
Future Generation Computer Systems 152 (2024) 152–159

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

ColabNAS: Obtaining lightweight task-specific convolutional neural
networks following Occam’s razor
Andrea Mattia Garavagno ∗, Daniele Leonardis, Antonio Frisoli
Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna of Pisa, Piazza Martiri della Libertà, 33, Pisa, 56127, Tuscany, Italy

A R T I C L E I N F O

Keywords:
TinyML
Hardware-aware neural architecture search
Visual wake words
Lightweight convolutional neural networks

A B S T R A C T

The current trend of applying transfer learning from convolutional neural networks (CNNs) trained on large
datasets can be an overkill when the target application is a custom and delimited problem, with enough data to
train a network from scratch. On the other hand, the training of custom and lighter CNNs requires expertise, in
the from-scratch case, and or high-end resources, as in the case of hardware-aware neural architecture search
(HW NAS), limiting access to the technology by non-habitual NN developers.

For this reason, we present ColabNAS, an affordable HW NAS technique for producing lightweight
task-specific CNNs. Its novel derivative-free search strategy, inspired by Occam’s razor, allows to obtain state-
of-the-art results on the Visual Wake Word dataset, a standard TinyML benchmark, in just 3.1 GPU hours using
free online GPU services such as Google Colaboratory and Kaggle Kernel.
1. Introduction

Task-specific convolutional neural networks (CNNs) are enabling
the rise of next-generation smart wearable systems and distributed sen-
sors. The limited size of the problem to be solved allows for lightweight
models. However, developing from scratch a good lightweight neural
network model is not easy. A recent research area named hardware-
aware Neural Architecture Search (HW NAS) is facing the problem, of
tailoring the search to the precise resources of the target hardware. As
of today, open-source projects such as MCUNet [1] and Micronets [2]
are able to produce state-of-the-art TinyML models in around 300
GPU hours. Nevertheless, lightweight task-specific CNN are commonly
designed using Transfer Learning (TL) [3].

For example Sanida et al. [4], in 2022, proposed a lightweight task-
specific CNN able to diagnose COVID-19 by evaluating chest X-rays.
To design the network the TL procedure is applied. MobileNetV2 [5] is
used as the model backbone.

A similar approach is applied by Liu et al. [6], in 2022, to detect
ships in spaceborne synthetic aperture radar (SAR) images. In this case,
MobileNetV2 is used as a backbone for a YOLOv4-LITE model.

In the same year, TL is also applied by Wang et al. [7] to develop
a model based on Efficientnet-B1 [8], able to detect arc fault in photo-
voltaic systems, by analyzing power spectrum images; by Khaki et al.
[9] to develop a model based on MobileNetV2 able to detect and count
wheat heads by analyzing pictures; and by Jubair et al. [10] to develop
a model based on EfficientNet-B0 [8] able to early detect oral cancer
by pictures of the oral cavity.

∗ Corresponding author.
E-mail address: AndreaMattia.Garavagno@santannapisa.it (A.M. Garavagno).

Ragusa et al. used MobileNets as a backbone for performing im-
age polarity detection using visual attention [11] and for performing
affordance detection [12] on embedded devices.

The above represents a brief overview of the rich literature in-
volving lightweight task-specific neural network designs, using TL,
presented just in 2022.

TL uses the knowledge acquired by a CNN in solving a problem, to
solve another similar one, reducing the training data and the required
time. This technique helps when there is not enough data and/or time
to design a model from scratch. On the contrary, TL can be an overkill:
task-specific problems can be coped with by significantly lighter CNNs.
Even the lightest models, used in the TL procedure, are trained on large-
scale datasets (i.e. ImageNet1k by Deng et al. [13]). In addition, in
the case of application to specific problems, related datasets are often
already available for the end-users. Generating a CNN from scratch
seems then a convenient choice. Yet the search cost of HW NAS, or the
cost of manual design, is still too high compared to the time required
by TL, possibly explaining the prominent use of TL over HW NAS in
the literature.

In this paper, we propose ColabNAS, an affordable HW NAS tech-
nique for producing lightweight task-specific CNNs. It uses a novel
derivative-free search strategy, inspired by Occam’s razor, that allows it
to obtain state-of-the-art results on the Visual Wake Word dataset [14]
in just 3.1 GPU hours using free online GPU services such as Google
Colaboratory and Kaggle Kernel. Such a feature inspired its name,
vailable online 4 November 2023
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2023.11.003
Received 29 November 2022; Received in revised form 18 July 2023; Accepted 2 N
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2023

https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:AndreaMattia.Garavagno@santannapisa.it
https://doi.org/10.1016/j.future.2023.11.003
https://doi.org/10.1016/j.future.2023.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.11.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.

p
o
s

𝑃

f
t
t
M
t
s
f
𝑓
r

3

w
l

A
p

which wants to emphasize the ability to be run on free subscription
online services, making its use available to everyone. We believe this
feature is critical to foster the use of CNNs in the variety of application
tasks they can adapt, especially in the field of embedded wearable and
distributed devices, and implemented by a heterogeneous population
of end-users and researchers.

In this paper, we present details of the proposed technique and
experimental validation on five different classification problems on
online-available datasets. Then, the results obtained on the Visual Wake
Word dataset are compared with state-of-the-art HW NAS methods. We
provide online access to experimental data and code in the form of
Google Colaboratory notebooks on GitHub.

2. Related works

In recent years standard benchmarks for tiny machine learning
applications were established [15]. Imagenet1k, by Deng et al. [13],
and the Visual Wake Words, by Chowdhery et al. [14], datasets were
chosen to measure the performance of the most recent efforts of trying
to implement deep-learning techniques for computer vision tasks on
commodity hardware.

These efforts followed the path opened by manually designed
lightweight models such as MobileNets [5,16,17], SqueezeNet [18],
ShuffleNets [19,20], and tried to automatize the design using NAS
techniques, taking into consideration hardware constraints such as
Flash and SRAM occupancy, or latency, giving birth to HW NAS.

