Mamba-S-MSQNet 16 ImageNet-1K K400 78.3
Mamba-S-MSQNet 8 ImageNet-1K K400 77.7
Mamba-S-MSQNet 4 ImageNet-1K K400 77.5
Mamba-Ti-MSQNet 16 ImageNet-1K K400 78.3
Mamba-Ti-MSQNet 8 ImageNet-1K K400 76.7
Mamba-Ti-MSQNet 4 ImageNet-1K K400 76.7

scores indicate that these tasks are far from being completely solved.
Based on our analysis of the results, we have identified several chal-
lenges that complicate the recognition of animal behaviors. Specifically,
we highlight four key challenges:

• Occlusions or reduced visibility. In some clips, animals are ei-
ther partially visible or entirely occluded, as some in BaboonLand.
Partial visibility can arise from various factors. For example, in
the Animal Kingdom dataset, objects such as grass, trees, or walls
often obscure parts of the animal. Additionally, environmental
conditions like fog, underwater settings, or darkness further limit
visibility and hinder the model’s ability to accurately discern
animal actions.

• Distance from the animal. Besides occlusions, the distance be-
tween the animal and the camera significantly impacts action
recognition. BaboonLand videos, captured using AUCs, consis-
tently maintain a distance that allows animals to appear in their
entirety. In contrast, the Animal Kingdom dataset varies widely in
distance, presenting challenges for the model. For instance, close-
up shots of animals often make it difficult to differentiate actions
such as attending and staying still. While physiological features in
an animal’s face could theoretically help deduce its actions, these
nuances are challenging for the model to interpret.

• Complexity of actions. The complexity of actions also poses
challenges. Some actions are intricate, involving multiple move-
ments to complete. However, even simpler actions requiring min-
imal movement can be difficult to classify due to the need for
contextual or physiological understanding that video alone can-
not provide. For example, actions like resting, sleeping, or lying
down could appear visually similar, but distinguishing between
them often requires knowledge of the animal’s internal state or
behavior patterns. This limitation likely explains the poor AUC
scores for actions such as resting and sleeping.

• Actions involving multiple animals. Some actions, such as
those in the Aggressive category, involve interactions between
multiple animals, which complicates interpretation. For example,
a chasing action could be mistaken for running if the other
animal involved is not visible in the clip. This challenge highlights
the importance of capturing the full context of an interaction.
Analyzing a single animal in isolation may not provide sufficient
information to accurately classify such actions.

5. Conclusions

Our work demonstrates the potential of Selective Space Models and
amba blocks in revolutionizing animal action recognition, signifi-

antly improving inference speed and model suitability for constrained
 m
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devices. We show that it is possible to achieve performance comparable
to large Transformer-based models like MSQNet with fewer param-
eters and FLOPs. The introduction of our Mamba-MSQNet family of
architectures led to model size reductions of up to 78% (excluding the
CLIP image encoder) and FLOPs reductions of up to 90% compared to
MSQNet. Even with these reductions, our models achieved similar or
slightly better results, with Mamba-Ti-MSQNet (featuring 16 Mamba
blocks and a VideoMamba backbone pre-trained on ImageNet-1K and
K400 datasets) reaching a mean Average Precision (mAP) of 74.6,
compared to MSQNet’s 73.1.

To further validate the robustness and performance of our architec-
tures, we tested them on the BaboonLand dataset. Mamba-Ti-MSQNet
proved to be highly effective in recognizing baboon actions, achieving
an mAP of 78.9, marking it as the top-performing model for that
ataset.

While our Mamba-MSQNet family of architectures achieved im-
pressive results, several limitations has been seen and documented as
possible challenges, whose require future investigation. We addressed
four of them, which we categorized as occlusions or reduced visibility,
camera distance from the animals, complexity of actions (both in
terms number of movements for performing the whole action and in
physiological interpretations), actions requiring the presence of another
animals, where focus on one animal could limit interpretability.

Our advancements in accelerating and enhancing animal action
recognition represent a crucial step towards real-time animal mon-
itoring, which is vital for timely interventions in diverse settings.
This research has significant implications for applications in wildlife
conservation, veterinary care, and automated monitoring in farming or
ecological studies. By providing fast and accurate insights into animal
ehavior, our model can aid in the study of animal welfare, health
onitoring, and conservation efforts, potentially transforming how we
onitor animal populations and welfare on a large scale.

Future work will focus on the implementation of this system in
real-world scenarios, further improving model performance through
adaptation to specific animal species. Additionally, we will explore
ts application in longitudinal behavioral studies, automated welfare
onitoring systems, and scaling the technology for use in diverse

nvironments, such as remote wildlife monitoring or large-scale farm
anagement.
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