Several HW NAS make use of reinforcement learning to search
for the optimal architecture under the constraints set by the target
hardware. A controller produces sample architectures and is rewarded
based on the validation accuracy and the hardware cost. This is the
case of MNASNet [21], FPNet [22], Codesign-NAS [23], and [24]. This
approach commonly implies a training phase for each architecture gen-
erated, which leads to high search costs. In particular, MNASNet [21]
tries to find the Pareto optimal solution of an objective function penal-
ized by hardware constraints using reinforcement learning. The search
space is hierarchical; at each iteration, an RNN, the controller, produces
a sample architecture which is trained for evaluating the accuracy
and then executed on the target hardware to evaluate the latency.
MNASNET declares a search cost of 40,000 GPU hours.

Such issue has been addressed in then literature by proposing an
over-parametrized network, known as supernetwork; it contains all the
models belonging to the search space as sub-networks, which share
weights. This solution requires only the training of the supernetwork,
thus reducing the search time. Then, techniques like evolutionary
algorithms [1,25,26] and gradient descent methods [2,27–31] are com-
monly used to search for the best sub-network. In details, MCUNet
is composed of two parts an HW-NAS technique called TinyNAS, and
a framework for executing deep learning on microcontrollers called
TinyEngine. The search space is built considering the hardware con-
straints. Flash, SRAM occupancy and latency are taken into account
and measured directly on the target hardware. Instead Micronets, also
targeting microcontrollers, avoids the hardware in the loop by comput-
ing RAM and Flash memory occupancy and using op count as a viable
proxy to latency.

Even if the search time has been drastically reduced, a supernetwork
still requires a large amount of resources to be trained. ColabNAS
introduces a novel approach to HW NAS that limits search time and
resource usage. The low resource usage is guaranteed by the proposed
search space, which contains regular architectures with small footprints
that require few resources to be trained. The low search cost is achieved
by adopting the novel derivative-free search strategy proposed in this
paper, which reduces the number of solutions explored by leveraging
the Occam’s razor.
153
3. ColabNAS

This section describes the developed technique to search
lightweight, task-specific CNNs.

Every HW NAS technique has three unique identification factors:
the search space, the optimization problem formulation and the search
strategy.

The search space defines the set of possible solutions which the
optimization problem may have. The optimization problem establishes
the boundaries of the search and the logic used to evaluate possible
solutions. Finally, the search strategy describes the way the search
space is explored, i.e. how the problem solution is found.

3.1. Search space and problem formulation

There are three types of search spaces: layer-wise, cell-wise and
hierarchical. ColabNAS uses a cell-wise search space. It starts from a
single bidimensional convolutional layer. Then, it continues by stacking
couples of pooling and convolutional layers, like in the VGG16 archi-
tecture [32], which form a single cell as shown in Fig. 1, until the
network’s generalization capability increases.

The stopping criterion takes inspiration from the problem-solving
principle that ‘‘entities should not be multiplied beyond necessity’’, also
known as Occam’s razor, attributed to English Franciscan friar William
of Ockham, who lived between the thirteen and the fourteenth century.

The number of kernels of each cell added is determined by Eq. (1),
where 𝑘 represents the number of kernels used in the first convolutional
layer. It is inspired by the procedure used in the VGG16 architec-
ture [32], where a cell doubles the number of kernels with respect to
the previous cell. However, in the proposed approach this amplification
is modulated cell after cell, to limit the parameters’ growth.

𝑛𝑐 =

⎧

⎪

⎨

⎪

⎩

𝑘 𝑖𝑓 𝑐 = 0
⌈

(2 −
∑𝑐−1

𝑖=1 2−𝑖) ⋅ 𝑛𝑐−1
⌉

𝑖𝑓 𝑐 ≥ 1
(1)

The search space is constrained by the network’s peak RAM occu-
ancy, Flash occupancy and by the number of multiply and accumulate
perations (MACC) which is used as a rough estimate of latency as
uggested by Banbury et al. [2].

1 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max 𝑓 (𝑥)
𝜙𝑅(𝑥) ≤ 𝜉𝑅
𝜙𝐹 (𝑥) ≤ 𝜉𝐹
𝜙𝑀 (𝑥) ≤ 𝜉𝑀
𝜉𝑅, 𝜉𝐹 , 𝜉𝑀 > 0

(2)

This leads to the problem formulation presented in Eq. (2), where
unction 𝑓 returns the maximum validation accuracy obtained during
raining; function 𝜙𝑅 the network’s peak RAM occupancy; function 𝜙𝐹
he network’s Flash occupancy; function 𝜙𝑀 the network’s number of
ACC. These depend on the number of kernels used in the first layer 𝑘,

he number of cells added 𝑐, and the magnitude of the network’s input
ize 𝑠. The latter is omitted in the formulation since it is considered
ixed during the search, hence the search variable 𝑥 = (𝑘, 𝑐) is defined.
(𝑥) values come from training. The feasible search space will be
eferred as 𝛺.

.2. Network’s architecture details

Inspired by VGG16 [32] we decided to adopt convolutional layers
ith 3 × 3 kernels and zero padding to preserve the input size; pooling

ayers with 2 × 2 receptive field and (2, 2) stride.
The convolutional base output is reduced by applying the 2D Global

verage Pooling operator to improve the model’s generalization ca-
ability [33]. Subsequently, a deep fully connected layer, having the

https://github.com/AndreaMattiaGaravagno/ColabNAS


Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.
Fig. 1. Detailed graphical representation of the generic network architecture. 𝑛𝑐
represents the number of kernels used in the 𝑐th cell. Instead, the dotted connection
represents a generic number of cells added. The deep dense layer has a number of
neurons equal to the kernels used in the last cell added.

number of neurons equal to the number of kernels of the last convo-
lutional layer, further elaborates the reduced features. Finally, a single
fully connected layer classifies the extracted features.

A pre-processing pipeline is included in the network’s architecture.
At first it applies min–max standardization, to improve gradient descent
convergence rate [34]. Then, it uses batch normalization to stabilize
and speed up the training [35]. Data augmentation is also applied.
Both horizontal flips and random rotations are used. Fig. 1 graphically
represents the generic architecture used as a search space.

3.3. Search strategy

The search strategy explores the search space in two steps. First,
as stated before, given a starting number of kernels of the first layer,
it starts to add cells until the network’s generalization capability in-
creases, according to Occam’s razor, or until the network respects
hardware constraints. Then it repeats the latter process changing the
154
number of kernels of the first layer according to Eq. (3).

𝑘𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘0 𝑖𝑓 𝑗 = 0
2 ⋅ 𝑘0 𝑖𝑓 𝑗 = 1
2 ⋅ 𝑘𝑗−1 𝑖𝑓 𝑓 (𝑘∗1 , 𝑐

∗
1 ) > 𝑓 (𝑘∗0 , 𝑐

∗
0 )

1
2 ⋅ 𝑘𝑗−1 𝑖𝑓 𝑓 (𝑘∗1 , 𝑐

∗
1 ) ≤ 𝑓 (𝑘∗0 , 𝑐

∗
0 )

(3)

If the hardware selected for deployment allows, the process is
repeated with double the number of kernels. If the solution found at
the second iteration (𝑘∗1 , 𝑐

∗
1 ) is better than the previous one (𝑘∗0 , 𝑐

∗
0 ), the

process continues in the same way until performance improves, if the
hardware limits are not reached. Otherwise, the process continues by
halving down the initial number of kernels until performance degrada-
tion is met. Also this time Occam’s razor is respected. Entities are not
multiplied beyond necessity.

Such a search strategy can be interpreted as a custom derivative-
free method for solving the constrained optimization problem presented
in Eq. (2). Algorithm 1 describes such an interpretation.

Algorithm 1 Search Strategy
Require: 𝑥0 ∈ 𝛺

Ensure:
{

𝑓 (𝑥𝑗 ) > 𝑓 (𝑥𝑗−1), 𝑥𝑗 ∈ 𝛺 always
𝑓 (𝑥𝑗+1) ≤ 𝑓 (𝑥𝑗 ) if 𝑥𝑗+1 ∈ 𝛺

𝜖 ← 0.005, 𝑘0 ← 4, 𝑥0 ← (𝑘0, 0), 𝑑 ← (1, 0), 𝑡0 ← 𝑥0, 𝑗 ← 0
𝑥0 = EXPLORE_NUM_CELLS(𝑥0)
𝑥1 = 𝑥0 + 𝑡0 ⋅ 𝑑
𝑥1 = EXPLORE_NUM_CELLS(𝑥1)
if 𝑓 (𝑥1) > 𝑓 (𝑥0) and 𝑥1 ∈ 𝛺 then

do
j = j + 1
𝑡𝑗 = 𝑥𝑗
𝑥𝑗+1 = 𝑥𝑗 + 𝑡𝑗 ⋅ 𝑑
𝑥𝑗+1 = EXPLORE_NUM_CELLS(𝑥𝑗+1)

while 𝑓 (𝑥𝑗+1) > 𝑓 (𝑥𝑗 ) + 𝜖 and 𝑥𝑗+1 ∈ 𝛺
else

𝑥1 = 𝑥0
do

j = j + 1
𝑡𝑗 = − 𝑥𝑗

2
𝑥𝑗+1 = 𝑥𝑗 + 𝑡𝑗 ⋅ 𝑑
𝑥𝑗+1 = EXPLORE_NUM_CELLS(𝑥𝑗+1)

while 𝑓 (𝑥𝑗+1) ≥ 𝑓 (𝑥𝑗 ) and 𝑥𝑗+1 ∈ 𝛺
end if
Output: 𝑥𝑗

It is an alternating search in the direction of the two main axes,
as shown in Fig. 2. First, it explores the axis of the cells’ additions
(direction 𝑑 = (0, 1)) given a starting point, using algorithm 2. Then
it moves the starting point on the axis of the number of kernels of the
first layer (direction 𝑑 = (1, 0)) and repeats the search.

If the hardware selected for deployment allows, the number of
kernels used in the first layer is doubled, i.e. the starting point 𝑥0 is
doubled. If the network found with the new starting point is better than
the previous one, the algorithm continues doubling the starting point
until the generalization capability improves, if the hardware limits are
not reached. Otherwise, the algorithm continues by halving down the
initial number of kernels, i.e. the starting point 𝑥0, until performance
degradation is met or an unfeasible point is found. 𝑥𝑗 represents the
algorithm’s output.

Procedure 2 explores the axis of the cells’ additions (𝑑 = (0, 1))
given a starting point 𝑥, with a unitary step size (𝑡 = 1). Practically,
it continues to add cells until the generalization capability increases, if
the new network is feasible.

For the sake of synthesis, in algorithm 1, x1 is explored in any case,
even if it is not feasible. For the same reason the feasibility check for the



Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.
Algorithm 2 EXPLORE_NUM_CELLS(𝑥)
Require: 𝑥 ∈ 𝛺

Ensure:
{

𝑓 (𝑥𝑖) > 𝑓 (𝑥𝑖−1), 𝑥𝑖 ∈ 𝛺 always
𝑓 (𝑥𝑖+1) ≤ 𝑓 (𝑥𝑖) if 𝑥𝑖+1 ∈ 𝛺

𝑥0 ← 𝑥, 𝑑 ← (0, 1), 𝑡 ← 1, 𝑖 ← 0
do

𝑥𝑖+1 = 𝑥𝑖 + 𝑡 ⋅ 𝑑
i = i + 1

while 𝑓 (𝑥𝑖+1) > 𝑓 (𝑥𝑖) and 𝑥𝑖+1 ∈ 𝛺
return 𝑥𝑖

Fig. 2. A figure that is showing the points explored by the algorithm during a sample
run, in which the generalization capability does not increase during iteration 1 and
gets worse during iteration 2. The star marker represents the network with the highest
generalization capability for each iteration. As you can see, during each iteration the
points move along the c axis. After each iteration, the starting point moves along the
k axis.

point 𝑥𝑗+1 is done after the exploration. Something similar happens in
algorithm 2, where the network 𝑥𝑖+1 is trained even if it is not feasible.

4. Experimental methods

Five task-specific classification problems are chosen to evaluate the
efficacy of the proposed technique. First the models obtained by using
ColabNAS are compared with the ones obtained by applying TL, a
common way to design lightweight task-specific CNN [3]. The aim
of this comparison is to show that ColabNAS is able to obtain much
smaller models than TL at the cost of a few percentage points of
accuracy on the test set, in an acceptable amount of time. Then, three
different MCUs are used to show case the ability to adapting to different
hardware, in low-RAM conditions, of ColabNAS. Finally, a comparison
with state-of-the-art HW NAS, based on the Visual Wake Word dataset,
a standard TinyML benchmark [15], is presented.

Code, models and datasets are publicly available in the form of
Google Colaboratory’s notebooks at the link in Section 1. All the
computations have been executed on Google Colaboratory using Tesla
T4 GPUs, as of today, the ones mostly offered to free subscription users.

The five classification problems have been chosen to provide a set
of common task-specific datasets, publicly available with a variety of
sizes spanning from a few thousand images to hundreds of thousand of
images, also ensuring the possibility of reproducing the experiments
proposed in this paper on free-subscription online GPU programs.
Where test splits were not provided, they have been built using a
0.2 test split. i.e. 80% of data for training, 20% for testing. A brief
description of the tasks follows hereafter.
155
4.1. Melanoma Skin Cancer

The Melanoma Skin Cancer classification task aims to discriminate
between benign and malignant images of melanoma skin cancer. It
is composed of a training set containing 9605 images and a test set
of 1000 images. It is publicly available on kaggle under the name of
‘‘Melanoma Skin Cancer Dataset of 10 000 Images’’.1

4.2. Visual Wake Words

The Visual Wake Words classification task by Chowdhery et al.
[14] aims to discriminate between images with and without human
presence. It is composed of a training set containing 115,000 and a
test set containing 8000 images, derived by the ‘‘minival ids’’ as done
by Chowdhery et al. [14].

4.3. Animals-3

The Animals-3 classification task aims to discriminate between three
species of animals: horse, butterfly and hen. It contains 2623 instances
of horses, 2112 instances of butterflies, and 3098 instances of hens. It
is a subset of the Animals-10 dataset, which is publicly available on
kaggle.2

4.4. Flowers-4

The Flowers-4 classification task aims to discriminate between four
classes of flowers: dandelion, iris, tulip, and magnolia. It contains 1052
instances of dandelion, 1054 instances of iris, 1048 instances of tulip,
and 1048 instances of magnolia. It is a subset of the Flowers dataset,
which is publicly available on Kaggle.3

4.5. MNIST

The MNIST [36] classification task aims to discriminate between ten
handwritten digits: 0, 1, 2, . . . , 9. It is a subset of a larger set available
from NIST. It is composed of a training set containing 60,000 images
and of a test set containing 10,000 images.

5. Comparison with the networks obtained using transfer learning

This section compares ColabNAS with TL. To perform TL, Mo-
bileNetV2 [5], with frozen weights trained on ImageNet1k [13], is
used as the backbone. The extracted features are then compressed by a
bi-dimensional global average pooling layer and then given to a shal-
low classifier, composed of only one dense layer. The pre-processing
pipeline is the same of ColabNAS, reported in Section 3. It first applies
both horizontal flips and random rotations, then applies min–max
standardization, and finally uses batch normalization. Such models are
trained for 20 epochs using a learning rate of 10−3 and a batch size
of 128. Then, the trained model is fine-tuned for 10 epochs, with the
backbone unfrozen, using a learning rate of 10−5.

Instead, ColabNAS is run using as constraints the characteristics of
the models obtained using TL, i.e. RAM occupancy, ROM occupancy,
and MACC. Candidate solutions are trained for 100 epochs with a
learning rate of 10−3 and a batch size of 128. The same input size of
224 × 224 × 3, imposed by pre-trained MobileNetV2, is used for all
the datasets. Results for the Visual Wake Words and MNIST dataset
are not included in this comparison because of their high number of

1 https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-
dataset-of-10000-images?resource=download.

2 https://www.kaggle.com/datasets/alessiocorrado99/animals10.
3 https://www.kaggle.com/datasets/l3llff/flowers.

https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images?resource=download
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images?resource=download
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://www.kaggle.com/datasets/l3llff/flowers


Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.
Table 1
Test accuracy, peak RAM occupancy, Flash occupancy, MACC and search cost of the
resulting models of TL and ColabNAS (our proposed method) for the Melanoma Skin
Cancer dataset.

Test Acc. RAM Flash MACC Search cost
[%] [kiB] [kiB] [MM] [hh]:[mm]

TL 88 2523 2650 300 00:16
Our 91.1 547 75.2 44 03:52

Table 2
Test accuracy, peak RAM occupancy, Flash occupancy, MACC and search cost of
the resulting models of TL and ColabNAS (our proposed method) for the Animals-3
dataset.

Test Acc. RAM Flash MACC Search cost
[%] [kiB] [kiB] [MM] [hh]:[mm]

TL 99.2 2523 2653 300 00:11
Our 93.2 988 197.3 153 03:02

Table 3
Test accuracy, peak RAM occupancy, Flash occupancy, MACC and search cost of
the resulting models of TL and ColabNAS (our proposed method) for the Flowers-4
dataset.

Test Acc. RAM Flash MACC Search cost
[%] [kiB] [kiB] [MM] [hh]:[mm]

TL 99.2 2523 2653 300 00:07
Our 93.8 546 59.7 44 01:20

images which makes ColabNAS exceed the maximum amount of time
guaranteed for free users on Google Colaboratory.

The metrics used for the comparison are the test accuracy, the peak
RAM occupancy, the Flash occupancy and the number of MACC. Post
training quantization (PTQ) has been applied to all the models. X-
CUBE-AI software from ST Microelectronics has been used to measure
the peak RAM occupancy and the Flash occupancy, while the number
of MACC has been computed using Keras backend of Tensorflow.

5.1. Melanoma Skin Cancer

Table 1 shows the comparison for the Melanoma Skin Cancer classi-
fication task. In this case, ColabNAS outperformed the result obtained
by applying TL, by all means. ColabNAS produced a network that is
3.1 per cent points more precise, occupies 4.6 times less RAM, 35.2
times less Flash and performs 5.2 times less MACC compared to the
TL’s result.

5.2. Animals-3

Table 2 shows the comparison for the Animals-3 classification task.
In this case, ColabNAS produced a model that occupies 2.6 times less
RAM, 13.4 times less Flash and performs 2 times less MACC while being
6 per cent points less precise compared to the TL’s result.

5.3. Flowers-4

Finally, Table 3 shows the comparison for the Flowers-4 classifica-
tion task. In this case, ColabNAS produced a model that occupies 4.6
times less RAM, 44.4 times less Flash and performs 6.8 times less MACC
while being 5.4 per cent points less precise compared to the TL’s result.

6. Evaluation of the hardware-aware feature

This section evaluates the hardware-aware feature of ColabNAS
by providing results for different hardware targets. To highlight the
ColabNAS feature of providing lightweight CNNs, three low-RAM STMi-
croelectronics (STM) MCUs from the Ultra-low Power series have been
156

selected: the L010RBT6 (abbr. L0), the L151UCY6DTR (abbr. L1) and
Table 4
Available RAM and Flash, and the CoreMark score of each hardware target considered
for the experiment.

STM32 MCU RAM [kiB] Flash [kiB] CoreMark

L010RBT6 20 128 75
L151UCY6DTR 32 256 93
L412KBU3 40 128 273

Table 5
Test accuracy, RAM and Flash occupancy, MACC and search cost of the resulting models
for each target, indicated in its abbreviated form on the first column, for the Melanoma
Skin Cancer dataset.

Target Acc RAM Flash MACC Search cost
abbr. [%] [kiB] [kiB] [k] [hh]:[mm]

L0 86.5 19.5 8.3 92 00:17
L1 88.7 22 14.4 654 00:19
L4 90.1 32.5 31.84 2075 00:17

Table 6
Test accuracy, RAM and Flash occupancy, MACC and search cost of the resulting models
for each target, indicated in its abbreviated form on the first column, for the Visual
Wake Words dataset.

Target Acc RAM Flash MACC Search cost
abbr. [%] [kiB] [kiB] [k] [hh]:[mm]

L0 69.4 19 8.02 227 2:11
L1 74.5 22.5 18.5 657 3:04
L4 77.8 33 44.9 2086 2:47

the L412KBU3 (abbr. L4). The generated networks were evaluated
using the STM32 X-Cube-AI software.

Table 4 summarizes the key features of each MCU, i.e., available
RAM and Flash, and CoreMark score, a benchmark for comparing
performances of commercial MCUs. The values in Table 4 set the
constraints for running ColabNAS on each target. RAM and Flash were
provided as is, while the MACC upper bound was obtained multiplying
by 104 the CoreMark score of the target, in order to allow a fair
exploration of the search space. 50 × 50 × 3 input size has been used
to cope with MCUs constrained resources. The results for each dataset
follow.

6.1. Melanoma Skin Cancer

Table 5 shows the resulting models for each target for the Melanoma
Skin Cancer dataset. As can be seen, ColabNAS was able to provide
a feasible model for each target, adapting to the resource available.
The larger the target’s resources the larger the model is. Models show
a mean test accuracy drop of 1.8 per cent points while lowering the
target’s resources. The drop is more significant while passing from L1,
the medium target, to L0, the small target.

6.2. Visual Wake Words

Table 6 shows the resulting models for each target for the Visual
Wake Words dataset. As can be seen, ColabNAS was able to provide
a feasible model for each target, adapting to the resource available.
The larger the target’s resources the larger the model is. Models show
a mean test accuracy drop of 4.2 per cent points while lowering the
target’s resources. The drop is more significant while passing from L1,
the medium target, to L0, the small target.

6.3. Animals-3

Table 7 shows the resulting models for each target for the Animals-3
dataset. ColabNAS was able to provide a feasible model for each target,
adapting to the resource available. The larger the target’s resources the

larger the model is. Models show a mean test accuracy drop of 8.65



Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.

W
h
S
C
5

d
s
t
v

Table 7
Test accuracy, RAM and Flash occupancy, MACC and search cost of the resulting models
for each target, indicated in its abbreviated form on the first column, for the Animals-3
dataset.

Target Acc RAM Flash MACC Search cost
abbr. [%] [kiB] [kiB] [k] [hh]:[mm]

L0 67.9 19 8.03 227 00:09
L1 75.8 22.5 18.65 657 00:17
L4 85.2 33 44.86 2086 00:09

Table 8
Test accuracy, RAM and Flash occupancy, MACC and search cost of the resulting models
for each target, indicated in its abbreviated form on the first column, for the Flowers-4
dataset.

Target Acc RAM Flash MACC Search cost
abbr. [%] [kiB] [kiB] [k] [hh]:[mm]

L0 79.2 18.5 6.67 211 00:05
L1 84.4 21.5 10.91 633 00:08
L4 91.3 32.5 31.91 2075 00:10

Table 9
Test accuracy, RAM and Flash occupancy, MACC and search cost of the resulting models
for each target, indicated in its abbreviated form on the first column, for the MNIST
dataset.

Target Acc RAM Flash MACC Search cost
abbr. [%] [kiB] [kiB] [k] [hh]:[mm]

L0 88.2 19.5 9.79 233 01:07
L1 95.6 22.5 18.80 657 01:41
L4 98 33 45.23 2087 01:29

per cent points while lowering the target’s resources. The drop is more
significant while passing from L1, the medium target, to L0, the small
target.

6.4. Flowers-4

Table 8 shows the resulting models for each target for the Flowers-
4 dataset. As can be seen, ColabNAS was able to provide a feasible
model for each target, adapting to the resource available. The larger
the target’s resources, the larger the model is. Models show a mean
test accuracy drop of 6.05 per cent points while lowering the target’s
resources. In this case, the drop is more significant while passing from
L4, the large target, to L1, the medium target.

6.5. MNIST

Table 9 shows the resulting models for each target for the MNIST
dataset. ColabNAS was able to provide a feasible model for each target,
adapting to the resource available. The larger the target’s resources the
larger the model is. Models show a mean test accuracy drop of 4.9
per cent points while lowering the target’s resources. The drop is more
significant while passing from L1, the medium target, to L0, the small
target.

6.6. Final considerations

ColabNAS proven to be able to adapt to targets with low RAM
availability, providing feasible solutions tailored to the available re-
sources. The obtained models seem to depend more on the target’s
characteristics than on the dataset. Chosen a target, resulting model’s
RAM and MACC seem to remain almost constant across the different
datasets explored in this section, while the flash occupancy shows
higher variations. The search time appears proportional to the number
of images in the dataset, given the fixed input size. By further lowering
the input size, it should be possible to obtain networks with even
smaller RAM occupancies, probably at the cost of further reducing test
157

accuracies. /
Table 10
Test accuracy, RAM and Flash occupancy, latency and input size for the chosen models
from Micronets, MCUNET and ColabNAS (our) for the Visual Wake Words dataset.

Project Acc RAM Flash Latency Input
[%] [kiB] [kiB] [mS] size

MCUNet 87.4 168.5 530.52 2.16 64 × 64 × 3
Micronets 76.8 70.5 273.81 1.15 50 × 50 × 3
Our 77.6 31.5 20.83 0.432 50 × 50 × 3

7. Comparison with state-of-the-art hardware-aware NAS tech-
niques on the Visual Wake Word dataset

This section compares ColabNAS with two state-of-the-art HW NAS
techniques for CNNs: MicroNets by Banbury et al. [2] and MCUNet
by Lin et al. [1]. The comparison is based on the Visual Wake Word
dataset [14], a standard benchmark for TinyML models [15]. Ima-
genet1k [13] is not included, given its general-purpose nature, which
is not compatible with the task-specific nature of our method.

Only the model with lowest RAM occupation has been selected from
both projects.4 Then, we ColabNAS has been ran on the Visual Wake

ord dataset using the same hardware target of Micronets, the one
aving the smallest RAM among the targets of the two projects: the
TMF446RE MCU having 128 kiB of RAM, 512 kiB of Flash and a
oreMark score of 608. The input size is also the same as Micronets:
0 × 50 × 3.

Table 10 shows the comparison results, which are also graphically
represented in Fig. 3. All the models are in TFLite format. They are fully
quantized to perform 8-bit inference. Test accuracy, RAM occupancy
and Flash occupancy are compared, as in the previous cases. Since
there is no direct way to measure MACC using the TFLite API, no
value for them is presented. To have a comparison of the execution
times, a latency value is measured using the IPython magic command
‘‘%timeit’’ alongside the TFLite interpreter invocation. The input tensor
content is random. All the measurements were performed during the
same Google Colaboratory session with a dual-core Intel(R) Xeon(R)
CPU at 2.20 GHz. No GPU was involved.

Our model improves by all means the one proposed by Micronets.
However, the solution proposed by MCUNet is still more accurate.
It offers 9.8 per cent points accuracy higher than our solution while
occupying 5.35 times more RAM, 25.47 times more Flash and being 5
times slower.

7.1. Search costs comparison

As stated by Lin et al. [1] MCUNet spent 300 GPU hours to produce
its architecture. Instead, MicroNets by Banbury et al. [2] does not
declare the time spent on finding the architecture. However, they run
DNAS for 200 epochs to find it. DNAS by Liu et al. [28], uses 1.5
GPU days (does not include the selection cost (1 GPU day) or the
final evaluation cost by training the selected architecture from scratch
(1.5 GPU days)) to find a network over the CIFAR-10 dataset, which
contains 60 000 32 × 32 color images in 10 classes, with 6000 images
per class. In this case, DNAS is run for 100 epochs. Considering that
the visual wake word training set is composed of 107,954 images,
that the input volume used is 50 × 50 × 1 and that the epochs used
are double, the time spent on it is higher than the time spent on the
CIFAR-10. Hence ColabNAS results considerably faster than MCUNet
and MicroNets.

4 In the case of MicroNets the ‘‘vww2_50_50_INT8.tflite’’ model has been
ownloaded from the ARM’s GitHub web page https://github.com/ARM-
oftware/ML-zoo/blob/master/models/visual_wake_words/micronet_vww2/
flite_int8/vww2_50_50_INT8.tflite. In the case of MCUNet, the ‘‘mcunet-10fps-
ww’’ model has been downloaded from the laboratory’s web page https:

/hanlab.mit.edu/projects/tinyml/mcunet/release/mcunet-10fps_vww.tflite.

https://github.com/ARM-software/ML-zoo/blob/master/models/visual_wake_words/micronet_vww2/tflite_int8/vww2_50_50_INT8.tflite
https://github.com/ARM-software/ML-zoo/blob/master/models/visual_wake_words/micronet_vww2/tflite_int8/vww2_50_50_INT8.tflite
https://github.com/ARM-software/ML-zoo/blob/master/models/visual_wake_words/micronet_vww2/tflite_int8/vww2_50_50_INT8.tflite
https://hanlab.mit.edu/projects/tinyml/mcunet/release/mcunet-10fps_vww.tflite
https://hanlab.mit.edu/projects/tinyml/mcunet/release/mcunet-10fps_vww.tflite


Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.
Fig. 3. Graphical representation of test accuracy, RAM and flash occupancy, latency
and input size for the chosen models from Micronets, MCUNET and ColabNAS (our)
for the Visual Wake Words dataset.

8. Conclusion

In this paper, we proposed ColabNAS: an affordable HW NAS tech-
nique for designing task-specific CNNs, able to work with low-RAM
MCUs. Its novel search strategy, inspired by Occam’s razor, has a low
search cost. It obtains state-of-the-art results on the visual wake word
dataset in just 3.1 GPU hours, improving, by all means, the solution
found by Micronets.

The low search cost allows its execution on free online services such
as Kaggle Kernel or Google Colaboratory, without owning a high-end
GPU. Given the current global chip shortage, this can help those end-
users and researchers who want to approach application of lightweight
CNNs for custom classification problems.

It also provides task-specific lightweight CNNs that occupy on av-
erage 3.9 times less RAM, 31 times less Flash, and have 4.6 less MAC
than those obtained by applying TL and FT, based on MobileNetV2 on
the same task, one of the most used techniques to obtain task-specific
lightweight CNNs in research. This is at the cost of losing 2.8 per cent
accuracy points on average. Such a trade-off can target deployment on
the growing field of wearable and distributed devices with embedded
electronics hardware. Moreover, reducing the computational cost of
the final application turns into more efficient power consumption. In a
world where artificial intelligence is becoming more and more diffused,
reducing energy consumption is a fundamental step towards a more
sustainable future.

CRediT authorship contribution statement

Andrea Mattia Garavagno: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Writing – original draft. Daniele
Leonardis: Writing – original draft, Data plotting, Supervision. Anto-
nio Frisoli: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
158
Data availability

I have shared the link to my data/code in the paper.

References

[1] J. Lin, W.M. Chen, H. Cai, C. Gan, S. Han, Memory-efficient patch-based
inference for tiny deep learning, Adv. Neural Inf. Process. Syst. 34 (2021)
2346–2358.

[2] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope, V.j. Reddi, M.
Mattina, P. Whatmough, Micronets: Neural network architectures for deploying
tinyml applications on commodity microcontrollers, Proc. Mach. Learn. Syst. 3
(2021) 517–532.

[3] M. Iman, H.R. Arabnia, K. Rasheed, A review of deep transfer learning and recent
advancements, in: MDPI, 2023.

[4] T. Sanida, A. Sideris, D. Tsiktsiris, M. Dasygenis, Lightweight neural net-
work for COVID-19 detection from chest X-ray images implemented on an
embedded system, Technologies 10 (2022) 37, http://dx.doi.org/10.3390/
technologies10020037.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, Mobilenetv2: Inverted
residuals and linear bottlenecks, in: CVPR, 2018.

[6] S. Liu, W. Kong, X. Chen, M. Xu, M. Yasir, L. Zhao, J. Li, Multi-scale ship
detection algorithm based on a lightweight neural network for spaceborne SAR
images, Remote Sens. 14 (2022) 1149, http://dx.doi.org/10.3390/rs14051149.

[7] Y. Wang, C. Bai, X. Qian, W. Liu, C. Zhu, L. Ge, A DC series arc fault
detection method based on a lightweight convolutional neural network used
in photovoltaic system, Energies 15 (2022) 2877, http://dx.doi.org/10.3390/
en15082877.

[8] M. Tan, Q.V. Le, EfficientNet: Rethinking model scaling for convolutional neural
networks, in: Proceedings of the 36th International Conference on Machine
Learning, Vol. 97, PMLR, 2019, pp. 6105–6114.

[9] S. Khaki, N. Safaei, H. Pham, L. Wang, WheatNet: A lightweight convolu-
tional neural network for high-throughput image-based wheat head detection
and counting, Neurocomputing 489 (2022) 78–89, http://dx.doi.org/10.1016/j.
neucom.2022.03.017.

[10] F. Jubair, O. Al-karadsheh, D. Malamos, S. Al Mahdi, Y. Saad, Y. Hassona, A
novel lightweight deep convolutional neural network for early detection of oral
cancer, Oral Dis. 28 (2022) 1123–1130, http://dx.doi.org/10.1111/odi.13825.

[11] E. Ragusa, T. Apicella, C. Gianoglio, R. Zunino, P. Gastaldo, Design and
deployment of an image polarity detector with visual attention, Cogn. Comput.
14 (2022) 261–273, http://dx.doi.org/10.1007/s12559-021-09829-6.

[12] E. Ragusa, C. Gianoglio, S. Dosen, P. Gastaldo, Hardware-aware affordance
detection for application in portable embedded systems, IEEE Access 9 (2021)
123178–123193, http://dx.doi.org/10.1109/ACCESS.2021.3109733.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, Li Fei-Fei, ImageNet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255, http://dx.doi.org/10.1109/CVPR.2009.
5206848.

[14] A. Chowdhery, P. Warden, J. Shlens, A. Howard, R. Rhodes, Visual wake words
dataset, 2019, arXiv preprint, arXiv:1906.05721.

[15] C.R. Banbury, V.J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, . . . , P. Yadav,
Benchmarking tinyml systems: Challenges and direction, 2020, arXiv preprint
arXiv:2003.04821.

[16] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

[17] A. Howard, M. Sandler, G. Chu, L.C. Chen, B. Chen, M. Tan, W. Wang, Y.
Zhu, R. Pang, V. Vasudevan, Q.V. Le, H. Adam, Searching for mobilenetv3,
in: Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 1314–1324.

[18] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model
size, 2016, arXiv preprint arXiv:1602.07360.

[19] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in: CVPR, 2018.

[20] N. Ma, X. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for
efficient cnn architecture design, in: ECCV, 2018.

[21] M. Tan, B. Chen, R. Pang, V. Vasudevan, Q.V. Le, Mnasnet: Platform-aware neural
architecture search for mobile, 2018, CoRR, abs/1807.11626.

[22] Y. Yang, C. Wang, L. Gong, X. Zhou, Fpnet: customized convolutional
neural network for fpga platforms, in: 2019 International Conference on
Field-Programmable Technology (ICFPT), IEEE, 2019, pp. 399–402.

[23] M.S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, N.D. Lane, Best of both
worlds: Automl codesign of a cnn and its hardware accelerator, in: 2020 57th
ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

http://refhub.elsevier.com/S0167-739X(23)00402-8/sb1
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb1
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb1
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb1
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb1
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb3
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb3
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb3
http://dx.doi.org/10.3390/technologies10020037
http://dx.doi.org/10.3390/technologies10020037
http://dx.doi.org/10.3390/technologies10020037
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb5
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb5
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb5
http://dx.doi.org/10.3390/rs14051149
http://dx.doi.org/10.3390/en15082877
http://dx.doi.org/10.3390/en15082877
http://dx.doi.org/10.3390/en15082877
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb8
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb8
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb8
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb8
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb8
http://dx.doi.org/10.1016/j.neucom.2022.03.017
http://dx.doi.org/10.1016/j.neucom.2022.03.017
http://dx.doi.org/10.1016/j.neucom.2022.03.017
http://dx.doi.org/10.1111/odi.13825
http://dx.doi.org/10.1007/s12559-021-09829-6
http://dx.doi.org/10.1109/ACCESS.2021.3109733
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1906.05721
http://arxiv.org/abs/2003.04821
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb17
http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb19
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb19
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb19
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb20
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb20
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb20
http://arxiv.org/abs/1807.11626
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb22
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb22
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb22
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb22
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb22
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb23
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb23
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb23
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb23
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb23


Future Generation Computer Systems 152 (2024) 152–159A.M. Garavagno et al.
[24] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra, W. Jiang, Y.
Shi, Co-exploration of neural architectures and heterogeneous asic accelerator
designs targeting multiple tasks, in: 2020 57th ACM/IEEE Design Automation
Conference (DAC), IEEE, 2020, pp. 1–6.

[25] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-all: Train one network and
specialize it for efficient deployment, 2019, arXiv preprint arXiv:1908.09791.

[26] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, M. Shafique,
Nascaps: A framework for neural architecture search to optimize the accuracy
and hardware efficiency of convolutional capsule networks, in: Proceedings of
the 39th International Conference on Computer-Aided Design, 2020, pp. 1–9.

[27] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, K.
Keutzer, Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 10734–10742.

[28] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture search, in: 7th
International Conference on Learning Representations, ICLR, 2019.

[29] X. Zheng, C. Yang, S. Zhang, Y. Wang, B. Zhang, Y. Wu, Y. Wu, L. Shao, R. Ji,
Ddpnas: Efficient neural architecture search via dynamic distribution pruning,
Int. J. Comput. Vis. (2023) 1–16.

[30] S. Li, Y. Mao, F. Zhang, D. Wang, G. Zhong, Dlw-nas: Differentiable light-weight
neural architecture search, Cogn. Comput. (2022) 1–11.

[31] H. Cai, L. Zhu, S. Han, Proxylessnas: Direct neural architecture search on target
task and hardware, 2018, CoRR, abs/1812.00332.

[32] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[33] M. Lin, Q. Chen, S. Yan, Network in network, 2014, CoRR, abs/1312.4400.
[34] M. Shanker, M.Y. Hu, M.S. Hung, Effect of data standardization on neural

network training, Omega 24 (4) (1996) 385–397, http://dx.doi.org/10.1016/
0305-0483(96)00010-2.

[35] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, Vol. 37, PMLR, 1996, pp. 448–456.

[36] Y. LeCun, C. Cortes, C.J.C. Burges, MNIST handwritten digit database, 2010, ATT
Labs [Online], available: http://yann.lecun.com/exdb/mnist.
159
Andrea Mattia Garavagno received his B.Sc. degree in
Electronic Engineering from the University of Genova, Italy,
in 2018 and his M.Sc. degree with honours in Embedded
Computing Systems, from Scuola Superiore Sant’Anna and
the University of Pisa, Italy, in 2022. He co-authored
the Italian book ‘‘Introduzione al Progetto di Sistemi a
Microprocessore’’ and the English book, ‘‘Introduction to
Microprocessor-Based Systems Design’’ both published by
Springer.

Daniele Leonardis received the BS and MS degrees in
automation engineering from the Politecnico of Bari, Italy,
in 2007 and 2009, respectively, and the Ph.D. degree in
Innovative technologies at Scuola Superiore Sant’Anna, Pisa,
Italy, in 2015. He is a researcher in mechanical engineering
at the Institute Of Mechanical Intelligence: his research
interests deal with haptic feedback applied to telepresence
and virtual embodiment, bio-signals for controlling wearable
robotic devices applied for rehabilitation and assistance.

Antonio Frisoli received the M.Sc. degree in mechanical
engineering from Scuola Superiore Sant’Anna, Italy, in 1988,
and the Ph.D. degree with honours in industrial and infor-
mation engineering from Scuola Superiore Sant’Anna, Italy,
in 2002. He is full professor of mechanical engineering with
Scuola Superiore Sant’Anna, where he is currently a head
of the Human–Robot Interaction area at the Institute of Me-
chanical Intelligence and former chair of the IEEE Technical
Committee on Haptics. His research interests concern the
design and control of haptic devices and robotic systems,
rehabilitation robotics, advanced HRI, and kinematics. He
is a member of the IEEE.

http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb24
http://arxiv.org/abs/1908.09791
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb26
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb27
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb28
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb28
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb28
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb29
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb29
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb29
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb29
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb29
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb30
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb30
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb30
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.4400
http://dx.doi.org/10.1016/0305-0483(96)00010-2
http://dx.doi.org/10.1016/0305-0483(96)00010-2
http://dx.doi.org/10.1016/0305-0483(96)00010-2
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb35
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb35
http://refhub.elsevier.com/S0167-739X(23)00402-8/sb35
http://yann.lecun.com/exdb/mnist

	ColabNAS: Obtaining lightweight task-specific convolutional neural networks following Occam's razor
	Introduction
	Related Works
	ColabNAS
	Search Space and Problem Formulation
	Network's Architecture details
	Search Strategy

	Experimental Methods
	Melanoma Skin Cancer
	Visual Wake Words
	Animals-3
	Flowers-4
	MNIST

	Comparison with the networks obtained using Transfer Learning
	Melanoma Skin Cancer
	Animals-3
	Flowers-4

	Evaluation of the hardware-aware feature
	Melanoma Skin Cancer
	Visual Wake Words
	Animals-3
	Flowers-4
	MNIST
	Final Considerations

	Comparison with state-of-the-art hardware-aware NAS techniques on the Visual Wake Word dataset
	Search Costs Comparison

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


